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Abstract. We propose and study a logic able to state and reason about
equational constraints, by combining aspects of classical propositional
logic, equational logic, and quantifiers. The logic has a classical struc-
ture over an algebraic base, and a form of universal quantification distin-
guishing between local and global validity of equational constraints. We
present a sound and complete axiomatization for the logic, parameter-
ized by an equational specification of the algebraic base. We also show
(by reduction to SAT) that the logic is decidable, under the assumption
that its algebraic base is given by a convergent rewriting system, thus
covering an interesting range of examples. As an application, we analyze
offline guessing attacks to security protocols, where the equational base
specifies the algebraic properties of the cryptographic primitives.
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1 Introduction

The development of formal methods for the analysis of security protocols is a
very active research area. Obviously, ‘formal methods’ should be read as ‘logics’,
but the situation is more complicated. In fact, the problem at hand is usually
so intricate that suitable fully-fledged logics have not been developed, and the
reasoning is usually carried over in an underspecified higher-order metalogic,
often incorporating many ingredients, ranging from equational to probabilistic
reasoning, from communication and distribution, to temporal or epistemic
reasoning [8].

In this paper we present and study a logic aimed at dealing with the rea-
soning necessary to the static analysis of so-called offline guessing attacks [4].
Typically, an attacker eavesdrops the network and gets hold of a number of
messages exchanged by the parties. These messages are usually generated from
random data and cyphered using secret keys, being immediately unreadable,
but often are known to have strong algebraic relationships between them. If the
attacker tries to guess the secret keys (a realistic hypothesis in many scenarios,
including human-picked passwords, or protocols involving devices with limited
computational power) he may use these relationships to validate his guess.
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The logic is designed as a simple global classical logic built on top of a local
equational base. These two layers are permeated by a second-order-like quan-
tification mechanism over outcomes. Intuitively, the attacker refers to messages
using names whose concrete values are not important, but are gathered in a
set of possible outcomes. The local layer allows us to reason about and define
equational constraints on individual outcomes. At the global layer, we can state
and reason about properties of the set of all possible outcomes1. Interestingly,
the quantification we use can be understood as an S5-like modality, which also
explains why we will not need to consider nested quantifiers. The logic bears
important similarities with exogenous logics in the sense of [11], and with prob-
abilistic logics as developed, for instance, in [9].

We provide a sound and complete deductive system for the logic, given
a Horn-clause equational specification of the algebraic base. We also show
that the logic is decidable when the base equational theory can be given by
means of a convergent rewriting system. Our decidability proof is actually more
informative, as we develop a satisfiability procedure for our logic by means of a
reduction to satisfiability for propositional classical logic. This strategy is useful
as it provides the means to building prototype tools for the logic using available
SAT-solvers, and uses techniques that are similar to those used in the SMT
literature [12].

The paper is outlined as follows: in Section 2 we recall several useful notions
of universal algebra and equational reasoning and fix some notation; then, in
Section 3, we define our logic, its syntax and semantics, as well as a deductive
system, whose soundness and completeness we prove, assuming that we are given
an equational specification of the algebraic base; Section 4 is dedicated to show-
ing, via a reduction to classical SAT, that our logic is decidable whenever the
equational base is given by means of a convergent rewriting system; finally, in
Section 5, we assess our contributions and discuss future work. We illustrate the
usefulness of our logic with meaningful examples, namely related to the analy-
sis of offline guessing attacks to security protocols. We add an Appendix with
detailed proofs of some auxiliary results.

2 Algebraic Preliminaries

Let us consider F = {Fn}n∈N a N-indexed family of countable sets Fn of function
symbols of arity n. Given a set of generators G, we define the set of terms over
G, TF (G), to be the carrier of the free F -algebra TF (G) with generators in G.
Throughout the text we drop the subscript F when it is clear from context. The
set of subterms of a term t ∈ T (G) is defined as usual and will be denoted by
subterms(t). Given sets G1, G2, a substitution is a function σ : G1 → T (G2)
that can be easily extended to the set of terms over G1, σ : T (G1)→ T (G2).

1
This terminology stems from the intuition that names could be sampled from a distribution. As we
discuss in the conclusion, our aim is indeed to add a probabilistic component to this logic. For the
moment, however, outcomes should just be understood as being obtained non-deterministically.
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We use t1 ≈ t2 to represent an equation between terms t1, t2 ∈ T (G). The
set of all equations over G is denoted by Eq(G). A Horn-clause over G is an
expression t1 ≈ t′1& . . .&tk ≈ t′k ⇒ t ≈ t′, with k ≥ 0 and t1,. . ., tk,t′1,. . .,
t′k ∈ T (G). A clause is simply an equation when k = 0.

Fix a countable set of variables X and let us dub algebraic terms the elements
of T (X). vars(t) stands for the set of variables in t ∈ T (X). Given a F -algebra
A with carrier set A, an assignment is a function π : X → A, that is extended
as usual to the set of algebraic terms, J·KπA : T (X) → A. We use AX to denote
the set of all assignments. The interpretation of a Horn clause in an algebra A
with respect to π ∈ AX is defined by: A, π � t1 ≈ t′1& . . .&tk ≈ t′k ⇒ t ≈ t′

if Jt1KπA = Jt′1KπA, . . . , JtkKπA = Jt′kK
π
A implies JtKπA = Jt′KπA. An algebra A satisfies

a Horn clause if it is satisfied by A along with each π ∈ AX . More generally, a
Horn clause is satisfied in a class of algebras A if it is satisfied in every A ∈ A.

