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Abstract

This paper addresses the task of automatic extraction of definitions by thoroughly exploring

an approach that solely relies on machine learning techniques, and by focusing on the

issue of the imbalance of relevant datasets. We obtained a breakthrough in terms of the

automatic extraction of definitions, by extensively and systematically experimenting with

different sampling techniques and their combination, as well as a range of different types of

classifiers. Performance consistently scored in the range of 0.95–0.99 of area under the receiver

operating characteristics, with a notorious improvement between 17 and 22 percentage points

regarding the baseline of 0.73–0.77, for datasets with different rates of imbalance. Thus,

the present paper also represents a contribution to the seminal work in natural language

processing that points toward the importance of exploring the research path of applying

sampling techniques to mitigate the bias induced by highly imbalanced datasets, and thus

greatly improving the performance of a large range of tools that rely on them.

1 Introduction

Systems for the detection and extraction of definitions have been studied and de-

veloped in the last few years for different purposes, e.g. to create glossaries (Muresan

and Klavans 2002; Park, Byrd and Boguraev 2002), lexical databases (Alshawi 1987;

Nakamura and Nagao 1988), ontologies (Baneyx et al. 2005; Walter and Pinkal

2006; de Freitas 2007), question answering tools (Saggion 2004; Androutsopoulos

and Galanis, 2005; Tjong et al. 2005; Chang and Zheng 2007), or to support

terminology applications (Meyer 2001; Seppälä 2009), among several others. Most

of these systems are based on a set of hand-crafted rules aiming at identifying

definitions in texts through pattern matching. In a few cases, statistical or machine

learning techniques are subsequently used to improve their outcome.
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The definition extraction problem can be envisaged as a binary classification task,

where each sentence should be assigned the correct class, i.e. whether it is a definition.

In a corpus of naturally occurring texts, it typically happens that the number of

sentences expressing a definition is much smaller than the number of sentences that

are not definitions. This gives rise to imbalanced datasets that, depending on the

corpus, may present different degrees of imbalance, which nevertheless tends to be

always quite high. For example, using corpora composed of instructive documents,

Degórski, Marcińczuk and Przepiórkowski (2008b) report that only 556 sentences in

a total of 10,830 contain definitions (5 per cent), while Westerhout (2010) indicates

that only 663 sentences in a total of 31,552 were actual definitions (2 per cent). Even

when encyclopedic texts are used, the percentage of definition-bearing sentences

remains considerably low. For instance, Tjong et al. (2005), using a corpus that

includes encyclopedic texts, together with web documents, report that only 18 per

cent of its sentences contained definitions.

The imbalance in datasets is common to many real-world applications of classi-

fication tasks. That is the case, for instance, of fraud detection or medical diagnosis,

where the vast majority of the examples belong to one of the classes, while the

minority class is precisely the one of interest. As most of the learning algorithms

are designed to maximize accuracy, the imbalance in the distribution of the class

tends to lead to a poor performance of these algorithms. As the issue turns thus on

how to improve the correct classification of the minority class examples, a common

solution is to sample the data, either randomly or intelligently, to obtain an altered

class distribution.

Random methods include oversampling or undersampling: the former introduces

replicas of minority class examples, the latter deletes majority class examples, at

random. The problem with the first approach is that it increases the possibility of

overfitting as it creates exact copies of minority examples. Regarding the latter, the

critical issue here is that it may delete examples that are useful in the discrimination

of the classes. Intelligent sampling methods, in turn, resort to specific algorithms

to choose, in a more principled way, which examples to eliminate or to introduce.

In the case of undersampling methods, they remove, for instance, examples lying

on border regions with minority class examples. In the case of oversampling, they

create new examples on the basis of the existing ones.

Research on automatic definition extraction has made use of sampling techniques

only very marginally. To a large extent, this is due to the fact that the extraction of

definitions is performed by applying pattern matching rules first. Machine learning

techniques are subsequently applied to improve the outcome of the pattern matching

module, whose previous application had already reduced the imbalance of the

dataset.

The drawback in this methodology to address the definition extraction task is that

the pattern matching modules are typically specific for a particular domain and, in

any case, always specific for a particular language. By eliminating the pattern-based

step and directly applying machine learning algorithms, it is possible to overcome

the limitations imposed by that methodology. And it is thus in this scenario that

the imbalanced dataset issue needs to and can be tackled.
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In this paper, we seek to contribute to the advancement of the task of definition

extraction by exploring the methodology that addresses it only by means of machine

learning techniques. More generally, as this methodology requires the handling of

datasets with sparse evidence for the class of interest, this paper offers a case study

of coping with highly imbalanced datasets in natural language processing.

Section 2 presents an overview of the general problem of classification when

datasets are imbalanced. The aim here is to describe how this issue is addressed in

different areas, and then bring the focus to natural language processing. Section 3

discusses the task of definition extraction in general, how it has been addressed using

pattern-based approaches and, more recently, how these have been supplemented

with machine learning techniques. Section 4 presents the experimental settings of

this work, in particular the datasets used, the learning and sampling algorithms and

their combination. The results achieved with the different combination of algorithms

are reported in Section 5. These results are discussed in Section 6. Finally, Section 7

presents the conclusions that can be drawn on the basis of the work carried out.

2 The imbalanced data issue

The issue of training classifiers with imbalanced data emerges in different real-world

application domains where, for different reasons, the minority class is the one of

interest, such as financial fraud detection (Bay et al. 2006), disease diagnoses (Taft

et al. 2009), or malicious network activity detection (Vatturi and Wong 2009). The

imbalance can be quite dramatic, from a ratio of 1 to 100 to even of 1 to more than

10,000 (Wu and Chang 2003).

As pointed out by Chawla, Japkowicz and Kotcz (2004), when common classi-

fication algorithms are trained with and applied to such skewed data, they tend to

be overwhelmed by the majority classes and ignore the minority ones. This occurs

because in most classification learning algorithms, the objective is to minimize the

overall classification error and this does not account for classification error on each

individual class. It can happen that, for example, by using a dataset with a ratio of

1 to 10, a classifier may achieve approximately 90 per cent accuracy just by always

predicting the majority class.

2.1 Addressing the imbalance

A variety of solutions to the class-imbalance problem have been proposed that lend

themselves to be grouped under the following major approaches: to rebalance the

dataset; to apply a cost to classification errors; or to modify the learning algorithms

to make them more suitable to address this issue.

In general, a common practice for dealing with imbalanced datasets is to rebalance

them artificially, by either oversampling the minority class or undersampling the

majority class. This includes random oversampling, random undersampling, directed

oversampling (in which minority class examples are replicated, but the choice of

samples to replicate is informed rather than random), directed undersampling (where,

again, the choice of examples to eliminate is informed), oversampling with informed
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generation of new synthetic samples (such as SMOTE), and combinations of the

above techniques.

Determining which sampling method is the best greatly depends on the chosen

classifier and the properties of the application, including how the samples are

distributed in the multidimensional space or the extent to which the different classes

are mixed. Therefore, a systematic investigation of different sampling approaches is

important and required to optimize the performance of the system at stake.

A different solution is to adjust the costs of the various classes so as to counter

the class imbalance. As the cost of misclassifying a minority class example is

greater than the cost of misclassifying a majority-class example, it is possible to

take the misclassification costs into consideration in order to minimize the overall

misclassification cost. For highly skewed class distributions, this allows the classifiers

to not always predict the majority class and helps them to perform better on

the minority class than if the misclassification costs were equal. A drawback of

this approach is that it usually assumes that the costs of making an error can

be known (Elkan 2001; Ling and Sheng 2008), which is not always the case.

Additionally, in a comparative study assessing oversampling, undersampling and

cost-sensitive approaches, no relevant difference was found (Weiss, McCarthy and

Zabar 2007). In particular, in what concerns the task of definition extraction, there

is no guarantee that the distribution of examples in the dataset used to create a

classifier is the same as the one of the testing data, which may even be worsened

when that classifier is applied to other examples.

2.2 Evaluation issues

When dealing with datasets with a high degree of imbalance, two commonly used

metrics to assess the performance of classifiers, accuracy and error rate, consider

different classification errors as equally important, an assumption that is hardly true

in imbalanced data domains. Misclassifying minority class examples is frequently

much more critical and costly than the opposite, as discussed in the previous section.

For instance, in medical diagnosis, the error of diagnosing a sick patience as healthy

(misclassifying an item from the minority class) is considered a serious error while

the opposite is considered much less critical. As a consequence, these metrics are

biased to ‘favor’ the majority class. In a dataset dominated by a majority class, a

simple way of maximizing accuracy (or minimizing error rate) is to correctly classify

the majority class examples. This issue can be clearly seen by a trivial classifier that

classifies every example as belonging to the majority class, and therefore makes no

incorrect classifications on this class. In a 90 per cent majority class dataset, such a

(useless) classifier is able to achieve 0.90 accuracy (or 0.1 error rate), even though it

misclassifies every minority class example.

Given these difficulties, it is recommendable to use metrics different from accuracy

or error rate, or at least not to rely solely on these metrics.

