Auditable Register Emulations

Vinicius V. Cogo
vielmo@lasige.di.fc.ul.pt

Alysson Bessani
http://www.di.fc.ul.pt/~bessani/
bessani@di.fc.ul.pt

Navtalk – May 29, 2019
Private infrastructures
→
Public multi-tenant

Pros
- Cost-effectiveness
- High scalability
- Ease of use
...

Cons
- Outages
- Security incidents
- Privacy risks
...

Private infrastructures
→
Public multi-tenant
Secure storage systems ... disperse data in multiple objects

E.g., DepSky, SCFS, CHARON, Vawlt
... where **blocks** from a portion of these objects is enough to recover the original **data**
Increasing severity of

Tightening of regulations

demand for further advances on secure storage

(e.g., forensics to identify suspects and measure the damage)
Our goal: Audit who has effectively read data in secure storage systems?
Outline

Preliminaries

Auditable Register Emulations

Resilience Lower Bounds

Alternative Models

Conclusions
Preliminaries

- **System model:**
 - Shared memory
 - Client processes (writers, readers, and auditors)
 - n storage objects

- **Fault model:**
 - Writers and auditors are trusted and can crash
 - Readers and (up to f) storage objects can be malicious

- **R/W registers:**
 - Store a value ν
 - Low-level rw-write and rw-read
Preliminaries

• **System model:**
 - Shared memory
 - Client processes (writers, readers, and auditors)
 - n storage objects

• **Fault model:**
 - **Writers** and **auditors** are trusted and can crash
 - **Readers** and (up to f) storage objects can be **malicious**

• **R/W registers:**
 - Store a value ν
 - Low-level **rw-write** and **rw-read**
Preliminaries

- **Emulated registers:**
 - Store a value \(\nu \)
 - High-level \(s\text{-write} \) and \(s\text{-read} \)
 - MWMR (Multi-writer multi-reader)
 - **Safe semantics** (read returns value from most recent write---if no concurrent write)
 - **Wait-free liveness** (\(op \) returns in a finite number of steps)
 - **Fast reads** (\(s\text{-read} \) completes in a single communication round-trip)
Preliminaries

- **Information dispersal**:
 - *s-write*:
 - *s-read*:

 Common assumptions:
 - [Info dispersal] $\tau > f$
 - [Available f-threshold quorums] $q = n - f$
 - [BFT info dispersal] $n \geq \tau + 2f$

Corresponding to the assumptions:
- $|G_1| = f$
- $|G_2| = f$
- $|G_3| = 1$
- $|G_4| = f$

Example:

- $\tau = f + 1$
- $n = 3f + 1$
Preliminaries

- **Information dispersal:**
 - _s-write:_ Convert value _v_ into _n_ blocks _b_v1 ... b_vk ... b_vn_ + write one block (_b_v_) per object

 - _s-read:_

Common assumptions:

- [Info dispersal] _τ > f_ (i.e., malicious objects cannot create arbitrary values)
- [Available f-threshold quorums] _q = n – f_ (i.e., every op waits responses from at least _q_ objects)
- [BFT info dispersal] _n ≥ τ + 2f_ (e.g., _τ_ correct + _f_ malicious + _f_ stale)

Example

- _s-write(x)_

| _σ_1 | _G_1|=f | _G_2|=f | _G_3|=1 | _G_4|=f |
|-------|--------|--------|--------|--------|
| time | _v_b_ | _m_b_ | _v_b_ | _v_b_ |

_time ack

- _τ = f + 1_
- _n = 3f + 1_
Preliminaries

- **Information dispersal**:
 - **s-write**: Convert value ν into n blocks $b_{v1} \ldots b_{vk} \ldots b_{vn}$
 + write one block (b_v) per object
 - **s-read**: τ correct blocks (from different objects) recovers value ν
 i.e., an “effective read”