Later on, we will equip the signature F with a clausal theory represented
by a set of Horn clauses Γ . The clausal theory of Γ , Th(Γ ), is the least set
of clauses containing Γ that is stable under reflexivity, symmetry, transitivity
and congruence and under application of substitutions. An equational theory is
simply a clausal theory where Γ is composed by equations. We are particularly
interested in equational theories generated by convergent rewriting systems. A
rewriting system R is a finite set of rewrite rules l → r, where l, r ∈ T (X) and
vars(r) ⊆ vars(l). Given a rewriting system R and a set of generators G, the
rewriting relation→R⊆T (G)×T (G) on T (G) is the smallest relation such that:

– if (l→ r) ∈ R and σ : X → T (G) is a substitution then lσ →R rσ
– if f ∈ Fn, t1, . . . , tn, t

′
i ∈ T (G) and there exists i ∈ {1, . . . , n} such that

ti →R t
′
i then f(t1, . . . , ti, . . . , tn)→R f(t1, . . . , t

′
i, . . . , tn).

We denote by →∗R the reflexive and transitive closure of →R. R is confluent if,
given t ∈ T (G), t →∗R t′ and t →∗R t′′ implies that there exists t∗ ∈ T (G) such
that t′ →∗R t∗ and t′′ →∗R t∗. R is terminating if there exists no infinite rewriting
sequence. R is convergent if it is confluent and terminating. If a rewriting system
is convergent then any t ∈ T (G) has a unique normal form (see [3]), i.e., there
exists a term t↓ ∈ T (G) such that t→∗R t↓ and t↓ is irreducible. The equational
theory generated by a convergent rewriting system R is the relation≈R ⊆ T (G)×
T (G) such that t1 ≈R t2 if and only if t1 ↓ = t2 ↓, also said to be a convergent
equational theory, and is known to always be decidable (see [3]).

3 The Logic

The logic relies on fixing a signature F and class A of F -algebras. We also
introduce a countable set of names N , distinct from variables. We dub elements
of T (N) as nominal terms, and let names(t) stand for the set of names that occur
in t ∈ T (N). Names can be thought of as being associated to values that are not
made explicit. We call outcome to each possible concrete assignment of values
to names. The language of the logic, designed in order to express equational
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constraints locally on each outcome, but also global properties of the set of all
intended outcomes, is the set Glob defined by the following grammar:

Glob ::= ∀Loc | ¬Glob | Glob ∧Glob
Loc ::= Eq(N) | ¬Loc | Loc ∧ Loc .

We abbreviate ¬(t1 ≈ t2) by t1 6≈ t2 for any t1, t2 ∈ T (N), and also use the
usual abbreviations: ψ1∨ψ2 abbr. ¬(¬ψ1∧¬ψ2), ψ1 → ψ2 abbr. ¬ψ1∨ψ2, ψ1 ↔
ψ2 abbr. (ψ1 → ψ2) ∧ (ψ2 → ψ1), where either ψ1, ψ2 ∈ Loc or ψ1, ψ2 ∈ Glob.
Note that both the local and global languages are classical: the former with
an equational base and the later over local formulas instead of propositional
variables. We extend the notion of subterm to global formulas in a standard
way. Similarly, we generalize the notion of names occurring in a nominal term
to local and global formulas. We define the set of subformulas of either a local
or a global formula ψ in the usual way and denote it by subform(ψ).

Given a nominal term t0 ∈ T (N), a set of names ñ = {n1, . . . , nk} ⊆ N
such that names(t0) ⊆ ñ and t̃ = {t1, . . . , tk} ⊆ T (N) we denote by [t0]ñ

t̃
the

nominal term obtained by replacing each occurrence of ni by ti, i ∈ {1, . . . , k},
i.e., [t0]ñ

t̃
= σ(t) where σ is a substitution such that σ(ni) = ti for each i. This

notion is easily extended to local formulas.
As explained above, names carry a form of undeterminedness, i.e., their values

are fixed but we have no explicit knowledge about them. Given a F -algebra
A = 〈A,−A〉, we define an outcome as a function ρ : N → A and the set of all
outcomes will be denoted by AN . The interpretation of terms J·KρA : TF (N)→ A
is defined as usual. The satisfiability of local formulas is defined inductively by:

– A, ρ 
loc t1 ≈ t2 iff Jt1K
ρ
A = Jt2K

ρ
A,

– A, ρ 
loc ¬ϕ iff A, ρ 6
loc ϕ, and
– A, ρ 
loc ϕ1 ∧ ϕ2 iff A, ρ 
loc ϕ1 and A, ρ 
loc ϕ2.

Definition 1. A F -structure is a pair (A, S) where A = 〈A,−A〉 is a F -algebra
and S ⊆ AN is a non-empty set of possible outcomes.

Satisfaction of global formulas by a F -structure is defined inductively by:

– (A, S) 
 ∀ϕ iff A, ρ 
loc ϕ for every ρ ∈ S,
– (A, S) 
 ¬δ iff (A, S) 6
 δ, and
– (A, S) 
 δ1 ∧ δ2 iff (A, S) 
 δ1 and (A, S) 
 δ2.

As usual, given ∆ ⊆ Glob we write (A, S) 
 ∆ if (A, S) 
 δ for every δ ∈ ∆.

Definition 2. Semantic consequence is defined, as usual, by ∆ |=A δ whenever
(A, S) 
 ∆ implies (A, S) 
 δ, for any F -structure (A, S) with A ∈ A.