The F-measure is a popular performance measure in text classification and

information retrieval applications. Such applications are often characterized by

large class imbalances and have a minority class of more interest than the majority
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one. F-measure gauges the performance of the class of interest (the positive class,

usually the minority class) by measuring its precision and recall, and composing both

by a harmonic mean. Although it is a popular measure, the precision component of

F-measure is dependent of the class distribution1 (Prati, Batista and Monard 2011),

and therefore, it must be assumed that the class distribution is fixed. A practical

problem arises when comparing classifiers for a similar problem, but generated over

datasets with different class distributions. It is difficult, if not impossible, to fully

characterize how much of the performance differences among the classifiers are due

to differences of the techniques and how much was caused by an increase/decrease

in precision due to differences in class distribution.

Receiver operating characteristics (ROC) graphs have been used to support an

additional metric (Fawcett 2004) as they are consistent for a given problem even if

the distribution of positive and negative instances is highly skewed and not fixed.

In these graphs, the lower left point (0, 0) represents the strategy of never issuing

a positive classification: such a classifier produces no false-positive errors but also

gains no true positives. The opposite strategy, of unconditionally issuing positive

classifications, is represented by the upper right point (1, 1). In order to assess the

performance of a classifier, it is possible to reduce the respective ROC curve to a

scalar value representing its performance. That is the area under the ROC (AUC),

which is a portion of the area of the unit square. It represents the probability that

a random positive is ranked before a random negative and its value will always be

between zero and one. An AUC value of one indicates a perfect classification, while

an AUC value of 0.5 indicates no discriminative value, that is a random guessing,

and is represented by a straight diagonal line extending from the lower left corner to

the upper right corner. Accordingly, no realistic classifier should have a score lower

than 0.5 under this metric.

2.3 The imbalanced dataset issue in natural language processing

The imbalanced data issue is a ubiquitous problem in natural language processing

given the Zipfian nature of many language phenomena and dimensions. In recent

years, tasks such as sentence boundary detection (SBD), word sense disambiguation

(WSD), or named entity recognition (NER) have been addressed with machine

learning techniques that explicitly seek to handle the imbalanced dataset issue.

As for the WSD task, the class imbalance issue arises due to the fact that word

senses present a highly skewed distribution. To address this problem, Zhu and Hovy

(2007) adopted active learning with resampling methods. They tested random under-

and oversampling and an improved version of random oversampling, called BootOS.

In this case, each majority example has the same probability to be selected for the

sampling, thus making the sampling not completely random. They found out that

when the number of learned samples for each word was small, the BootOS has

the best performance, followed by random oversampling technique. As the number

1 An intuitive argument is that it is easy to obtain high precision in domains in which the
prevalence of positives is also high.
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of learned samples increases, oversampling and BootOS tend to support similar

performances of classifiers in terms of accuracy and recall.

Regarding the NER task, Tomanek and Hahn (2009), as well as Zhu and

Hovy (2007), dealt with the imbalanced data problem in the context of active

learning, having tested different approaches to reduce the imbalance. The objective

of their work was to obtain more balanced datasets during annotation time by

using active learning as a strategy to acquire training material. They applied over-

and undersampling techniques during active learning selection and after active

learning iteration. In this last scenario, either examples for the minority class were

oversampled (e.g. by simple replication), or examples of the majority class were

discarded to achieve a more balanced dataset. They concluded that undersampling

is disadvantageous when active learning is used due to the fact that, after having

spent human effort on labeling the selected sentences in an active learning iteration,

some of these are immediately discarded in the next step. Oversampling, in turn,

entails computational overload.

In the SBD classification task, for each inter-word boundary, the goal is to identify

it as either a sentence boundary or just a word boundary in the same sentence. As

sentence boundaries are less frequent than non-sentence boundaries, it is necessary to

deal here with an imbalanced dataset distribution. Liu et al. (2006) carried out a pre-

liminary study using two corpora, made of conversational speech over the phone and

broadcast news speech, where only about 13 per cent of the inter-word boundaries

corresponded to sentence boundaries in phone speech, and 8 per cent in broadcasted

speech. In this study, with performance measured using AUC, classifiers trained

under the sampling approaches outperform those trained over the original training

set. They also experimented with bagging, a meta-algorithm for combining different

learning algorithms, which is a special case of model averaging, that can be used with

any type of model for classification or regression. Bagging was found to significantly

improve system performance for each of the sampling methods. They also reported

the results of an empirical evaluation in a pilot study, showing that undersampling

the dataset works reasonably well and requires less training time. Oversampling with

replication increases training time without any gain in classification performance.

SMOTE, a smart oversampling method, outperforms the undersampling approach

when few features are used, but not when different combinations of features are

used. Bagging was also investigated on a randomly undersampled training set,

an ensemble of multiple undersampled training sets, and the original training set.

Bagging on an undersampled training set versus the original training set without

bagging results in an even better performance than the use of more samples.

Besides the detection of sentence boundaries, Liu et al. (2006) also investigated

the detection of disfluency interruption points, taking into consideration the effect of

different dataset size, sampling methods and learning methods. Regarding sampling

methods, they experimented with different options: no sampling, undersampling,

oversampling, and an ensemble sampling, which split the majority class into N sets,

each of which is combined with all of the minority class samples to make a balanced

training set to train a classifier. Regarding learning methods, they tested, besides

bagging, ensemble bagging and boosting. The former consists in the application of
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bagging on each balanced training set formed by the ensemble sampling approach.

The latter combines multiple weak learning algorithms where each classifier is built

based on the output of the previous classifiers, mostly by focusing on the samples for

which the previous classifiers made incorrect decisions. Results show that bagging

benefits both tasks, but to different degrees. The benefit from ensemble bagging

decreases as data size increases, and boosting can outperform bagging under certain

conditions.

3 Definitions and definition extraction

Defining a concept by making use of expressions other than the one expressing said

concept is acknowledged to be one of the most valuable functions of language (Barn-

brook 2002). The interest in definitions dates back to Plato and Aristotle. The latter

described a definition as a special kind of an equation, following the schema X = Y +

C , where X is the definiendum (what is to be defined), ‘=’ is the equivalence relation

expressed by some connector, and the expression Y + C is the definiens (the part

which is doing the defining). The definiens should consist of two parts: Y is the genus

(the nearest superconcept), the class of which X is an instance or a subclass, and C

represents the differentiae specificae (the distinguishing characteristics) that turn X

distinguishable from other instances or subclasses of Y . In the example ‘The acid

rain is a rain with significantly increased acidity as a result of atmospheric pollution’,

the expression the acid rain is the definiendum, rain is the genus, and significantly

increased acidity as a result of atmospheric pollution the differentiae specificae.

This analysis of definitions has been extended throughout time. For example,

Sierra et al. (2006), starting from the Aristotelian formal definition, describe four

other types of definitions:

• Exclusive genus definition provides no description of the differentia, e.g. ‘Java

is a programming language’.

• Synonymic definition indicates an equivalent definiens, e.g. ‘Legal medicine is

also called forensic medicine’.

• Functional definition focus on the differentia that indicates the function of

the concept, e.g. ‘A feature is an attribute of an object ’.

• Extensional definition includes differentia enumerating the parts of the

denotation of the definiens, e.g. ‘The solar system is made of the planets

Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto’.

A more advanced analysis of definitions in the scope of an expert domain takes

into consideration the fact that not every information is relevant to define a given

concept. The focus is on how to determine the relevance of a given piece of

information and in which usage context (Seppälä 2009).

When tackling unrestricted, domain-independent texts, there are so many ways

in which definitions may be conveyed that it becomes very difficult to come up

with a closed set of linguistic patterns to solve the problem of definition extraction.

To make matters even more complex, patterns are usually too broad, matching

non-definitional contexts as well as definitional ones. For the sake of the example,



8 R. Del Gaudio et al.

consider again: ‘The acid rain is a rain with significantly increased acidity as a result of

atmospheric pollution’. Now, compare this sentence with the following one: ‘The acid

rain is a problem with significantly increased consequences’. These two sentences are

very similar in their syntactic structure. Nevertheless, only the first one is a definition.

Despite the multiple ways under which a definition can be rendered, in practical

applications, most works are focused on the extraction of a definition conveyed by

a sentence made of a subject followed by a copular verb, followed by a predicative

phrase.

As discussed in the next subsection, the majority of systems that automatically

extract definitions have been constructed taking into account a specific corpus

on a specific topic. For example, Malaise, Zweigenbaum and Bachimont (2004)

used two corpora of different domains to develop and test their system, while Sierra

et al. (2008) used a vast corpus covering several domains, in order to test definitional

patterns for Spanish. There are a few works of a more general nature, such as the

one of Hearst (1992), that indicates some general patterns and proposes a heuristic

to find new patterns for specific corpora.

3.1 Patterns for definition extraction

The vast majority of the studies on definition extraction are based on a set of

hand-crafted rules or patterns in order to identify definitions in texts. Some of the

more recent works seek to improve the outcome of these rules by using machine

learning techniques.

Since the 1990s, there has been intense research activity around the extraction of

definitional information. For instance, Hearst (1992) proposed a method to identify

a set of lexico-syntactic patterns to extract hyponym relations from large corpora

and extend WordNet with them. This method was adopted by Pearson (1996) to

cover other types of relations.

One of the most effective systems, DEFINDER (Klavans and Muresan 2001),

combines simple cue phrases and structural indicators introducing the definitions

and the defined term. The corpus used to support the development of the rules

consists of well-structured medical documents, where 60 per cent of the definitions

are introduced by a set of limited text markers. The nature of the corpus used can

explain the high performance obtained by this system (0.87 precision and 0.75 recall).