- **Common assumptions**
 - [Info dispersal] $\tau > f$ (i.e., malicious objects cannot create arbitrary values)
 - [Available f-threshold quorums] $q = n - f$ (i.e., every op waits responses from at least q objects)
 - [BFT info dispersal] $n \geq \tau + 2f$ (e.g., τ correct + f malicious + f stale)
Auditable Register Emulations

- **a-write:**

- **a-read:**

- **a-audit:**

\[
\tau = f + 1 \\
n = 3f + 1 \\
L = 1
\]
- **a-write**: write blocks in a quorum of objects

- **a-read**:

- **a-audit**:

Example

\[
\begin{align*}
\sigma_1 &\quad |G_1|=f \quad |G_2|=f \quad |G_3|=1 \quad |G_4|=f \\
\text{block} &\quad \log &\quad \text{malicious} &\quad \text{block} &\quad \log &\quad \text{block} &\quad \log \\
v_b &\quad \{\} &\quad m_b &\quad \{\} &\quad v_b &\quad \{\} &\quad v_b &\quad \{\} \\
x_b &\quad \{\} &\quad m_b &\quad \{\} &\quad x_b &\quad \{\} &\quad v_b &\quad \{\}
\end{align*}
\]

\[\tau = f + 1 \quad n = 3f + 1 \quad \ell = 1\]
Auditable Register Emulations

- **a-write**: write blocks in a quorum of objects
- **a-read**: read blocks from a quorum of objects
 + log the read operation on each object
 (e.g., record ν_r with reader r and block of value ν of the block)
- **a-audit**:

Example

$$\sigma_1$$

<table>
<thead>
<tr>
<th>block</th>
<th>log</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_b</td>
<td>{}</td>
</tr>
<tr>
<td>x_b</td>
<td>{}</td>
</tr>
</tbody>
</table>

$$|G_1| = f$$

$$|G_2| = f$$

$$|G_3| = 1$$

$$|G_4| = f$$

$$\tau = f + 1$$

$$n = 3f + 1$$

$$\ell = 1$$
Auditable Register Emulations

- **a-write**: write blocks in a quorum of objects

- **a-read**: read blocks from a quorum of objects
 + log the read operation on each object
 (e.g., record \(\nu_r \) with reader \(r \) and block of value \(\nu \) of the block)

- **a-audit**: get logs from a quorum of objects
 + create and return evidences of effective reads
 (e.g., evidence \(\varepsilon_{r,v} = \ell \) records \(\nu_r \))

Example

- **a-write**: write blocks in a quorum of objects
 - \(|G_1| = f \)
 - \(|G_2| = f \)
 - \(|G_3| = 1 \)
 - \(|G_4| = f \)

- **a-read**: read blocks from a quorum of objects
 - \(|G_1| = f \)
 - \(|G_2| = f \)
 - \(|G_3| = 1 \)
 - \(|G_4| = f \)

- **a-audit**: get logs from a quorum of objects
 - \(|G_1| = f \)
 - \(|G_2| = f \)
 - \(|G_3| = 1 \)
 - \(|G_4| = f \)
• How many records do we need to create an evidence? \(l \)

• How much is \(l \)? 1, 2, \(\tau \), or \(n \)?
Auditable Register Emulations

• How many records do we need to create an evidence? \(\ell \)

• How much is \(\ell \)? 1, 2, \(\tau \), or \(n \)?

 ✓ Any audit quorum receives at least \(\tau - 2f \) correct records of every effective read

 ✓ So, the required number of records (\(\ell \)) to produce an evidence is...

\[
\ell \leq \tau - 2f
\]
Auditable Register Emulations

• Guarantees from \textit{a-audit}

1. Completeness:
 • Report every effective read (value \(v \), reader \(r \))
 • Protect the system from readers obtaining data undetectably

2. Accuracy:
 • Do not report actions that have never happened
 • Protect correct readers from malicious objects incriminating them

 ◆ \textbf{Weak accuracy}: Never report a correct reader that has never \textbf{invoked an a-read} before the audit
 ◆ \textbf{Strong accuracy}: Never report a correct reader that has never \textbf{effectively read a value \(v \)} before the audit