Example 1. Consider the signature F com where we require s ∈ F com2 , and
let A be the class of F com-algebras satisfying the set of equations Γ =
{s(x1, x2) ≈ s(x2, x1)}, i.e., A is the class of all commutative groupoids. Then,
for n,m, a, b, c ∈ N , we have:
∀(n ≈ a ∨ n ≈ b),∀(m ≈ a ∨m ≈ b),∀(s(a, b) ≈ c) |=A ∀(n 6≈ m→ s(n,m) ≈ c).
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Example 2. A standard example of an equational theory used in information
security for formalizing (part of) the capabilities of a so-called Dolev-Yao at-
tacker (see, for instance, [4, 2, 1]) consists in taking a signature FDY with
{·}·, {·}−1· ∈ F2, representing symmetric encryption and decryption of a mes-
sage with a key, (·, ·) ∈ F2, representing message pairing, and π1, π2 ∈ F1 rep-
resenting projections. The algebraic properties of these operations are given by
Γ = {{{x1}x2

}−1x2
≈ x1, π1(x1, x2) ≈ x1, π2(x1, x2) ≈ x2}. Let A be the class of

all algebras satisfying Γ . Then, we have that

|=A ∀(m ≈ k)→ ∀
(
{{n}k}−1m ≈ π2(a, n)

)
.

3.1 Deductive System

In order to obtain a sound and complete deductive system for our logic, we must
additionally require that the basic class A of algebras be axiomatized by a set Γ
of Horn-clauses. From there, we can define the deductive system HΓ as follows:

Eq1 ∀(t ≈ t)

Eq2 ∀(t1 ≈ t2 → t2 ≈ t1)

Eq3 ∀(t1 ≈ t2 ∧ t2 ≈ t3 → t1 ≈ t3)

Eq4 ∀(t1 ≈ t′1 ∧ ... ∧ tn ≈ t
′
n → f(t1, ..., tn) ≈ f(t′1, ..., t

′
n))

EqC1 ∀((ϕ1 → (ϕ2 → ϕ3))→ ((ϕ1 → ϕ2)→ (ϕ1 → ϕ3)))

EqC2 ∀(ϕ1 → (ϕ2 → ϕ1))

EqC3 ∀((¬ϕ1 → ¬ϕ2)→ (ϕ2 → ϕ1))

EqC4 ∀(ϕ1 → ((ϕ1 → ϕ2)→ ϕ2))

N1 ∀(ϕ1 ∧ ϕ2)↔ (∀ϕ1 ∧ ∀ϕ2)

N2 ∀¬ϕ→ ¬∀ϕ

N3 ¬∀ϕ→ ∀¬ϕ if names(ϕ) = ∅

N4 ∀(ϕ1 ↔ ϕ2)→ (∀ϕ1 ↔ ∀ϕ2)

C1 δ1 → (δ2 → δ1)

C2 (δ1 → (δ2 → δ3))→ ((δ1 → δ2)→ (δ1 → δ3))

C3 (¬δ1 → ¬δ2)→ (δ2 → δ1)

C4
δ1 δ1→δ2

δ2

E(Γ ) ∀(σ(s1) ≈ σ(s′1) ∧ . . . ∧ σ(sn) ≈ σ(s
′
n)→ σ(s) ≈ σ(s′)),

for each s1 ≈ s′1& . . .&sn ≈ s′n ⇒ s ≈ s′ ∈ Γ.

HΓ consists of a number of axioms and a single inference rule C4, modus
ponens. The system combines the different components inherent to this logic:
axioms Eq1-Eq4 incorporate standard equational reasoning, namely reflexivity,
symmetry, transitivity and congruence; C1-C4 and EqC1-EqC4 incorporate clas-
sical reasoning for the global and local layers (just note that locally, modus po-
nens becomes axiom EqC4); N1-N4 characterize the relationship between the
local and global layers across the universal quantifier; and the axioms E(Γ ) in-
corporate the equational theory underlying A. We define, as usual, a deducibility
relation `Γ . For instance, a normality-like axiom can be easily derived.

Lemma 1. Given ϕ1, ϕ2 ∈ Loc, `Γ ∀(ϕ1 → ϕ2)→ (∀ϕ1 → ∀ϕ2).
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The logic is an extension of classical logic at both the local and the global
layers. Namely, it is easy to see that the deduction metatheorem holds. Moreover,
we can write any local or global formula in disjunctive normal form (DNF).

Example 3. Recall Example 1. From the commutativity equation we obtain the
axiom ∀(s(n1, n2) ≈ s(n2, n1)), for n1, n2 ∈ N . By using also Eq3-4, EqC1-4,
N1, and finally applying inference rule C4, we can easily show that ∀(n ≈ a∨n ≈
b),∀(m ≈ a ∨m ≈ b),∀(s(a, b) ≈ c) `Γ ∀(n 6≈ m→ s(n,m) ≈ c).

We define consistency as usual: ∆ ⊆ Glob is consistent if there exists δ ∈ Glob
such that ∆ 6`Γ δ. Since the logic is classically based, ∆ 6`Γ δ if and only if
∆∪ {¬δ} is consistent. Furthermore, as a consequence of Lindenbaum’s Lemma

and given any set K, we have that {
nk∨
i=1

δk,i | k ∈ K} is consistent if and only if,

for every k ∈ K, there exists 1 ≤ ik ≤ nk such that {δk,ik | k ∈ K} is consistent.

3.2 Soundness and Completeness

We now prove that HΓ is a sound and complete proof system for the logic based
on the class A of all algebras that satisfy Γ .

Theorem 1. The deductive system HΓ is sound and complete.