Malaise et al. (2004) focused their work on the extraction of definitory expressions

containing hyperonym and synonym relations from French corpora. These authors

used lexical–syntactic markers and patterns to detect these two types of definitions.

In this way, for hyponym and synonym definitions, they obtained, respectively, 0.04

and 0.36 of recall, and 0.61 and 0.66 of precision.

In Alarcón, Sierra and Bach (2009), a method for extracting definitions for

Spanish language called ECODE is described. It uses a broad corpus composed of

over 1,000 documents covering eight different domains, namely law, human genome,

economy, environment, medicine, informatics and general language. Basically, the

system is composed of three modules. The first module automatically extracts the

sentences by resorting to a pattern module composed of 15 definitional patterns



Coping with highly imbalanced datasets 9

manually constructed. The second module filters the output of the first one applying

a rule-based system. Finally, there is a third module that marks the definiens and

the definiendum. The performance of the system was calculated for each different

pattern, with an F-measure ranging from 0.45 to 0.95, and a mean of 0.72.

When machine learning techniques have been applied, the output of the patterns

matching module has been used as the training dataset. When the pattern-based

module is characterized by a good performance in terms of recall and poor

performance in terms of precision, the machine learning module is used as a filter

to discard false-positive examples returned by the previous pattern matching step.

For instance, Westerhout and Monachesi (2008) combine syntactic patterns with

a näıve Bayes classification algorithm with the aim of extracting glossaries from

tutorial documents in Dutch. They use several properties and several combinations

of them, obtaining a precision of 0.80 and a recall of 0.78. This represents an improve-

ment of precision of 0.52 but a decline in the recall of 0.19 in comparison with the

syntactic pattern system developed previously by the authors using the same corpus.

Miliaraki and Androutsopoulos (2004) used a machine learning-based method

to identify 250-character single-snippet answers to definition questions by using a

collection of documents. They experimented with three different algorithms, namely

näıve Bayes, decision tree and support vector machine (SVM), obtaining the best

score with SVM with an F-measure of 0.83.

Fahmi and Bouma (2006) used a maximum entropy classifier. The corpus used

was composed of medical pages of Dutch Wikipedia, from where they extracted

sentences based on syntactic features. The dataset was composed of 2,299 sentences

of which 1,366 were actual definitions. The initial accuracy of 0.59, obtained with

the pattern-based module, was improved with machine learning algorithms until it

reached 0.92.

In very few cases, the machine learning algorithms were applied alone, skipping

the pattern-based step and without facing the problem of data imbalance. Chan and

Zheng (2007) report on a system to extract definitions from off-line documents. As

their corpus was composed by text snippets collected over the web, they end up with

a quite balanced dataset. They experimented with three different algorithms, namely

näıve Bayes, decision tree and SVM, obtaining the best score with SVM with an

F-measure of 0.83.

A very different approach is the one proposed by Borg, Rosner and Pace (2009).

They used genetic algorithms for weighting manually crafted linguistic patterns

in order to obtain a fine-grained filter to select definitions. This resulted in a

large improvement regarding precision from 0.17 (before the filtering stage) to

0.62. The recall remained around 0.50 with an F-measure of 0.57. They also tried

to automatically generate definitional patterns by means of genetic programming,

obtaining a precision of 0.22, a recall of 0.39 and an F-measure of 0.28.

The problem with the approach based on pattern matching is that it relies strongly

on the set of manually crafted rules developed to ensure the first step of the process.

Excluding the case of a few very general heuristics, whenever one needs to build a

system to extract definitions, it is necessary to start almost from scratch, by starting

to analyze a possible set of definitions and then building a set of specific patterns.
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Furthermore, these rules are not only pertinent to a specific natural language, but

also to a specific domain and application, making it difficult to extend their use

beyond the constrained applicational context within which they were developed.

3.2 The imbalanced dataset issue in definition extraction

To the best of our knowledge, only three works have abandoned this widespread

approach of starting with a first pass through a pattern matching module, and

sought to explicitly address the imbalanced dataset issue through some kind of

sampling.

Degórski et al. (2008b) used a corpus made of tutorials on information technology

in Polish to develop a definition extraction system to support the construction

of glossaries. The corpus was composed of 10,830 sentences, 546 of which were

definitions, with the original ratio of 1:19.

By means of random undersampling, the distribution of classes was modified

in order to obtain different ratios of 1 to 1, 1 to 5 and 1 to 10. A number

of machine learning classifiers were tested such as näıve Bayes, C4.5, ID3, IB1,

nu-SVC, AdaBoost with Decision Stump (AB+DS). As attributes, the first 100

more frequent n-grams (n = 1, 2, 3) composed of lemmas, syntactic categories and

cases were selected. For all types of classifiers, the balanced dataset obtained with

undersampling showed the best performance. The best result was obtained with the

AB+DS classifier with 0.18 of precision, 0.60 of recall and an F-measure score of

0.28.

The Polish dataset was also used in two different experiments (Kobyliński and

Przepiórkowski 2008; Degórski, Kobyliński and Przepiórkowski 2008a) that resorted

to balanced random forest. This is a machine learning technique for classification

using decision trees, where decisions are based on a subset of attributes which are

randomly selected and the best attribute for the current tree is then chosen. Each

tree is built using the same number of items from minority and majority class,

overtaking the issue of imbalanced datasets (Chen, Liaw and Breiman 2004). In the

first experiment, this algorithm increased the F-measure score to 0.32 (with precision

at 0.21 and recall at 0.69). In the second experiment, the algorithm was fine-tuned

in order to improve the F2-score, favoring recall over precision. In this way, an

F2-score of 0.43 was obtained, where the F2-measure before the optimization step

was 0.40.

Westerhout (2009) also applied balanced random forest as a filtering module after

a pattern-based module. These results were compared with those obtained by näıve

Bayes, also used as filter. In this experiment, näıve Bayes and balanced random

forest showed very similar performance, with respectively precision of 0.82 and 0.77,

recall of 0.76 and 0.79, and F-measure of 0.79 and 0.78.

4 Experimental settings

The main objective of the present work is to gain insight on the usage of machine

learning techniques to perform the task of automatic definition extraction without
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the intermediation of a pattern matching module. In particular, we are interested in

assessing the added value of applying sampling methods to handle the imbalanced

dataset issue.

Given the wide range of types of definitions, here we will restrict our attention

to the classical type, focusing on definitions conveyed by sentences composed of

a term (the definiens), a connector and a subsequent expression (the definiendum).

After analyzing the three working corpora used in this work (described in the next

subsection), it was clear that the majority of definitions bear the so-called copula

verb ‘to be’ as its connector. The work reported in this paper is thus concerned with

this type of definition structure, which we termed as copula definition.

In the present section, we describe the corpora used in the experiments as well as

the sampling algorithms and the learning algorithms resorted to.

4.1 Datasets

In this work, we use three datasets derived from three different corpora, each one

from a different language, namely Dutch, English and Portuguese. All three corpora

were collected in the context of the Language Technology for eLearning LT4eL

project.2

These corpora cover the domains of computer science and eLearning and are

encoded in an XML-based format which includes the linguistic annotation with

part-of-speech (POS), lemma and morphological analysis information (automatically

assigned).3 Though from different languages, these corpora are comparable as they

were collected for the same purpose and using the same guidelines, as they include

learning materials written by experts for initiates or relative experts on information

technology. Furthermore, they are easily usable given that they are annotated with

the same type of morphosyntactic information across the different languages, and

this information is encoded in a common XML format in all of them.

The sentences conveying definitions were manually annotated. In each such

sentence, the term defined, the definition and the connection verb were annotated

using a different XML tag.

Table 1 displays a quantitative description of these corpora in terms of their

original size (tokens and sentences), dataset size, number of positive examples

(actual definitions marked by the human annotators) and the ratio between positive

and negative examples.

The Dutch corpus is composed of 26 tutorials with a total size of 353,174 tokens

and 23,996 sentences, of which 113 contain copula definitions. The corpus was

annotated with morphosyntactic features with the Wotan tagger and with lemmas

provided by the Corpus Gesproken Nederlands (CGN) lemmatizer (Westerhout and

Monachesi, 2007).

2 www.lt4el.eu.
3 The DTD of this format conforms to a DTD derived from the XCESAna DTD, a standard

for linguistically annotated corpora (Ide and Suderman 2002).
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Table 1. Corpora description

Original corpus Sub-corpus

Token Sentences Sentences Definitions Ratio

Dutch 353,174 23,996 4,829 113 1:42

English 287,910 20,172 2,574 40 1:64

Portuguese 223,049 10,941 1,360 121 1:11

The English corpus is a collection of 7 tutorials with a total size of 287,910

tokens and 20,172 sentences, of which 40 contain copula definitions. The corpus is

annotated with linguistic information, using the Stanford POS tagger (Toutanova

and Manning 2000).

The Portuguese corpus contains 23 tutorials and scientific papers in the field

of information technology and has a size of 223,049 tokens and 10,941 sentences,

of which 121 contain copula definitions. It is automatically annotated with the

LX-Suite (Branco and Silva 2006).

