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Abstract

We present an undecidability proof of the notion of communication errors in the polyadic
π-calculus. The demonstration follows a general pattern of undecidability proofs—reducing
a well-known undecidable problem to the problem in question. We make use of an encoding
of the λ-calculus into the π-calculus to show that the decidability of communication errors
would solve the problem of deciding whether a lambda term has a normal form.

Introduction. The detection of communication errors in process calculi is crucial to ensure the
safety of concurrent programs, i.e., the absence of run-time errors. The usual approach is to
develop a type system, which is sound with respect to the notion of error, but, in general, not
complete. The notions of communication errors are usually undecidable, and this makes the type
approach relevant. For the polyadic π-calculus [8] this is also the case.

Herein we show that the notion of communication errors in the polyadic π-calculus is unde-
cidable. The proof follows a general pattern of undecidability results [4]: we reduce the problem
of deciding whether a lambda term has a normal form [5] to the problem of deciding whether
a process is an error. More precisely, we define a computable function p·q from λ-terms into π-
terms, and show that the decidability of ‘pMq∈Err’ implies the decidability of ‘M↓’, from which
we conclude immediately that ‘pMq∈Err’ is undecidable. An alternative proof—reducing the
halting problem of Turing machines to our problem—would involve first the encoding of Turing
machines in the π-calculus.

This result, although not surprising, is up to the authors’ knowledge, original. It shows an
important application of the encodings of the λ-calculus into the π-calculus —the transference
of results. It also shows that only by indirect means one can statically detect possible run-time
errors in concurrent programs, for example, by using type systems.

The asynchronous polyadic π-calculus. We briefly present the asynchronous polyadic π-
calculus [3, 6, 8]. Assume a countable set of names a, b, p, q, u, v, x, and let ṽ stand for a sequence
of names, and x̃ for a sequence of pairwise distinct names.

Definition 1 (Processes). The set of processes is given by the following grammar.

P ::= a[ṽ] | a(x̃).P | P | Q | νxP | ! a(x̃).P | 0

An input prefixed process a(x̃).P receives a sequence of values ṽ along a and becomes the
process P where names in ṽ replace names in x̃ in P . An output process a[ṽ] sends the sequence
of names ṽ along a. 0 is the terminated process, P | Q is the parallel composition of processes,
and νxP restricts the scope of the name x to the process P . Process ! a(x̃).P is a persistent input
prefixed process. We abbreviate to νx1 · · ·xn P a process νx1 · · · νxn P , and consider that the
operator ‘ν’ binds tighter than the operator ‘|’.
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(In) a(x̃).P
a[ṽ]−−→ P [ṽ/x̃] (Out) a[ṽ]

a[ṽ]−−→ 0

(RIn) ! a(x̃).P
a[ṽ]−−→ ! a(x̃).P | P [ṽ/x̃] (Com) a(x̃).P | a[ṽ]

τ−→ P [ṽ/x̃]

(RCom) ! a(x̃).P | a[ṽ]
τ→ ! a(x̃).P | P [ṽ/x̃] (Par)

P
α−→ Q

P | R
α−→ Q | R

(bn(α) ∩ fn(R) = ∅)

(Res)
P

α−→ Q

νx P
α−→ νx Q

(x /∈ fn(α) ∪ bn(α)) (Open)
P

νx̃ a[ṽ]−−−−→ Q

νx P
νxx̃ a[ṽ]−−−−−→ Q

(a /∈ {xx̃})

(Struct)
P ≡ P ′ P ′ α−→ Q′ Q′ ≡ Q

P
α−→ Q

Figure 1: Asynchronous transition relation.

Definition 2 (Free names, substitution).

1. An occurrence of a name x in a process P is bound if it is in a part of P with the form
a(w̃xỹ).Q or νxQ; otherwise the occurrence of x is free.

2. We define accordingly the set fn(P ) of the free names in a process P ; alpha-conversion,
denoted by ≡α, is defined as for the λ-calculus.