Proof. The proof of soundness is straightforward. We proceed with completeness.
Let ∆ ⊆ Glob, δ ∈ Glob and assume ∆ 6`Γ δ. We need to prove that ∆ 6|=A δ by
defining a F -structure (A, S) such that A satisfies Γ , (A, S) 
 ∆ and (A, S) 6
 δ.
We begin by writing each element of ∆ ∪ {¬δ} in DNF:ξDNF =

mξ∨
j=1

nj∧
i=1

ψξ,j,i | ξ ∈ ∆ ∪ {¬δ}

 , (1)

where mξ, nj ∈ N, and either ψξ,j,i ∈ ∀Loc or ψξ,j,i ∈ ¬∀Loc. Let
njξ∧
i=1

ψξ,jξ,i | ξ ∈ ∆ ∪ {¬δ}

 be a consistent set (2)

constructed by one disjunct of each element in (1). We are looking for a F -
structure satisfying each of the relevant atoms:

RelAt(∆ ∪ {¬δ}) =
⋃

ξ∈∆∪{¬δ}

{
ψξ,jξ,1, . . . , ψξ,jξ,njξ

}
⊆ ∀Loc ∪ ¬∀Loc . (3)

To define the F -algebra A we follow a Henkin construction, adding enough
constants to the language in order to introduce all the necessary witnesses for for-
mulas of the form ¬∀ϕ. Note that the set of local formulas is countable and thus
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we introduce a set of new constants for each of them, that we will use to instan-
tiate all names in N :

⋃
ϕ∈Loc {cϕ,n | n ∈ N}. We denote the extended signature

by F+. We now extend the set (3) with such witnesses. Fix an enumeration for
Loc× Loc and consider the following inductive definition:

W0 = RelAt(∆ ∪ {¬δ}),

Wi+1 = Wi ∪
{
¬∀ϕ1

i →
(
∀[¬ϕ1

i ]
ñ
c̃
ϕ1
i

∧
(
∀ϕ2

i → ∀[ϕ2
i ]
ñ
c̃
ϕ1
i

))}
,

where names(ϕ1
i ) ∪ names(ϕ2

i ) = ñ = {n1, . . . , nm}, c̃ϕ = {cϕ,n1
, . . . , cϕ,nm}.

This way, given i ∈ N we introduce, where appropriate, a witness for ¬∀ϕ1
i .

Lemma 2. W =
⋃
i∈NWi is consistent (regarding F+).

Let Ξ ⊆ Glob+ (over F+) be a maximal consistent set extending W , and
consider the congruence relation ≡ over TF+(N) defined by t1 ≡ t2 if ∀(t1 ≈ t2) ∈
Ξ. Axioms Eq1-4 together with Lemma 1, make ≡ be a congruence relation. We
define the F -algebra A = 〈A,−A〉 to be the reduct of the quotient F+-algebra
TF+(N)/≡. Note that by definition of ≡, E(Γ ), C4, Lemma 1, and recalling
that Ξ is maximally consistent, it is easy to check that A satisfies Γ . For the
construction of S we choose to define an outcome for each element of ¬∀Loc in
Ξ. Given ¬∀ϕ ∈ Ξ, let ρ¬∀ϕ : N → A be the outcome defined by ρ(n) = [cϕ,n]≡
for each n ∈ N . Finally, define S =

{
ρ¬∀ϕ | ¬∀ϕ ∈ Ξ

}
. Note that S 6= ∅ because,

given t ∈ T (N), axiom Eq1 implies that ∀(¬(t 6≈ t)) ∈ Ξ, which together with
axiom N2 means that ¬∀(t 6≈ t) ∈ Ξ.

Lemma 3. (A, S) 
 γ, for each γ ∈ RelAt(∆ ∪ {¬δ}).

As an immediate corollary we have that (A, S) satisfies the set defined in (2),
and therefore (A, S) 
 ∆ ∪ {¬δ}. ut

4 Decidability

In general, our logic cannot be expected to be decidable, as equational theories
can easily be undecidable [3]. We will show, however, that our logic is decidable
if we just require that the base equational theory is convergent. Our decidability
result will be proved by reduction to the SAT problem for classical logic. Along
the proof, we need to translate local formulas to the propositional context. Hence,
let us consider a set of propositional variables corresponding to equations be-
tween nominal terms Eq(N)p = {pt1≈t2 | t1, t2 ∈ T (N)}, and expand this notion
to local formulas: given ϕ ∈ Loc we define pϕ inductively by:

– if ϕ is of the form t1 ≈ t2, pϕ is precisely pt1≈t2 ,
– if ϕ is of the form ¬ψ then pϕ is ¬pψ,
– if ϕ is of the form ϕ1 ∧ ϕ2 then pϕ is pϕ1

∧ pϕ2
.

Given Ψ ⊆ Loc, we will use Ψp = {pϕ | ϕ ∈ Ψ}.
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Theorem 2. If Γ is a convergent equational theory then the logic is decidable.

Proof. Let δ ∈ Glob be an arbitrary formula. We want to decide whether
`Γ δ or 6`Γ δ. We will proceed by checking the satisfiability of ¬δ. Let
RelTerm ⊆ T (N) be the set of relevant nominal terms for this proof. RelTerm
is such that subterms(δ) ⊆ RelTerm and RelTerm is closed for rewriting under
R, the convergent rewriting system for Γ , that is: if t →R t′ and t ∈ RelTerm
then t′ ∈ RelTerm. Note that t ↓∈ RelTerm whenever t ∈ RelTerm. The
propositional variables of interest are those that represent equations between
terms in RelTerm, and are gathered in the set B = {pt1≈t2 | t1, t2 ∈ RelTerm} .
Equational statements must obey some relations, to be imposed on their repre-
sentatives. These relations are established in Φ, defined as follows:

Φ = {pt≈t | t ∈ RelTerm} ∪ {pt1≈t2 → pt2≈t1 | t1, t2 ∈ RelTerm}∪
{pt1≈t2 ∧ pt2≈t3 → pt1≈t3 | t1, t2, t3 ∈ RelTerm}∪
{pt1≈t′1 ∧ ... ∧ ptn≈t′n → pf(t1,...,tn)≈f(t′1,...,t′n) | t1, t

′
1, ..., tn, t

′
n, t, t

′ ∈ RelTerm}∪
{pσ(s)≈σ(s′) | σ ∈ T (N)X , s→ s′ ∈ R, σ(s), σ(s′) ∈ RelTerm}.