In order to prepare the dataset to be used in our experiments, all the sentences

where the verb ‘to be’ appears as the main verb were extracted. For Portuguese, we

obtained a sub-corpus composed of 1,360 sentences, 121 of which are definitions,

with a ratio of about 1 to 11. For Dutch, we obtained a sub-corpus composed of

4,829 sentences, 120 of which are definitions, with a ratio of 1 to 42. Finally, for

English, the sub-corpus is composed of 2,574 sentences, 40 of which are copula

definitions, with a ratio of 1 to 64. These sub-corpora are datasets that were used

to train and test the classifiers in the experiments reported below.4

4.2 Feature selection

The selection of features was determined by the goal of enhancing the transportab-

ility of the solutions for definition extraction, that is, we wanted the type of features

used to be, as much as possible, domain and language independent.

Looking at related work, commonly used features are bag-of-word, n-grams (Mil-

iaraki and Androutsopoulos, 2004) (either of POS or of base forms), the position

of the definition inside the document (Joho and Sanderson 2000), or the presence

of determiners in the definiens and the definiendum. Other relevant, more complex

properties can be the presence of named entities (Fahmi and Bouma 2006) or data

from an external source such as encyclopedic data and WordNet (Saggion 2004).

Some of these features may work well with a given corpus but not so well with

another. The use of the position of a definition-bearing sentence in its document

is an example of a feature that is corpus dependent. For instance, in encyclopedic

documents, definitions appear at the beginning of documents, but the same did not

happen in tutorials in our corpora.

4 Datasets are available at http://nlx-server.di.fc.ul.pt/˜rosa/DefinitionExtraction.html.
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In order to avoid such limitations, we represented instances as n-grams of POS.

Currently, a POS tagger is a basic resource available for many natural languages.

After some preliminary experiments, the best choice turned out to be the adoption

of bigrams. From each corpora, we extracted all the bigrams and then reduced the

respective huge list using the information gain attribute evaluation algorithm (Witten

and Frank 2005), thus obtaining a list of 50 bigrams for each dataset.

4.3 Sampling algorithms

In our evaluation, we selected a set of state-of-the-art sampling algorithms that are

frequently used and referred to in the literature as delivering a good performance.

We choose random (under and over) sampling algorithms as our starting point. We

also selected the algorithms condensed nearest-neighbor rule, Tomek links, edited

nearest neighbor, neighborhood cleaning rule as direct undersampling methods. In

general, direct undersampling methods try to characterize each training example

as borderline, noise or far from the decision border, and they discard a subset of

the examples according to this classification. For instance, noise examples may be

discarded as well as a subset of the examples far from the decision border, since

those examples are usually less critical (or harmful) for learning.

Most of the direct undersampling algorithms were originally proposed as data

cleaning methods. Therefore, they eliminate examples of both (minority and majority)

classes. Unfortunately, for most imbalanced class datasets, the number of minority

class examples is severely small, and discarding part of those examples would often

make the learning impracticable. Therefore, these data cleaning algorithms were

adapted as undersampling methods by simply retaining all minority class examples

and applying the selection and filtering out over only the majority class examples.

We also use SMOTE as a direct oversampling algorithm. SMOTE creates synthetic

minority class examples instead of replicating exact copies of these examples.

A short description of each algorithm is presented below:

Random oversampling consists of random replication of minority class examples,

while in random undersampling, majority class examples are randomly discarded

until the desired amount is reached. These two straightforward methods are often

criticized. Several authors have pointed out that undersampling can potentially

discard useful data that could be important for the induction process. In contrast,

random oversampling can increase the likelihood of overfitting, since it makes exact

copies of the minority class examples (Batista, Prati and Monard 2005).

Condensed nearest-neighbor rule (CNN) (Hart 1968) is a data cleaning method

that finds a consistent subset in order to eliminate examples that are distant from the

decision border, since these examples might be considered less relevant for learning.

A subset E ′ ⊂ E is consistent with E if using 1-nearest neighbor, E ′ correctly

classifies the examples in E. An algorithm to find a consistent subset is: first, it

randomly draws one example of each class from E and puts these examples in E ′.

Next, it uses a 1-NN algorithm over the examples in E ′ to classify each example in

E. Every misclassified example from E is moved to E ′. We converted this method

to an undersampling algorithm by adding to the subset generated by CNN all the
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minority examples it deleted. CNN is typically sensitive to noise, since noisy data

are likely to be misclassified by its neighbors.

Tomek links (Tomek 1976) algorithm is a data cleaning method that removes

both noise and borderline examples. Tomek links are pairs of instances of different

classes that have each other as their nearest neighbors. Given two examples Ei and Ej

belonging to different classes, and d(Ei, Ej) the distance between Ei and Ej , a (Ei, Ej)

pair is called a Tomek link if there is not an example Ek such that d(Ei, Ek) < d(Ei, Ej)

or d(Ej, Ek) < d(Ei, Ej). If two examples form a Tomek link, then either of these

examples is noise or both examples are borderline. As an undersampling method,

only examples belonging to the majority class are eliminated. The major drawback of

Tomek links is that this method can discard potentially useful data, since borderline

examples are often important to characterize the decision border. This method has a

higher order computational complexity and will run slower than the other algorithms.

Edited nearest-neighbor rule (ENN) (Wilson 1972) is a data cleaning method,

and it removes any example whose class label differs from the class of at least

two of its three nearest neighbors. This algorithm was designed to identify and

eliminate examples that are likely to be noise data, while retaining most of the

data. Therefore, this method is not very effective to balance training data. As an

undersampling method, we removed only majority class examples that disagree with

their three nearest neighbors.

Neighborhood cleaning rule (NCL) (Laurikkala 2001) is an undersampling method

that uses a variant of Wilson’s edited nearest-neighbor rule. NCL modifies the ENN

in order to increase the data cleaning. For a two-class problem, the algorithm

can be described in the following way: for each example Ei in the training set,

its three nearest neighbors are found. If Ei belongs to the majority class and the

classification given by its three nearest neighbors contradicts the original class of

Ei, then Ei is removed. If Ei belongs to the minority class and its three nearest

neighbors misclassify Ei, then the nearest neighbors that belong to the majority class

are removed.

While these methods are direct undersampling techniques, SMOTE is an over-

sampling method that produces new synthetic minority class examples.

SMOTE (Chawla et al. 2002) is an oversampling method that forms new minority

class examples by interpolating between several minority class examples that lie

together in the ‘feature space’. For each minority class example, this algorithm

introduces synthetic examples along the line segments joining any/all of the k

minority class nearest neighbors (in this work k is equal to 3). Synthetic samples

are produced taking the difference between the feature vector (sample) under

consideration and its nearest neighbors. The difference is multiplied by a random

number between zero and one and added to the feature vector under consideration.

SMOTE, random over- and undersampling are methods designed to change class

proportion, and can be implemented to provide any desired output class distribution,

including balanced distribution. The remaining methods are adaptations of data

cleaning approaches and consequently they typically do not guarantee any desired

class distribution. We investigated if multiple passes of the methods Tomek links,

ENN and NCL would reach a perfect balance between positive and negative
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examples. This result was obtained only with Tomek links. Even if we tried to force

the other two to do so, they have a natural stop point, and depending on the nature

of the size and the imbalance degree of the dataset, this stop point can occur before

the balance is achieved.

All the described algorithms were first applied one by one and then coupled. In

particular, we tried to pair undersampling algorithms with oversampling algorithms.

Three different settings were tested: undersampling to 25, 50 and 75 per cent

and subsequent oversampling. This way, it is possible to assess to which extent

a given algorithm is more effective. Regarding ENN and NCL, when it was not

possible to reach the desired class distribution (25, 50 or 75 per cent), we used

the proportion returned by the undersampling algorithm and then applied the

oversampling algorithm to achieve the balance point.

4.4 Classification algorithms

The selection of learning algorithms took into account two different considerations.

First, the selection of algorithms that represent the state of the art for definition

extraction and also for imbalanced data. Second, the possibility to cover different

paradigms of algorithms for classification, having at least an algorithm representative

of each learning paradigm. This way, different sampling techniques may be studied

with respect to a larger range of classification algorithms. Six such algorithms were

selected: näıve Bayes, C4.5, random forest, k-NN, SVM and voting feature intervals.

A brief description of these algorithms can be found below.

Naı̈ve Bayes (John and Langley 1995) is a simple probabilistic classifier that

is very popular in natural language applications. It is based on Bayes’ theorem,

and its algorithm is known for assuming independence of features. In short, the

independence means that the occurrence of a specific feature value is independent

from the occurrence of any other feature value. In spite of its simplicity, it

usually permits one to obtain results similar to the results obtained with more

sophisticated algorithms. Two different implementations were evaluated: one in

which the numeric estimator precision values are chosen using a kernel estimator

for numeric attributes and another using a normal distribution. The latter obtained

better overall performance, and for this reason only the results obtained with this

configuration are presented.

C4.5 (Quinlan 1996) and random forest (Breiman 2001) are two decision tree

algorithms. The first is a relatively simple algorithm that splits the data into smaller

subsets using the information gain in order to choose the attribute for splitting the

data. The second is an ensemble consisting of a collection of decision trees. For each

tree, a random sample of the dataset is selected (the remaining is used for error

estimation) and for each node of the tree, the decision at that node is based on a

restricted number of variables.

The k-NN algorithm (Aha, Kibler and Albert 1991) is a type of instance-based

learning, also called lazy learning because, unlike the algorithms above, the training

phase of the algorithm consists only in storing the feature vectors and class labels of

the training samples and all computation is deferred until the classification phase.
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In this phase, it computes the distance between the target sample and n samples in

the dataset, assigning the most frequent class among the k nearest samples. As it is

used by default in the literature, here we presented results for the learner generated

also when k was set to 3.