Weak auditability = completeness + weak accuracy
Strong auditability = completeness + strong accuracy
Outline

Preliminaries
Auditable Register Emulations
Resilience Lower Bounds
Alternative Models
Conclusions
Completeness

- Impossible with $\tau \leq 2f$
- Malicious reader effectively reads ν
- a-audit cannot produce an evidence if it finds no record

Example:

- σ_1
- $|G_1| = f$
- $|G_2| = f$
- $|G_3| = f$
- $|G_4| = f$

- $\tau = 2f$
- $n = 4f$
- $\ell = \tau - 2f$

 ✓ Our algorithm satisfies completeness with $\tau \geq 2f + 1$
Weak Accuracy

- Impossible with $\ell \leq f$
- No effective read
- a-audit receives f records of a non-existent read

 ✓ Our algorithm satisfies weak accuracy with $\ell \geq f + 1$
Weak Auditability (Completeness + weak accuracy)

• Impossible with $\tau \leq 3f$

• a-audit receive f records both for non-existent and for existent read

✓ Our algorithm satisfies weak auditability with $\tau \geq 3f + 1$
Strong Accuracy

- Impossible with $\ell < \tau + f$
- Incomplete write and no effective read
- Malicious do not deliver block but log the read
- a-audit receives $\tau + f - 1$ records of a non-existent read

✓ Our algorithm satisfies strong accuracy with $\ell \geq \tau + f$
Strong Auditability (Completeness + strong accuracy)

- Impossible

- \(r_1 \) = effective read, \(r_2 \) = non-effective read
- \(a\)-audit receives \((\tau + f - 1)\) records for \(r_2 \) and \((\tau - f - 1)\) for \(r_1 \)

\(\tau \geq 2f + 1 \)
\(n \geq 4f + 1 \)

\(\checkmark \) Impossible to define a single \(\ell \) for a property w/o violating the other
Total Ordering Operations

- Serializing operations with total order broadcast
- Every write complete in a quorum before the invoke of reads
- **Worst case**: f stale + f malicious

- Totally ordering operations in our model allows our algorithm to satisfy strong **accuracy** with $l \geq 2f + 1$
- Totally ordering operations in our model allows our algorithm to satisfy strong **auditability** with $\tau \geq 4f + 1$
Non-fast Reads

- Non-fast read = more than one communication round. E.g. DepSky-CA:
 1. read only metadata (which is the most up-to-date value?)
 2. read the blocks for that value only

- All correct objects from Q_f log the same record

- **Worst case:** f malicious logs for another value

 ✓ Applying our algorithm to DepSky-CA protocol satisfies strong **accuracy** with $\ell \geq f + 1$

 ✓ Applying our algorithm to DepSky-CA protocol satisfies strong **auditability** with $\tau \geq 3f + 1$
Outline

Preliminaries
Auditable Register Emulations
Resilience Lower Bounds
Alternative Models

Conclusions
Conclusions

• “Who has effectively read data?” in secure storage systems
• Auditable register
• Resilience lower bounds:
 - Auditability is impossible if $\tau \leq 2f$ (e.g., most solutions use $\tau \geq f+1$)
 - $\tau \geq 3f + 1$ for weak accuracy (and weak auditability)
 - $\ell \geq \tau + f$ for strong accuracy
 - Strong auditability is impossible
• Alternative models satisfy strong auditability:
 - Total ordering operations ($\tau \geq 4f + 1$)
 - Some non-fast reads ($\tau \geq 3f + 1$)---e.g., DepSky-CA
• https://arxiv.org/abs/1905.08637
Thank you!

Vinicius V. Cogo
vielmo@lasige.di.fc.ul.pt

Alysson Bessani
http://www.di.fc.ul.pt/~bessani/
bessani@di.fc.ul.pt

Navtalk – May 29, 2019
$l \leq \tau - 2f$