Given t ∈ RelTerm it is straightforward to check that pt≈t↓ is a propositional
consequence of Φ. We should also emphasize that, since subterms(δ) is a finite
set and the equational theory is convergent, RelTerm is a finite set. Denoting
|RelTerm| = k, Φ has at most k+ k2 + k3 + k2a+2 + k2 elements, where a is the
maximum arity of the function symbols occurring in RelTerm.

To describe a procedure that verifies the satisfiability of ¬δ, let (¬δ)DNF =
m∨
j=1

nj∧
i=1

δji . The procedure will verify the satisfiability of each disjunct. Note that

the jth disjunct δj1 ∧ . . .∧ δjnj , is a conjunction of global formulas of the form ∀ϕ
or ¬∀ϕ. Specifying explicitly those components, let the jth disjunct be:

¬∀ϕj1 ∧ . . . ∧ ¬∀ϕ
j
kj
∧ ∀ϕjkj+1 ∧ . . . ∧ ∀ϕ

j
nj .

Satisfiability
Let j := 1.

1. Fix l := 1.
2. Let ∆j

l := Φ ∪
{
ϕjkj+1, . . . , ϕ

j
nj

}p
∪
{
¬p

ϕ
j
l

}
.

3. Apply SAT to ∆j
l .

3.1. if SAT answers YES , let l := l + 1
3.1.1. if l ≤ kj proceed to 2.
3.1.2. if l > kj then ∆j

1, . . . ,∆
l
kj

have models given, respectively, by

({0, 1}, v1),. . . , ({0, 1}, vkj ). The output is YES, (¬δ)DNF is satisfiable.
3.2. If SAT answers NO, let j := j + 1,

3.2.1. if j ≤ m proceed to 1.
3.2.2. if j > m then output NO, (¬δ)DNF is not satisfiable.

The procedure tries to satisfy each disjunct of (¬δ)DNF . Each disjunct is
written as a conjunction of elements from ∀Loc ∪ ¬∀Loc. Satisfying an element
of the form ∀ϕ imposes that ϕ must be verified in all possible outcome, whereas
satisfying a formula as ¬∀ϕ requires that at least one possible outcome satisfies
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¬ϕ. The satisfiability of such conjuncts is tested in several iterations (one for
each conjunct of the form ¬∀Loc). When all iterations are successful, we conclude
that (¬δ)DNF is satisfiable.

Lemma 4. Given δ ∈ Glob, (¬δ)DNF is satisfiable if and only if there exists
j ∈ {1, . . . ,m} such that each of ∆j

1, . . . ,∆
j
kj

is satisfiable, where ∆j
1, . . . ,∆

j
kj

are defined in the satisfiability procedure.

Proving the Lemma requires showing that satisfiability at the propositional
level carries over to our logic. Details can be found in the Appendix. ut

Example 4. To analyze offline guessing [4], one assumes that an attacker has
observed messages named m1, . . . ,mk (terms in some algebra). Typically, the
attacker may know exactly that the messages were built as t1, . . . , tk ∈ T (N),
but he just cannot know the concrete values of the random and secret names
used to build them. Still, he can try to mount an attack by guessing some weak
secret s ∈ N used by the parties executing the protocol. The attack is successful
if the attacker can distinguish whether his guess is correct or not. In our logic,
if Γ is the equational specification of the underlying algebraic base, we can
express this by requiring that the attacker finds two terms (also called recipes)
t, t′ ∈ T ({m1, . . . ,mk, g}) such that

∀(m1 ≈ t1 ∧ · · · ∧mk ≈ tk) 6`Γ ∀(t ≈ t′) but

∀(m1 ≈ t1 ∧ · · · ∧mk ≈ tk) `Γ ∀(g ≈ s→ t ≈ t′).

Of course, this task is undecidable in general, as the two recipes may be
arbitrarily complex. Still, for the Dolev-Yao theory of Example 2, Th(Γ ) is
generated by the convergent rewriting system obtained by orienting the given
equations from left to right. The resulting system is even further said to be
subterm convergent, as each rule rewrites a term to a strict subterm. Under
such particular conditions, it is known that the problem is decidable, as only a
finite number of ‘dangerous’ recipes need to be tested [4, 2, 1].

Consider the following protocol adapted from [7], where a, b, na, pab ∈ N .

1. a→ b : (a, na)

2. b→ a : {na}pab

In the first step, some party named a sends a message to another party
named b in order to initiate some communication session. The message is a pair
containing a’s name and a random value (nonce) named na, that a generated
freshly, and which is intended to distinguish this request from other, similar,
past or future, requests. Upon reception of the first message, b responds by
cyphering na with a secret password pab shared with a. When receiving the
second message, a can decrypt it and recognize b’s response to his request to
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initiate a session.

It is relatively simple, in this case, to see that the secret shared password pab
is vulnerable to an offline guessing attack. Suppose that the attacker observes the
execution of the protocol by parties a and b, and got hold of the two exchanged
messages m1 and m2. He can now manipulate these messages, using his guess
g of pab, and come up with recipes {m2}−1g and π2(m1). Indeed, only under
the correct guess, should the decryption of m2 with g coincide with the second
projection of m1, that is, na. We can use our logic to check that, indeed,

∀(m1 ≈ (a, na) ∧m2 ≈ {na}pab) 6`Γ ∀({m2}−1g ≈ π2(m1)) and
∀(m1 ≈ (a, na) ∧m2 ≈ {na}pab) `Γ ∀(g ≈ pab → {m2}−1g ≈ π2(m1)),

namely using the three E(Γ ) axioms that encode the equations in Γ .