The SVM algorithm tries to construct an N-dimensional hyperplane that optimally

classifies data points as much as possible and separate the points of two classes as

far as possible (Chang and Lin 2001). The goal of SVM modeling is to find the

optimal hyperplane that separates clusters of vectors in such a way that cases with

one category of the target variable are on one side of the plane and cases with the

other category are on the other side of the plane. The vectors near the hyperplane

are the support vectors.

The voted feature intervals (VFI) algorithm (Demiröz and Güvenir 1997) uses a

scheme that calculates the occurrences of feature intervals per class, and classifies

by voting on new examples using these intervals, which are constructed around

each class for each attribute. This way, an example is represented by a set of

feature intervals on each feature dimension separately. Each feature participates in

the classification by distributing real-valued votes among classes. Higher weight is

assigned to more confident intervals, where confidence is a function of entropy. The

class receiving the highest vote is declared to be the predicted class.

All classifiers were built using the Weka workbench (Witten and Frank 2005).

Regarding the evaluation, in order to use all the corpus data for training and testing,

tenfold cross-validation was used.

5 Results

In this section, we report the experiments undertaken and their results. First, we

describe the results obtained by running the classifiers trained with no previous

sampling. Next, the results obtained by applying the sampling algorithms separately

are described. Finally, we describe the results obtained when sampling algorithms

are combined.

We assess our results using the well-known F-measure and AUC. The main

purpose of reporting results in F-measure is to allow for comparison with other

results previously published in the area. However, the comparison should be made

with a word of caution, as previously discussed, since F-measure is influenced by

the classes’ prior probabilities. AUC is the state-of-the-art measure for performance

assessment of classifiers in the presence of class-imbalanced data.

In all the following tables, the results are displayed from left to right going

from the least to the most imbalanced dataset. Hence, the results obtained with the

Portuguese dataset (PT) appear first, then those with the datasets for Dutch (DU)

and finally with the one for English (EN).

5.1 No sampling algorithms

We start by showing, in Table 2, the performance results for learners when no sample

algorithm is applied.
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Table 2. No sampling

PT DU EN

F-m AUC F-m AUC F-m AUC

3-NN 0.09 0.63 0.02 0.54 0.01 0.67

C4.5 0.01 0.50 0.01 0.50 0.00 0.50

RF 0.08 0.64 0.01 0.65 0.00 0.69

NB 0.23 0.77 0.04 0.70 0.01 0.72

SVM 0.00 0.50 0.01 0.50 0.00 0.50

VFI 0.22 0.75 0.06 0.75 0.01 0.73

Table 3. Random oversampling

PT DU EN

F-m AUC F-m AUC F-m AUC

3-NN 0.59 0.62 0.22 0.54 0.65 0.68

C4.5 0.45 0.67 0.20 0.67 0.65 0.71

RF 0.25 0.63 0.20 0.64 0.68 0.69

NB 0.70 0.78 0.65 0.73 0.74 0.78

SVM 0.71 0.72 0.59 0.66 0.67 0.69

VFI 0.72 0.75 0.69 0.75 0.67 0.73

They reveal that the performance of classifiers, in terms of F-measure, worsens

when the class skewness increases, as we expected since this measure is influenced

by the degree of imbalance. The same behavior is not so clear if we observe the

AUC metric.

If we look at specific learners, the best performance in terms of AUC is obtained

by näıve Bayes and VFI algorithms. In the literature on imbalanced datasets, it is

assumed that a classifier should present an AUC of at least 0.75 to be considered

reliable (Bradley 1997). VFI achieves this value with the first two datasets, and

it gets very close to it with the English dataset. Näıve Bayes only overcomes this

threshold of 0.75 with the less imbalanced dataset, while for the other two it scores

0.70 and 0.72, respectively.

5.2 Single sampling algorithms

In this section, we present the experimental results obtained with a single pass of

sampling algorithms. First, we present the results of random sampling, for balancing

the training dataset so that it ends up with the same amount of negative and positive

examples.

Tables 3 and 4, respectively, display the results for balanced datasets obtained

with random oversampling and random undersampling. In both cases, the F-measure

score highly improves with respect to no sampling. While with the original dataset
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Table 4. Random undersampling

PT DU EN

F-m AUC F-m AUC F-m AUC

3-NN 0.65 0.70 0.18 0.54 0.71 0.76

C4.5 0.60 0.64 0.23 0.65 0.66 0.65

RF 0.63 0.69 0.55 0.65 0.73 0.75

NB 0.70 0.74 0.62 0.71 0.73 0.76

SVM 0.70 0.69 0.62 0.67 0.67 0.68

VFI 0.71 0.75 0.71 0.74 0.67 0.71

Table 5. Edited nearest neighbor (ENN)

PT DU EN

F-m AUC F-m AUC F-m AUC

3-NN 0.10 0.63 0.02 0.54 0.00 0.67

C4.5 0.03 0.51 0.00 0.50 0.00 0.50

RF 0.12 0.62 0.00 0.63 0.00 0.60

NB 0.25 0.78 0.05 0.71 0.00 0.72

SVM 0.00 0.50 0.00 0.50 0.00 0.50

VFI 0.22 0.74 0.06 0.75 0.07 0.73

the best result was of 0.23 for Portuguese, with both sampling algorithms, a value of

around 0.70 is obtained for all the datasets. Regarding the AUC metric, it improves

only with classifiers that obtained the worst performance when no sampling was used.

We now turn to the experiments with direct sampling techniques. From Tables 5

to 8, the results obtained with direct undersampling algorithms are presented.

Turning our attention to these tables, it is possible to note the variation in

performance when different undersampling algorithms are used. At one extreme,

CNN (Table 6) obtains slightly worse results than those obtained with random

Table 6. Condensed nearest neighbor (CNN)

PT DU EN

F-m AUC F-m AUC F-m AUC

3-NN 0.54 0.54 0.61 0.58 0.60 0.55

C4.5 0.54 0.55 0.61 0.62 0.68 0.56

RF 0.58 0.62 0.63 0.66 0.60 0.51

NB 0.68 0.70 0.38 0.60 0.62 0.56

SVM 0.64 0.59 0.58 0.57 0.63 0.59

VFI 0.68 0.65 0.62 0.67 0.66 0.60
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Table 7. Neighborhood cleaning

PT DU EN

F-m AUC F-m AUC F-m AUC

3-NN 0.41 0.75 0.27 0.70 0.20 0.68

C4.5 0.41 0.80 0.28 0.73 0.00 0.50

RF 0.22 0.82 0.24 0.75 0.22 0.82

NB 0.45 0.85 0.10 0.75 0.09 0.79

SVM 0.16 0.54 0.00 0.50 0.00 0.50

VFI 0.35 0.82 0.17 0.82 0.21 0.80

undersampling. At the other extreme, Tomek links (Table 8) shows high performance

in terms of both F-measure and AUC.

In the case of ENN (Table 5), the number of majority class items deleted was

not enough to notably modify the degree of imbalance, so that the proportion of

negative and positive examples remains the same as the original dataset, with no

sampling. As mentioned in Section 4.3, this algorithm was developed for cleaning

data, and even if it is applied recursively to the original dataset, eventually it will

reach a stop point where no more examples can be deleted. As a consequence, the

results are very similar to those obtained when no sampling algorithm is applied.

We can conclude that for this kind of task (definition learning), in the way we have

set the problem, this algorithm is not useful at all, at least when used alone.

CNN presents a different behavior (Table 6). In terms of F-measure, it presents

higher scores than those for the original dataset (i.e. no sampling) and quite similar

to those of random sampling. In terms of AUC, the scores worsen. In particular,

this deterioration is more evident with classifiers that are getting better results with

the original dataset. For example, looking at the Portuguese experiment, we can see

that the VFI obtained a score of 0.75 (Table 2) with the original dataset and with

CNN, it got 0.65. SVM obtained a score of 0.50 with the original dataset, while

CNN now gets 0.59.

NCL shows a significant improvement compared to random undersampling

(Table 7). Like ENN, this algorithm was not able to balance the dataset, but

unlike ENN, it was able to modify the degree of imbalance. For each dataset, the

following proportions were obtained: 1 to 3 for Portuguese (instead of 1 to 11), 1 to

17 for Dutch (instead of 1 to 42) and 1 to 28 for English (instead of 1 to 64). Since

NCL did not achieve balanced datasets, it could be unfair to compare its results

with the ones obtained with Tomek links. For this reason, a second experiment was

run, setting Tomek links to reproduce the same proportion obtained by NCL for

each dataset.