3. The process P [ṽ/x̃] is the result of simultaneously substituting the names in ṽ for every free
occurrence of the corresponding name in x̃ in P ; it is defined only when x̃ and ṽ are sequences
of the same length.

Definition 3 (Operational semantics).

1. The structural congruence relation is inductively defined by the following rules.

P ≡ Q if P ≡α Q

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)
νx0 ≡ 0 νxy P ≡ νyxP νxP | Q ≡ νx (P | Q) if x /∈ fn(Q)

2. The set of action labels is given by the following grammar, where {x̃} ⊆ {ṽ} \ {a}.
α : : = τ | a[ṽ] | νx̃ a[ṽ]

3. An occurrence of a name x in an action label α is bound if the label is of the form νw̃xỹ a[ṽ];
otherwise the occurrence of x is free. The sets fn(α) and bn(α) of the free names and the
bound names in an action label α are defined accordingly.

4. The operational semantics is defined via an asynchronous transition relation—the smallest
relation generated by the rules in Figure 1.

The silent action τ denotes internal communication within the process; the input action a[ṽ]
represents the reception on the name a of a sequence of names ṽ; the output action νx̃ a[ṽ]
represents the emission to the name a of a sequence of names ṽ, some of them bound (those in x̃;
the name a is free to allow the message to be received). In the last two action labels, the name a
is called the subject of the action label, and the names ṽ its objects. Let =⇒ denote the reflexive
and transitive closure of τ−→, and let α=⇒ denote =⇒ α−→=⇒.

Definition 4 (Error-processes [11]). The set Err of π-processes with a communication error
is the following:

{P | P =⇒ νũ (a[v1 · · · vn] | a(x1 · · ·xm).Q | R) with n 6= m}
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We finally define an equivalence relation over processes that takes into account the number of
τ -actions performed.

Definition 5 (Expansion [2, 10]). A relation R over processes is an expansion if PRQ implies:

1. If P
α−→ P ′, then there is a Q′ such that Q

α=⇒ Q′ and P ′RQ′;
2. If Q

τ−→ Q′, then either PRQ′, or there is a P ′ such that P
τ−→ P ′ and P ′RQ′;

3. If Q
α−→ Q′, where α is an input or an output action, then there is a P ′ such that P

α−→ P ′

and P ′RQ′.

We say that Q expands P , denoted P . Q, if PRQ for some expansion R. In our setting the
expansion relation is a preorder and a congruence.

The undecidability proof. We make use of Sangiorgi’s version of Milner’s original encoding
of the lazy λ-calculus [1] into the π-calculus [7, 9].

Definition 6 (Encoding of the lazy λ-calculus [9]).

[[λx.M ]]p
def= p(xq).[[M ]]q

[[x]]p
def= x[p]

[[MN ]]p
def= νuv ([[M ]]u | u[vp] | ! v(q).[[N ]]q)

Henceforth, assume that M is a closed term, unless otherwise stated.

Before proving the result we present three crucial lemmas. The first is rather intuitive, stating
when name substitution preserves error freedom. The second is adapted from results in the
literature [9], and regards the preservation of termination and the divergence of encoded terms.
The third is original and not trivial: it guarantees the absence of communication errors in encoded
terms. Up to the authors knowledge this is usually done indirectly, via a type system. We present
a direct proof.

Lemma 1. If P 6∈ Err and {ṽ} ∩ fn(P ) = ∅, then P [ṽ/x̃] 6∈ Err.

Proof. For each name xi in x̃, if xi does not occur free in P then P [vi/xi] = P . Otherwise,
observe that P 6∈Err, that vi 6∈ fn(P ), and that substitution replaces each name by exactly one
name. Thus, by structural induction one easily verifies that P [ṽ/x̃] 6∈ Err.

Notice that without the proviso ‘{ṽ}∩ fn(P )=∅’ the result does not hold; just take the process
a[] | b(x).0 and the substitution [a/b].