5 Conclusion and Future Work

We combined aspects from classical, equational and quantifier logics to construct
a logic suited for reasoning about equational constraints over sets of outcomes.
The design of the logic was aimed at formalizing the kind of reasoning carried
out in security protocol analysis. Parameterized by suitable properties of the
underlying algebraic base, we have also obtained a sound and complete deduc-
tive system for our logic, as well as satisfiability and decidability results. It goes
without saying that these results can be used to decide the existence of offline
guessing attacks whenever the underlying equational theories are subterm con-
vergent, by capitalizing on the results in [4, 2, 1], but that being so generic, our
approach cannot compete with efficient dedicated tools such as [5].

We are working on extending the logic with explicit probabilities and do-
mains, in the lines of [9, 11], in a way that may enable us to provide a suitable
formalization of the reasoning underlying [6], which extends the analysis of pro-
tocols well beyond equational reasoning, by allowing the attacker to do a fair
amount of cryptanalysis, exploring known details of the implementation of the
cryptographic primitives, and ultimately estimate the probability of success of
the adopted attack strategy. We expect to be able to provide a deductive system
for the extended logic, as well as, when applicable, decidability and satisfiability
results. In particular, we expect to be able to take advantage of a suitable re-
duction to probabilistic satisfiability (PSAT) [10, 13], an interesting probabilistic
generalization of the classical SAT problem, and ultimately implement a proto-
type tool for the logic based on a PSAT-solver.
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6 Appendix

Proof (Lemma 1). To deduce ∀(ϕ1 → ϕ2) → (∀ϕ1 → ∀ϕ2) we assume
∀(ϕ1 → ϕ2) and prove that ∀ϕ1 → ∀ϕ2. Applying MTD we will be done.

1. ∀(ϕ1 → ϕ2) (hypothesis)
2. ∀ ((ϕ1 → ϕ2)↔ ¬(ϕ1 ∧ ¬ϕ2))→ (∀(ϕ1 → ϕ2)↔ ∀¬(ϕ1 ∧ ¬ϕ2)) (instance of N4)
3. ∀ ((ϕ1 → ϕ2)↔ ¬(ϕ1 ∧ ¬ϕ2)) (tautology)
4. ∀(ϕ1 → ϕ2)↔ ∀¬(ϕ1 ∧ ¬ϕ2) (apply C4 to 2. and 3.)
5. ∀¬(ϕ1 ∧ ¬ϕ2) (apply C4 to 1. and 4.)
6. ∀ϕ1 (hypothesis)
7. ∀¬(ϕ1 ∧ ¬ϕ2)→ (∀ϕ1 → (∀¬(ϕ1 ∧ ¬ϕ2) ∧ ∀ϕ1)) (tautology)
8. ∀ϕ1 → (∀¬(ϕ1 ∧ ¬ϕ2) ∧ ∀ϕ1) (apply C4 to 5. and 7.)
9. ∀¬(ϕ1 ∧ ¬ϕ2) ∧ ∀ϕ1 (apply C4 to 6. and 8.)
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10. ∀¬(ϕ1 ∧ ¬ϕ2) ∧ ∀ϕ1 ↔ ∀ (¬(ϕ1 ∧ ¬ϕ2) ∧ ϕ1) (instance of N1)
11. ∀ (¬(ϕ1 ∧ ¬ϕ2) ∧ ϕ1) (apply C4 to 9. and 10.)
12. ∀ (¬(ϕ1 ∧ ¬ϕ2) ∧ ϕ1 ↔ ϕ2 ∧ ϕ1) (tautology)
13. ∀ (¬(ϕ1 ∧ ¬ϕ2) ∧ ϕ1 ↔ ϕ2 ∧ ϕ1)→ (∀(¬(ϕ1 ∧ ¬ϕ2) ∧ ϕ1)↔ ∀(ϕ2 ∧ ϕ1)) (N4)
14. ∀ (¬(ϕ1 ∧ ¬ϕ2) ∧ ϕ1)↔ ∀(ϕ2 ∧ ϕ1) (apply C4 to 12. and 13.)
15. ∀(ϕ2 ∧ ϕ1) (apply C4 to 11. and 14.)
16. ∀(ϕ2 ∧ ϕ1)↔ ∀ϕ2 ∧ ∀ϕ1 (instance of N1)
17. ∀ϕ2 ∧ ∀ϕ1 (apply C4 to 15. and 16.)
18. ∀ϕ2 ∧ ∀ϕ1 → ∀ϕ2 (tautology)
19. ∀ϕ2 (apply C4 to 17. and 18.) ut

In order to prepare the proof of Lemma 3 we present an auxiliary result
whose proof we omit but follows easily by induction on the complexity of ϕ.

Lemma 5. Given ¬∀ϕ0 ∈ Ξ and a local formula ϕ ∈ Loc with names(ϕ) = ñ,
∀[ϕ]ñc̃ϕ0

∈ Ξ if and only if A, ρ¬∀ϕ0 
loc [ϕ]ñc̃ϕ0
.