Table 9 shows the results of this experiment. In general, even when forced

to reproduce the same data ratio returned by NCL, Tomek links outperforms

NCL, with some differences among the datasets. The advantage of Tomek links is

more evident with a less imbalanced dataset. As the imbalance increases, the two

algorithms perform very similarly.
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Table 8. Tomek links

PT DU EN

F-m AUC F-m AUC F-m AUC

3-NN 0.78 0.78 0.75 0.74 0.71 0.75

C4.5 0.85 0.89 0.81 0.87 0.82 0.78

RF 0.86 0.92 0.84 0.91 0.84 0.93

NB 0.86 0.89 0.86 0.90 0.63 0.83

SVM 0.82 0.81 0.88 0.88 0.73 0.74

VFI 0.79 0.87 0.85 0.92 0.68 0.84

Table 9. Not balanced Tomek links

PT DU EN

F-m AUC F-m AUC F-m AUC

3-NN 0.66 0.85 0.30 0.75 0.37 0.81

C4.5 0.68 0.83 0.32 0.69 0.00 0.50

RF 0.66 0.86 0.32 0.77 0.25 0.81

NB 0.71 0.90 0.10 0.76 0.04 0.80

SVM 0.44 0.64 0.00 0.50 0.00 0.50

VFI 0.51 0.84 0.16 0.82 0.15 0.79

It is also interesting to compare these results obtained by non-balanced Tomek

links in Table 9 with those obtained by the same algorithm, only forced to return a

perfectly balanced dataset (Table 8). In general, the balanced dataset obtains better

results in terms of both F-measure and AUC, but the improvement is higher for the

first metric. The only exception is the 3-NN based classifier. In this case, for all three

datasets, the AUC value is higher when a non-perfectly balanced dataset is used.

Given these considerations, Tomek links results to be the best undersampling

algorithm for the definition extraction task. In terms of the AUC metric, only in two

cases, this algorithm did not reach the threshold of 0.75, namely with 3-NN when

using the Dutch dataset and with SVM when using the English dataset. However,

in both cases the AUC value is 0.74, very near to the threshold. The best classifier,

random forest, outperforms all other classification algorithms for all datasets, with

AUC scores above 0.90. VFI and näıve Bayes algorithms follow at a short distance.

Regarding oversampling, when SMOTE (Table 10) is applied, results are very

similar to those obtained with Tomek links, but with a slight difference. The threshold

of 0.75 for AUC is not reached in five settings, namely for all datasets when SVM

is used, and for Portuguese and Dutch datasets with 3-NN-based classifiers. When

looking at specific classifiers, random forest maintains its advantage, but this time

it is followed by C4.5 and then by VFI and näıve Bayes.

Finally, it is interesting to note that for less imbalanced datasets, Tomek links

outperforms SMOTE. When the datasets are more imbalanced, the two algorithms

deliver similar performances.
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Table 10. SMOTE

PT DU EN

F-m AUC F-m AUC F-m AUC

3-NN 0.61 0.74 0.63 0.73 0.70 0.75

C4.5 0.79 0.88 0.89 0.95 0.81 0.81

RF 0.77 0.92 0.86 0.98 0.71 0.85

NB 0.70 0.78 0.67 0.93 0.79 0.86

SVM 0.72 0.72 0.68 0.72 0.69 0.70

VFI 0.69 0.87 0.67 0.87 0.65 0.79

5.3 Combining sampling algorithms

In this section, we present and discuss the results obtained by combining under- and

oversampling algorithms.

We opted for not reporting the results of the experiments carried out when

oversampling is applied first. This is so because, as the number of examples increases,

some algorithms are computationally very expensive, but above all because the

performance was slightly worse than that obtained by doing undersampling first.

Each experiment is repeated for undersampling the majority class items to 75, 50

and 25 per cent of its initial size.

In the first experiment, we combined random undersampling with a random

oversampling algorithm first and then with SMOTE. Table 11 shows the performance

of classifiers for these two combinations.

When combining the two random algorithms, the performance does not improve,

and the scores are quite similar to those obtained using just one such sampling

algorithm.

Something similar happens when random undersampling is followed by SMOTE.

Here, the results obtained are about the same as those obtained by SMOTE alone.

A different scenario can be observed when we turn to Table 12, which displays

the results obtained by using Tomek links as the first algorithm in the sequence of

sampling algorithms.

As for the combination of Tomek links with random oversampling, only when

the majority class items are reduced to 75 per cent, results are better or similar to

those obtained using Tomek links alone.

As for the combination of Tomek links with SMOTE, the situation is more com-

plex. For 3-NN, SVM and VFI classifiers, the best results are obtained when Tomek

links reduces the dataset to 75 per cent. Random forest and VFI work better when

the reduction is 50 per cent. And, finally, C4.5 achieves the best performance with

the third setting, with the maximum reduction of imbalance, down to 25 per cent.

It is interesting to note that in the case of the Portuguese dataset, the least

imbalanced one, the improvement for most classifiers is not very significant, except

when näıve Bayes is used. But as the skewness increases, the combination of the

two algorithms generates better results in terms of F-measure and AUC for almost
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Table 11. Random undersampling plus oversampling (random and SMOTE)

(a) PORTUGUESE

Random SMOTE

F-m AUC F-m AUC

75%

3-NN 0.67 0.71 0.66 0.74

C4.5 0.52 0.61 0.62 0.71

RF 0.49 0.67 0.67 0.78

NB 0.62 0.71 0.78 0.88

SVM 0.67 0.69 0.72 0.72

VFI 0.72 0.76 0.70 0.82

50%

3-NN 0.70 0.70 0.65 0.75

C4.5 0.47 0.63 0.76 0.85

RF 0.32 0.63 0.77 0.88

NB 0.68 0.77 0.88 0.95

SVM 0.71 0.72 0.73 0.73

VFI 0.72 0.76 0.69 0.86

25%

3-NN 0.61 0.64 0.63 0.74

C4.5 0.45 0.68 0.81 0.88

RF 0.28 0.65 0.80 0.91

NB 0.69 0.78 0.92 0.96

SVM 0.72 0.73 0.73 0.72

VFI 0.71 0.75 0.70 0.87

(b) DUTCH

Random SMOTE

F-m AUC F-m AUC

0.47 0.57 0.64 0.70

0.50 0.68 0.82 0.89

0.18 0.68 0.81 0.94

0.67 0.74 0.95 0.97

0.63 0.66 0.71 0.72

0.70 0.73 0.67 0.85

0.30 0.54 0.65 0.73

0.30 0.66 0.82 0.91

0.07 0.66 0.84 0.97

0.65 0.74 0.98 0.98

0.61 0.66 0.72 0.73

0.69 0.75 0.67 0.87

0.21 0.53 0.64 0.73

0.23 0.65 0.85 0.93

0.02 0.67 0.85 0.98

0.66 0.74 0.98 0.99

0.61 0.67 0.69 0.72

0.69 0.75 0.67 0.87

(c) ENGLISH

Random SMOTE

F-m AUC F-m AUC

0.66 0.70 0.72 0.79

0.68 0.73 0.78 0.77

0.66 0.69 0.76 0.85

0.72 0.79 0.81 0.89

0.67 0.68 0.69 0.69

0.69 0.73 0.64 0.76

0.67 0.70 0.73 0.78

0.69 0.72 0.82 0.81

0.66 0.70 0.79 0.87

0.74 0.78 0.85 0.92

0.68 0.69 0.68 0.69

0.69 0.74 0.63 0.77

0.64 0.66 0.71 0.76

0.64 0.71 0.80 0.80

0.64 0.68 0.77 0.86

0.73 0.79 0.87 0.94

0.67 0.68 0.68 0.69

0.68 0.73 0.65 0.78

all classifiers when comparing the results obtained with either Tomek or SMOTE

alone. For the Dutch and English datasets, this improvement occurs not only with

the best setting but also with all three reduction levels considered.

Finally, it is worth noting that, for all classifiers in all datasets, the threshold of

0.75 is achieved.

When we turn to NCL, in Table 13, a similar scenario is observed. As the

imbalance increases, the best results are obtained with the combination of the two

sampling algorithms. In this case, for the Dutch and English datasets, the best

performance is obtained when NCL reduces the initial datasets to 75 per cent of

their size. For English, with this specific setting, all results are better than when

SMOTE is used alone. On the contrary, for the Portuguese and Dutch datasets, it

is possible to note that AUC gets worse with 3-NN, C4.5 and RF classifiers and

improves with the other three.

Given the specificity of the remaining two undersampling algorithms, ENN and

CNN (see Section 4.3), it is not possible to execute the three variants (75, 50 and 25

per cent) of each experiment.

The combination of ENN with oversampling, whose results are displayed in

Table 14, permits us to achieve some improvement. By comparing these results with
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Table 12. Tomek links plus oversampling algorithms

(a) PORTUGUESE

Random SMOTE

F-m AUC F-m AUC

75%

3-NN 0.81 0.83 0.83 0.85

C4.5 0.73 0.81 0.80 0.85

RF 0.83 0.88 0.84 0.91

NB 0.84 0.90 0.88 0.95

SVM 0.82 0.81 0.83 0.82

VFI 0.75 0.86 0.76 0.90

50%

3-NN 0.77 0.77 0.79 0.80

C4.5 0.65 0.76 0.79 0.87

RF 0.68 0.80 0.84 0.91

NB 0.81 0.87 0.91 0.97

SVM 0.79 0.79 0.81 0.80

VFI 0.75 0.83 0.73 0.90

25%

3-NN 0.71 0.70 0.72 0.77

C4.5 0.52 0.70 0.76 0.87

RF 0.42 0.70 0.80 0.91

NB 0.76 0.83 0.92 0.97

SVM 0.74 0.74 0.78 0.77

VFI 0.75 0.79 0.71 0.89

(b) DUTCH

Random SMOTE

F-m AUC F-m AUC

0.73 0.76 0.77 0.79

0.69 0.78 0.87 0.91

0.64 0.82 0.88 0.96

0.78 0.85 0.95 0.98

0.81 0.82 0.84 0.85

0.74 0.84 0.74 0.89

0.66 0.70 0.78 0.80

0.53 0.79 0.84 0.91

0.37 0.77 0.89 0.98

0.74 0.80 0.98 0.99

0.72 0.75 0.80 0.82

0.73 0.81 0.70 0.89

0.48 0.61 0.72 0.76

0.31 0.69 0.86 0.94

0.16 0.70 0.85 0.98

0.69 0.76 0.98 0.99

0.65 0.70 0.74 0.76

0.70 0.77 0.68 0.88

(c) ENGLISH

Random SMOTE

F-m AUC F-m AUC

0.79 0.85 0.80 0.84

0.74 0.81 0.82 0.83

0.79 0.85 0.82 0.90

0.84 0.89 0.85 0.93

0.76 0.77 0.81 0.82

0.74 0.81 0.64 0.82

0.74 0.76 0.79 0.80

0.70 0.83 0.85 0.86

0.74 0.78 0.79 0.90

0.81 0.87 0.90 0.96

0.78 0.78 0.80 0.80

0.75 0.80 0.66 0.82

0.70 0.73 0.73 0.79

0.71 0.80 0.85 0.86

0.68 0.74 0.79 0.88

0.78 0.83 0.91 0.96

0.71 0.73 0.74 0.75

0.72 0.78 0.66 0.81

those in Table 10, for SMOTE alone, we observe that there is a small improvement

for most classifiers when the combination of the two algorithms is used.