Lemma 2. Let M be closed in all the items below but the second.

1. If [[M ]]p =⇒ α−→, then α = p[xq] and M ↓.
2. If [[M ]]p

α=⇒ and α is an output action with subject x, then its object is some name v (notice
that x must be free in M).

3. If M ↑, then for no α, [[M ]]p
α=⇒.

4. If M =⇒ λx.N , then [[M ]]p
p[xq]
=⇒& [[N ]]q .

Proof. For the first clause, that α is an input action follows from the contrapositive of the con-
junction of clauses 3 and 4 in Proposition 5.5 [9] (the conjunction of the clauses implies that if
α is an output then M is open), and from the fact that M is closed; that M converges follows
from the second clause of the same proposition. The second clause follows from the conjunction
of clauses 3 to 4 in Proposition 5.5 [9]. The third clause follows from the contrapositive of the
conjunction of clauses 2 to 4 in the Proposition 5.5 [9] (the conjunction of the clauses implies that
if there is an α such that [[M ]]p

α=⇒ then M ↓). The fourth clause is the second clause in the
Proposition 5.4 [9].
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Lemma 3. [[M ]]p 6∈ Err.

Proof. By structural induction on M . Observe that the encoding of a variable and the encoding
of an abstraction are trivially not erroneous.
For the application, the encoding is, by definition, [[NL]]p

def= νuv ([[N ]]u | u[vp] | ! v(q).[[L]]q).
Since by induction hypothesis [[N ]]u and [[L]]q are not erroneous, by definition no P such that
[[N ]]u =⇒ P is erroneous. Therefore, only the interaction between the process [[N ]]u and the
process R

def= u[vp] | ! v(q).[[L]]q may generate errors. Since M is closed there are two cases to
consider:

1. Case N =⇒ λx.N ′. By Lemma 2.4 we have that

[[NL]]p =⇒ νv (P [vp/xq] | ! v(q).[[L]]q) (where P [vp/xq] & [[N ′]]p).

By Lemma 1, P [vp/xq] is not erroneous. So, it is only the interaction between P [vp/xq] and
! v(q).[[L]]q that can go wrong. Again, we have two cases to consider, depending on whether
x is free in N ′ (and taking into account that P [vp/xq] & [[N ′]]p):

(a) if x does not occur free in N ′ then, by Lemma 2.1, there is no output action in P [vp/xq],
and thus, there is no interaction;

(b) if x does occur free in N ′ then, by Lemma 2.2, the interaction does not go wrong.

2. Case N ↑. Then Lemma 2.3 ensures that [[N ]]u has no action; thus there is no interaction
with the process R, and nothing goes wrong.

We conclude that the encoding does not generate errors.

We are now in a position to prove the result of this paper.

Theorem 4. The predicate ‘P ∈ Err’ is undecidable.

Proof. Suppose that ‘P ∈Err’ is decidable. We show that ‘M ↓’ is decidable.

Let p·q be a function from λ-terms into π-terms such that pMq def= νp ([[M ]]p | p[]). We have to
prove two assertions:

1. the function p·q is computable;
2. ‘pMq ∈ Err’ if and only if ‘M ↓’.

The proof of the first assertion follows directly from definition 6. To prove the ‘if’ direction of the
second assertion notice first that we know from Lemma 3 that [[M ]]p 6∈ Err; then, pMq is an error
only when the interaction of [[M ]]p and p[] causes the error. Hence, by Lemma 2.1, ‘M ↓’. For the
‘only-if’ direction, observe that since M is closed, M =⇒ λx.N . Then, from Lemma 2.4 we know
that [[M ]]p =⇒ α−→ and an error occurs in pMq.
We attain an absurd, since we know that ‘M ↓’ is undecidable ([5], Corollary 5.6.2). Therefore,
‘P ∈ Err’ is undecidable.
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