Proof (Lemma 3). Recall that RelAt(∆ ∪ {¬δ}) ⊆ ∀Loc ∪ ¬∀Loc and let γ ∈
RelAt(∆ ∪ {¬δ}). We split the proof in two cases:

– if γ is of the form ∀ϕ with names(ϕ) = ñ, we need to prove that for any ρ ∈ S
A, ρ 
loc ϕ. Let ρ ∈ S and recall that ρ was motivated by some ¬∀ϕ0 ∈ Ξ, say
that ρ = ρ¬∀ϕ0 . Since ∀ϕ ∈ RelAt(∆ ∪ {¬δ}) ⊆ Ξ it follows that ∀[ϕ]ñc̃ϕ0

∈
Ξ by construction of W . Using Lemma 5 we conclude that A, ρ¬∀ϕ0 
loc
∀[ϕ]ñc̃ϕ0

, which according to definition of ρ¬∀ϕ0 implies A, ρ¬∀ϕ0 
loc ϕ.
– on the other hand, if γ is of the form ¬∀ϕ with names(¬ϕ) = names(ϕ) = ñ,

consider the already defined outcome ρ¬∀ϕ ∈ S. Notice that since ¬∀ϕ ∈ Ξ
it follows that ∀[¬ϕ]ñc̃ϕ ∈ Ξ. Lemma 5 implies A, ρ¬∀ϕ 
loc [¬ϕ]ñc̃ϕ , which by

definition of ρ¬∀ϕ implies A, ρ¬∀ϕ 
loc ¬ϕ. Therefore A, S 
 ¬∀ϕ. ut

To prove soundness and completeness of the procedure of Satisfiability pre-
sented in proof of Theorem 2 (Lemma 4) we define a translation of outcomes
with values in a F -algebra 〈A,−A〉 to valuations in the propositional context, and
vice-versa. For the first kind of translation, denote by v(·) the transformation of
outcomes into valuations, v(·) : AN → {0, 1}B : given ρ ∈ AN , let vρ : B → {0, 1}
be defined by

vρ(pt1≈t2) = 1 iff Jt1K
ρ
A = Jt2K

ρ
A. (4)

This translation is sound and complete, the following Lemma is easily proved by
induction on ϕ.

Lemma 6. For any ϕ ∈ subform((¬δ)DNF ) ∩ Loc and ρ ∈ AN , A, ρ 
loc
ϕ iff {0, 1}, vρ 
 pϕ.

For the second kind of translation, we denote by [·] the transformation of valu-

ations into outcomes [·] : {0, 1}B → 2(A
N ) such that, given v ∈ {0, 1}B

[v] =
{
ρ ∈ AN | vρ ∼= v

}
(5)

where vρ was defined in (4) and ∼= represents equality of functions. To prove
that this translation is sound and complete we need an auxiliary result:
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Lemma 7. For any t1, t2 ∈ subterms(δ), v ∈ {0, 1}B and assuming [v] 6= ∅,
{0, 1}, v 
 pt1≈t2 if and only if for every ρ ∈ [v],A, ρ 
loc t1 ≈ t2.

Proof. Let t1, t2 ∈ subterms(δ), v ∈ {0, 1}B and assume {0, 1}, v 
 pt1≈t2 . Note
that for any ρ ∈ [v] vρ ∼= v. Since {0, 1}, v 
 pt1≈t2 we also have {0, 1}, vρ 

pt1≈t2 , which by definition of v(·) is equivalent to Jt1K

ρ
A = Jt2K

ρ
A or: A, ρ 
loc

t1 ≈ t2. Reciprocally, assume that for every ρ ∈ [v] A, ρ 
loc t1 ≈ t2, i.e.,
{0, 1}, vρ 
 pt1≈t2 . This implies {0, 1}, v 
 pt1≈t2 . ut

Lemma 8. For any ϕ ∈ subform((¬δ)DNF ) ∩ Loc, v ∈ {0, 1}B and assuming
[v] 6= ∅, {0, 1}, v 
 pϕ if and only if for any ρ ∈ [v] A, ρ 
loc ϕ.

Proof. This proof uses the previous result and explores the construction of ϕ:

– if ϕ is of the form t1 ≈ t2 the result follows from the previous lemma,

– if ϕ is of the form ¬ϕ′ for some ϕ′ ∈ Loc, then ϕ′ ∈ subform((¬δ)DNF ) and
{0, 1}, v 
 p¬ϕ′ iff {0, 1}, v 
 ¬pϕ′ iff {0, 1}, v 6
 pϕ′

iff for any ρ ∈ [v] {0, 1}, vρ 6
 pϕ′ iff for any ρ ∈ [v] A, ρ 6
loc ϕ′
iff for any ρ ∈ [v] A, ρ 
loc ¬ϕ′

– if ϕ is of the form ϕ1 ∧ ϕ2 for some ϕ1 ∧ ϕ2 ∈ Loc, then ϕ1,
ϕ2 ∈ subform((¬δ)DNF ) and we have the following equivalences
{0, 1}, v 
 pϕ1∧ϕ2

iff {0, 1}, v 
 pϕ1
∧ pϕ2

iff {0, 1}, v 
 pϕ1 and {0, 1}, v 
 pϕ2

iff for any ρ ∈ [v] {0, 1}, vρ 
 pϕ1 and {0, 1}, vρ 
 pϕ2

iff for any ρ ∈ [v] A, ρ 
loc ϕ1 and A, ρ 
loc ϕ2

iff for any ρ ∈ [v] A, ρ 
loc ϕ1 ∧ ϕ2. ut

Proof (Lemma 4). Let δ ∈ Glob be any global formula. For the direct implication,

let (A, S) be a model for (¬δ)DNF : (A, S) 

m∨
j=1

nj∧
i=1

δji . Exists 1 ≤ j ≤ m such

that (A, S) 

nj∧
i=1

δji . Since each δji is either of the form ∀ϕ or ¬∀ϕ we can rewrite

it as
(A, S) 
 ¬∀ϕj1 ∧ . . . ∧ ¬∀ϕ

j
kj
∧ ∀ϕjkj+1 ∧ . . . ∧ ∀ϕ

j
nj .