Finally, Table 15 displays the results for the undersampling with CNN. For the

first time, it is possible to find results improving with some datasets but not with

others.

In this experiment, for the Dutch dataset, the results obtained in terms of F-

measure are comparable to those obtained with SMOTE alone. As for the AUC

scores, these are just slightly worse than those obtained with SMOTE alone.

With the Portuguese and English datasets, in turn, results are worse than those

obtained with either CNN alone or with SMOTE alone.

To understand these results, it is important to note that, for different datasets,

CNN returns different proportions between the positive and negative classes. In

particular, in this experience, it delivered 1:2 for the Portuguese dataset, 1:7 for the

Dutch dataset, and 1:1.5 for the English dataset. Given the lowest ratio obtained for

the Dutch dataset, this implied that the larger portion of the balancing work was

left to the SMOTE algorithm, and this explains why the final results were better in

this case.
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Table 13. Neighborhood cleaning rule (NCL) plus oversampling algorithms

(a) PORTUGUESE

Random SMOTE

F-m AUC F-m AUC

75%

3-NN 0.75 0.73 0.67 0.73

C4.5 0.66 0.74 0.69 0.81

RF 0.64 0.76 0.75 0.87

NB 0.78 0.84 0.84 0.95

SVM 0.77 0.73 0.72 0.76

VFI 0.73 0.82 0.64 0.89

50%

3-NN 0.74 0.7 0.71 0.74

C4.5 0.52 0.71 0.76 0.87

RF 0.57 0.72 0.79 0.88

NB 0.78 0.83 0.88 0.96

SVM 0.75 0.73 0.76 0.76

VFI 0.73 0.82 0.69 0.89

25%

3-NN 0.7 0.68 0.7 0.74

C4.5 0.56 0.73 0.78 0.88

RF 0.49 0.7 0.79 0.9

NB 0.75 0.83 0.91 0.97

SVM 0.73 0.73 0.75 0.75

VFI 0.73 0.79 0.7 0.9

(b) DUTCH

Random SMOTE

F-m AUC F-m AUC

0.66 0.68 0.79 0.81

0.52 0.76 0.88 0.94

0.76 0.76 0.81 0.82

0.76 0.81 0.97 0.99

0.43 0.79 0.90 0.97

0.73 0.80 0.75 0.89

0.59 0.66 0.74 0.78

0.52 0.76 0.88 0.94

0.70 0.73 0.78 0.79

0.74 0.79 0.98 0.99

0.30 0.73 0.87 0.97

0.71 0.78 0.69 0.88

0.31 0.51 0.70 0.75

0.36 0.70 0.87 0.94

0.64 0.70 0.74 0.76

0.69 0.76 0.98 0.99

0.10 0.68 0.85 0.98

0.71 0.77 0.69 0.88

(c) ENGLISH

Random SMOTE

F-m AUC F-m AUC

0.80 0.84 0.80 0.81

0.74 0.82 0.74 0.85

0.82 0.88 0.87 0.92

0.80 0.89 0.91 0.96

0.81 0.80 0.82 0.80

0.77 0.80 0.69 0.82

0.74 0.78 0.74 0.78

0.71 0.81 0.79 0.86

0.74 0.83 0.83 0.90

0.80 0.89 0.90 0.96

0.77 0.76 0.76 0.75

0.75 0.80 0.65 0.81

0.72 0.75 0.73 0.77

0.69 0.77 0.80 0.83

0.70 0.75 0.82 0.90

0.78 0.84 0.90 0.95

0.69 0.71 0.72 0.74

0.70 0.77 0.67 0.81

Table 14. ENN rule plus oversampling algorithms

(a) PORTUGUESE

Random SMOTE

F-m AUC F-m AUC

3-NN 0.58 0.63 0.63 0.75

C4.5 0.45 0.68 0.80 0.89

RF 0.26 0.65 0.80 0.93

NB 0.69 0.78 0.93 0.97

SVM 0.71 0.72 0.72 0.73

VFI 0.72 0.76 0.68 0.87

(b) DUTCH

Random SMOTE

F-m AUC F-m AUC

0.22 0.54 0.62 0.73

0.19 0.67 0.89 0.95

0.02 0.64 0.86 0.99

0.64 0.73 0.99 0.99

0.60 0.67 0.68 0.72

0.69 0.75 0.66 0.87

(c) ENGLISH

Random SMOTE

F-m AUC F-m AUC

0.65 0.68 0.70 0.75

0.66 0.71 0.81 0.82

0.64 0.68 0.71 0.85

0.74 0.78 0.87 0.95

0.68 0.69 0.69 0.71

0.67 0.73 0.65 0.79

6 Discussion

From the systematic experimentation carried out with respect to the task of definition

extraction reported above, a number of lessons can be gathered.

Sampling imbalanced datasets frequently improves the performance of classifiers

over the baseline, which is in the range of 0.73–0.77 in terms of the AUC score.
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Table 15. CNN rule plus oversampling algorithms

(a) PORTUGUESE

Random SMOTE

F-m AUC F-m AUC

3-NN 0.52 0.59 0.51 0.66

C4.5 0.43 0.54 0.56 0.65

RF 0.35 0.59 0.52 0.72

NB 0.55 0.52 0.62 0.69

SVM 0.68 0.64 0.60 0.62

VFI 0.69 0.69 0.61 0.77

(b) DUTCH

Random SMOTE

F-m AUC F-m AUC

0.49 0.53 0.62 0.65

0.28 0.57 0.78 0.85

0.08 0.63 0.83 0.93

0.62 0.69 0.92 0.95

0.64 0.65 0.66 0.67

0.70 0.67 0.66 0.82

(c) ENGLISH

Random SMOTE

F-m AUC F-m AUC

0.62 0.49 0.56 0.50

0.58 0.59 0.59 0.54

0.58 0.53 0.59 0.61

0.00 0.50 0.61 0.50

0.61 0.56 0.62 0.50

0.62 0.55 0.59 0.66

However, not all sampling techniques are equally suited to foster this improvement.

Some of them add very little improvement, if any. That is the case of random over-

and undersampling and ENN. Some others may even deteriorate the results to

deliver scores clearly below the baseline. That is the case of CNN.

For undersampling, NCL and Tomek links consistently helped to improve the

performance of classifiers, as well as SMOTE, for oversampling, with AUC results

in the range of 0.82–0.98. Tomek links should be pointed out as one of the best

options as it exhibits an equal top performance for datasets with different imbalance

degrees, with AUC in the range of 0.92–0.93.

In general, combining undersampling with oversampling provides better results

than when only one of them is used. Better results were obtained performing

undersampling before oversampling, and using direct oversampling with SMOTE

instead of just plain random oversampling. The exception is found again when CNN

is chosen as an undersampling method. But all other combinations (including those

with random undersampling as the first step) have consistently shown to be able to

raise the AUC scores to the range of 0.94–0.99.

The best performing combinations are the ones that result from combining the

algorithms that had been shown to be the best in their categories when applied

in isolation. That is, the best results are obtained with NCL or Tomek links for

undersampling and SMOTE for oversampling.

Which sampling method should be preferred will largely depend on the compu-

tational cost associated with the use of these two algorithms. In fact, as mentioned

above, the use of oversampling algorithms increases the computational cost because

it increases the number of examples that will be used to build the classifier.

In contrast, Tomek links is a very complex algorithm that, for every example,

considers all examples in order to identify a link. This means that the time needed

to undersample the dataset is polynomially related to the size of the original dataset.

Due to the growth in computational capacity of computers, it is likely that this

question may not represent a real issue for many applications.

In general, there seems to exist a tendency for the largest extension of the

undersampling to permit the best results, and hence for less catch-up work to be
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required for the oversampling step. When undersampling to just 75 per cent, the

scores are in the range of 0.93–0.99, while they are in the range of 0.96–0.99 for

undersampling to as much as 25 per cent. But more firm conclusions on this respect

would perhaps need to be based on datasets with a larger range of number of tokens.

Interestingly, the best results – that is, when undersampling and oversampling are

combined – are consistently obtained by the näıve Bayes classifier. Also consistently,

the second best option is the random forest classifiers, though at a clear distance

behind.

It is interesting to note that these two classifiers are among the best ones

even when no sampling algorithms are used. This result suggests that, for the

learning algorithms used in this work, näıve Bayes and random forest have the most

suited learning bias for the task of definition extraction. Therefore, the sampling

algorithms are responsible for just leveraging off the classification performance of

these algorithms, given the imbalanced characteristic of the data. The reason of why

the learning bias of these algorithms is suited for definition extraction is out of

the scope of this work. However, we note that it is in conformity with theoretical

and practical results present in the literature. For instance, näıve Bayes frequently

presents good performance in natural language processing (Roth 1999) even when

the model assumptions of independence do not hold (Zhang 2005). Regarding

random forest, ensemble classifiers are one of the most effective computationally

intensive procedures to improve on unstable estimators or classifiers, being useful

especially for high-dimensional dataset problems (Biau 2012).

The same tendencies can be observed with F-measure scores. The best combina-

tions of undersampling, oversampling and classifier algorithms consistently deliver

performances scoring in the range of 0.87–0.99 in terms of F-measure.

Looking more closely at the scores obtained by näıve Bayes and random forest,

there is a difference in terms of precision and recall. For all the three languages,

random forest classifiers were able to obtain a recall close to one, that is all the

definitions were correctly identified, but there is a larger number of non-definitions

classified as positive examples in comparison to what happens with näıve Bayes

classifiers.

In order to generalize our results, we tested our approach with definitions

introduced by verbs other than ‘to be’, such as ‘to mean’, ‘to signify’ etc. When

all these kinds of verbs are considered together, the degree of imbalance is slightly

smaller than the imbalance in the definitions introduced by the verb ‘to be’ alone.

Preliminary results present an F-measure around 0.78 and an AUC around 0.83,

confirming the combination of Tomek links and SMOTE as the best sampling

method and näıve Bayes as the best learning algorithm. In this experiment, the same

classifier identified definitions introduced by different verbs, while in the previous

experiments there was a classifier specialized just on the definitions introduced by the

verb ‘to be’. If a classifier for each different verb or a classifier for a group of similar

verbs were used, results similar to those obtained for ‘to be’ definitions are expected.

When comparing with previous work on definition extraction, our results outper-

form all the systems that have used learning algorithms, confirming the importance

of sampling techniques in supporting the definition extraction task.
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Westerhout and Monachesi (2007), using the same corpus we used for Dutch,

report an F-measure of 0.73, obtained with a combination of syntactic rules and a

näıve Bayes classifier for Dutch. Przepiórkowski, Marcińczuk and Degórski (2008),

in turn, with a similar approach, but for the Polish language, obtained an F-measure

of 0.35. Additionally, it is very important to note that, while our experiments just use

bigrams of POS tags as features, all these previous works use a combination of soph-

isticated and highly language dependent features in order to reach the best results.

As in the last few years, balanced random forest has been successfully used in

different classification tasks (see for instance Acedański et al. 2012) and in order to

try a more direct comparison between our results and those obtained by Degórski

et al. (2008a) and Westerhout (2009), we run this algorithm on our datasets. In

this way, we obtained an F-measure of 0.73, 0.58 and 0.48 for Portuguese, Dutch

and English, respectively. With respect to results obtained with different sampling

techniques presented here, these scores are comparable to those returned by random

sampling. With respect to Westerhout (2009), where the same Dutch dataset was

used, resulting in an F-measure of 0.78, a direct comparison is not possible, since

balanced random forest was used as a filtering module after the application of a quite

elaborate pattern module, and also because more sophisticated features were used.

In the case of Degórski et al. (2008a), which reports an F-measure of 0.32, a different

dataset and feature selection were used, making direct comparison not viable.

If we now turn to systems based only on pattern matching ensured by hand-

crafted rules, the state of the art in the area is represented by systems such as

DEFINDER (Klavans and Muresan 2001), which is reported to have an F-measure

of 0.80. Though not strictly comparable due to the use of different experimental con-

ditions, including different datasets for evaluation, our approach seems to deliver res-

ults above this performance by a large margin, with scores in the range of 0.90–0.99.

Also when put into contrast with the usage of this same approach to other natural

language processing tasks, our results seem to be very competitive. As discussed in

Section 2.3, Liu et al. (2006) applied a combination of under- and oversampling to

sentence boundary detection in speech, showing that undersampling and SMOTE

offer the best results with an AUC of 0.89 (the baseline being 0.80). However, they

did not experiment intelligent undersampling methods such as Tomek links.

In another task, of automated annotation of keywords, Batista, Bazzan and

Monard (2003) get the best results in terms of AUC with an improvement of four

percentage points on the original dataset using a combination of SMOTE with

Tomek links.

In our case, with scores in the range of 0.94–0.99, the improvement with regard

to the baseline of 0.73–0.77 is at least between 17 and 22 percentage points,

demonstrating how these methods can be effective for our definition extraction

application.

Finally, it is worth noting that our results are in line with those reported in

the literature on imbalanced datasets in general. In a comprehensive study on the

behavior of several methods for balancing training data, using 11 UCI datasets,5

5 http://archive.ics.uci.edu/ml/
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Batista, Prati and Monard (2004) showed that in most cases and with several datasets

in different domains, SMOTE obtains the best performance. In general, they lead

to a rise in the AUC metric of few percentage points (1–4) when the baseline was

already high (more than 0.65), while when the baseline was under this value the

improvement was comparable to that obtained in our work, which was up to 34

percentage points.

We also conducted a qualitative analysis on the examples not correctly classified

by our approach. In particular, we analyzed the results of the best settings, that is

when Tomek links is paired with SMOTE and näıve Bayes and random forest are

used as classification algorithms. As for all the three languages, the random forest

classifier was able to obtain a recall of one, we do not have false negatives to analyze.

Regarding false-positive examples, that is, those sentences that were incorrectly

classified as definitions, in few cases we verified that they were good definitions

but the human annotators had just missed them. In about one-fifth of the cases,

sentences contained some definitional information, but the human annotators did not

annotated these sentences as definitions because the definition spanned over several

sentences. For instance, there are several cases where the defined term appears in a

sentence, and its definition in the following sentence.

There is another set of sentences starting with demonstrative pronouns that

are considered by the classifier as good definitions though they are not. Most of

these sentences are referring to illustrations in the text. In this case, the results could

be filtered either by improving the features that include information appearing before

the definitional verb or with a simple grammar to be applied after or before the

classifier.

In terms of false-positive examples, there is no big difference between näıve Bayes

and random forest classifiers. Regarding false-negative examples, they appear only

in näıve Bayes classifiers. They occur mostly when the definition is composed of

only the genus or the diferentiae.

7 Conclusions

The advances reported in the present paper result from a novel approach to the

task of definition extraction. The major trend in the literature has been to build

solutions for this task on the basis of some set of manually crafted patterns. In the

present paper, we experimented thoroughly with an alternative solution based solely

on machine learning techniques. The key twist to make such an approach not only

viable but also with superior results was to focus on the issue of the imbalance of

datasets. This permitted us to take advantage of the solutions that have been put

forward to this problem in recent years, and eventually find out that they allow for

a notable breakthrough in terms of the task of definition extraction.

The results obtained with our experiments show that it is feasible to consistently

bring the performance of an automatic extractor of definitions to score in the range

of 0.95–0.99 in terms of AUC (and in the range of 0.90–0.99 in terms of F-measure).

The improvement with regard to the baseline of 0.73–0.77 is thus at least between

17 and 22 percentage points.
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Very interestingly, these advances were obtained not only by dispensing with

manually crafted patterns but also by resorting only to bigrams of POS tags

(as features for the classifiers), thus greatly improving the transportability of the

approach both across domains and languages.

On par with these overall advances, by systematically experimenting with different

paradigms of learning algorithms in combination with different sampling techniques,

and with datasets with different imbalance rates, it was possible to draw some finer

conclusions regarding the best practice to adopt when handling automatic definition

extraction.

In particular, the most effective set-up has shown to be a combination of Tomek

links, for undersampling, followed by SMOTE, for oversampling, even more so when

datasets with higher imbalances have to be dealt with.

As for the set-up with only one step of dataset imbalance reduction, we can

conclude that Tomek links is the best choice. This algorithm improves the result for

all classifiers and for all datasets, independent of the degree of their imbalance or of

their language, while SMOTE tends to be less effective with higher data skewness.

As for the classifiers used for this task of definition extraction, random forest and

näıve Bayes present the best results in almost all the experiments, with a significant

difference between the two classifiers in terms of recall and precision: näıve Bayes

performs better in terms of precision, while random forest gets a higher score for

recall.

We can thus observe that, under this approach, the best way to construct a

definition extractor is to build a näıve Bayes classifier after sampling the dataset

using a combination of Tomek links followed by SMOTE.

As a final remark, it is worth noting that the present results not only represent a

progress in the area of automatic extraction of definitions, but they also reinforce

the value of using sampling techniques in the field of natural language engineering,

where most tasks and tools rely on datasets with notorious imbalance. The present

paper adds to the seminal work that point toward the important research avenue

of seriously applying sampling techniques to mitigate the adverse bias induced by

highly imbalanced datasets and thus greatly improving the performance of a range

of tools for natural language processing.
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