Notice that, for any l ∈ {1, . . . , kj} and s ∈ {kj + 1, . . . , nj}

(A, S) 
 ¬∀ϕl i.e. exists ρ ∈ S such that A, ρ 
loc ¬ϕl.
(A, S) 
 ∀ϕs i.e. for every ρ ∈ S A, ρ 
loc ϕs

(6)

For each ¬∀ϕjl ∈ {¬∀ϕ
j
1, . . . ,¬∀ϕ

j
kj
}, let ρϕ

j
l be the outcome whose existence is

ensured by (6). The valuation v
ρϕ
j
l

is the valuation we are looking for. Recalling

that for each 1 ≤ l ≤ kj , ∆j
l = Φ∪

{
ϕjkj+1, . . . , ϕ

j
nj

}p
∪ {¬pϕjl }, from Lemma 6,

(6) and since (A, S) satisfies each instance of Eq1−4, E we have {0, 1}, v
ρϕ
j
l

 ∆j

l .
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Reciprocally, let j ∈ {1, . . . ,m} be in the conditions written in the state-
ment. For each l ∈ {1, . . . , kj}, let {0, 1}, vl 
 ∆j

l . {v1, . . . , vkj} are the relevant
valuations for the remaining construction.

Notice that, if we define a model (A, S) for the jth disjunct, (A, S) 

nj∧
i=1

δji ,

it will be a model for (¬δ)DNF as well. Let us define such F -structure. Begin
defining the free algebra A = 〈A,−A〉 where A = T (N)/≡ and ≡ is the con-
gruence relation on T (N) generated by the following rule: given s ≈ s′ ∈ Γ
and σ ∈ T (N)X , σ(s) ≡ σ(s′). From a simple observation we find that, given
s ∈ T (X) and σ ∈ T (N)X , σ(s) ≡ σ(s↓). Besides the definition of A, we need to

define S. Let S =
kj⋃
l=1

[vl]. Before proving that (A, S) is actually a F -structure,

let us refer to an important Lemma that reports to definition (5).

Lemma 9. Let v ∈ {0, 1}B be any valuation. If {0, 1}, v 
 Φ then [v] ={
ρ ∈ AN | vρ ∼= v

}
6= ∅, where A was already defined by A = T (N)/≡.

Proof. Let us begin defining ≡v⊆A×A the congruence generated by the rule:

For any t1, t2 ∈ RelTerm, [t1]≡ ≡v [t2]≡ iff {0, 1}, v 
 pt1≈t2 .

≡v is compatible with ≡

Given t1, t2, t
′
1, t
′
2 ∈ RelTerms such that

t′1 ∈ [t1]≡, (7)

t′2 ∈ [t2]≡, (8)

we pretend to prove that if {0, 1}, v 
 pt1≈t2 then {0, 1}, v 
 pt′1≈t′2 .

By (7) we know that we can deduce t1 ≈ t′1 from Γ , which means
that t1 ↓= t′1 ↓. Since t1, t

′
1 ∈ RelTerms, notice that t1 ↓, t′1 ↓∈ RelTerms

as well. Additionally, pt1≈t1↓, pt′1≈t′1↓ are propositional consequences of
Φ. Since {0, 1}, v 
 Φ, by symmetry and transitivity, we are now able to
conclude that {0, 1}, v 
 pt1≈t′1 , which together with {0, 1}, v 
 pt1≈t2
imply {0, 1}, v 
 pt′1≈t2 .

A similar reasoning can be done from (8) to conclude that {0, 1}, v 
 pt′1≈t′2 .

Let [[t]≡]
∗
≡v be a representative for the equivalence class [[t]≡]≡v and

consider the outcome
ρv : N → A

n 7→ [[n]≡]
∗
≡v

Let us check that ρv ∈ [v], i.e., that vρv ∼= v : given pt1≈t2 ∈ B,
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vρv (pt1≈t2) = 1 iff Jt1K
ρv

A = Jt2K
ρv

A (by definition of v(·))
iff [[t1]≡]

∗
≡v = [[t2]≡]

∗
≡v (by definition of ρv)

iff [t1]≡ ≡v [t2]≡ (***)
iff {0, 1}, v 
 pt1≈t2 (by definition of ≡v)
iff v(pt1≈t2) = 1.

(***) the reciprocal implication is immediate, for the direct one assume
the equivalence classes [t1]≡ and [t2]≡ are not the same, [t1]≡ 6≡v [t2]≡. This
means that [[t1]≡]≡v ∩ [[t2]≡]≡v = ∅, then they would not have the same
representative.
Since ρv ∈ [v], it follows that [v] 6= ∅. ut
It remains to prove that (A, S) is a F -structure. For that we should notice

that A satisfies Γ immediately by definition of ≡ and conclude that ∅ 6= S ⊆ AN
as a corollary of Lemma 9.

To prove that (A, S) 

nj∧
i=1

δji , i.e., (A, S) 
 ¬∀ϕj1∧. . .∧¬∀ϕ
j
kj
∧∀ϕjkj+1∧. . .∧∀ϕjnj ,

notice that for each ϕ ∈ {ϕjkj+1, . . . , ϕ
j
nj}

{0, 1}, vl 
 pϕ for any l ∈ {1, . . . kj}.

So that, by Lemma 8, for any ρ ∈ S, A, ρ 
loc ϕ, and it follows that (A, S) 
 ∀ϕ.
Whereas, for each ¬∀ϕ ∈ {¬∀ϕj1, . . . ,¬∀ϕ

j
kj
}, exists l ∈ {1, . . . , kj} such that

{0, 1}, vl 6
 ¬pϕ. Then, by Lemma 8, for any ρ ∈ [vl], A, ρ 
loc ¬ϕ and it follows
that (A, S) 
 ¬∀ϕ, as we wanted. ut


