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1 Department of Computing, Imperial College London
2 Lasige, Department of Computer Science, University of Lisbon
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Abstract. This paper outlines a general picture of our ongoing work under EU
Mobius and Sensoria projects on a type-based compilation and execution frame-
work for a class of multicore CPUs. Our focus is to harness the power of con-
currency and asynchrony in one of the major forms of multicore CPUs based on
distributed, non-coherent memory, through the use of type-directed compilation.
The key idea is to regard explicit asynchronous data transfer among local caches
as typed communication among processes. By typing imperative processes with
a variant of session types, we obtain both type-safe and efficient compilation into
processes distributed over multiple cores with local memories.

1 Introduction

This paper presents a brief overview of our ongoing work under EU Mobius and Sen-
soria projects on a type-based compilation and execution framework for distributed-
memory multicore CPUs. Our aim is to obtain a new level of understanding on the
effective shape of compilation and runtime architecture for distributed-memory chip-
level multiprocessing. We take the viewpoint that communication and concurrency are
a natural and fundamental structuring principle for modern applications. We identify
typed processes exchanging messages through asynchronous communication as a basic
model of computation, which we reify as a typed intermediate language. This inter-
mediate language acts both as the target of translation from high-level programming
languages and as the source of compilation to distributed memory chip-level multipro-
cessors. In both translation processes, types for communicating processes are used for
ensuring key correctness properties for the resulting low-level code.

The background of this project is a recent fundamental change in the internal envi-
ronment of computing machinery, driven by limiting physical parameters in VLSI man-
ufacturing process [13, 34, 36], from monolithic Von Neumann architectures to chip-
level multiprocessing (CMP), or CPUs with multiple cores. In the present work we
are mainly interested in the CMP architectures based on distributed memory [24, 35],
which offer the hardware interface analogous to distributed memory parallel computers
[8] (in contrast to SMP/ccNUMA-like cache coherent CMP architectures [25, 27, 44]).
This choice reflects our belief that a major factor for maximally exploiting the physical



potential of future microprocessors is how one can harness asynchrony and latency in
intra-chip data transfer.

A non-uniform access to memories inside a chip can be realised by different meth-
ods, such as cache-line locking, eviction hints and pre-fetching. One method, often used
for distributed memory CMP, employs direct asynchronous memory-to-memory data
transfer, or Direct Memory Access (DMA), to share data among cores’ on-chip local
memories. A central observation underlying this approach is that trying to annihilate
distance (i.e. to maintain global coherence) can be too costly, just as maintaining hard-
ware interface for coherent distributed shared memory over a large number of nodes is
unfeasible. This observation favours the use of explicit operations for directly transfer-
ring data from one part of a chip to another, and one of the efficient methods for doing
so, effectively exploiting intra-chip communication bandwidth, is DMA operations. In
a high-level view, this approach regards CMP as distributed parallel machines with
explicit remote data transfer among them, making the framework close to computing
models such as the LogP model [7] and parallel hierarchical memories [1]. The direct,
asynchronous memory-to-memory transfer as a means of data exchange is flexible and
can potentially make the most of on-chip network bandwidth [26], which is many-fold
larger than intra-host computer networks [9], promoting concurrent, asynchronous use
of communication and computing elements inside a chip. As has been studied in the
literature [15–17, 30, 31], message passing concurrency can flexibly and generally rep-
resent the diverse forms of control and data flows found in sequential and concurrent
applications. At the same time, the very nature of DMA operations, in particular asyn-
chronous, direct rewrite of local memory of a distributed core, makes it hard to harness
their power with safety assurance and controllability comparable to the traditional se-
quential hardware (for further discussions on this model, see §2.1).

In future, high-level applications will be designed and programmed using many dif-
ferent abstractions, especially regarding concurrency [6, 28, 39, 40, 42]. To understand
the programming potential of distributed memory CMP, we need to examine whether
these diverse abstractions, with associated data and control flow, can be mapped to this
hardware model with efficiency, precision and fundamental safety assurance. One of the
central concerns in this regard is to find an effective, disciplined method for using the
DMA operations, making the most of their raw, asynchronous nature for flexibility and
expressiveness while ensuring their correct usage. The desirable correctness properties
include the freedom from synchronisation and racing errors (in the sense that data is
remotely written only when a receiver is expecting it and at an expected region, and no
other simultaneous writes can corrupt the data), the freedom from type errors (only data
of a expected type and size is written), and progress of ongoing conversations (interac-
tion sequences take place following the expected structure: in particular, a receiver will
eventually obtain an expected datum).

In this paper we discuss one approach to the general compilation framework for
distributed memory CMP. The framework is intended to offer a general, uniform and
flexible basis for realising efficient translations of diverse (concurrent) programming
abstractions to CMP executable code, with a formal guarantee of the aforementioned
key correctness properties. The basic idea of our approach is to stipulate typed commu-
nicating processes as a representation for an intermediate compilation step from high-
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level abstractions, and, after a type-based analysis of this intermediate representation,
perform a type-directed compilation [32] onto executable binary code for distributed
memory CMP. Schematically:

High-level concurrent languages (L2)
⇓

Typed imperative processes (L1)
⇓

CMP executable (L0)

Above L0, L1, L2 refer to abstraction levels. Each ⇓ stands for one or more type-
preserving compilations. At L1, we use an intermediate concurrent imperative language
with types for channel-based conversations. The preceding studies on types for com-
municating processes, many centring on the π-calculus, have shown that they can offer
fundamental articulation and basic safety guarantee for diverse communication patterns.
As communication types for the compilation framework, we use a variant of session
types [19, 41] for multiparty interactions [3, 5, 20], into which various high-level ab-
stractions can be translated and which allows their efficient and safety-preserving com-
pilation to distributed CMP primitives. The session types at L1 are generated from the
interaction structures implicit in the high-level abstractions in L2, as we shall illustrate
with a concrete example in the subsequent sections. The resulting typed communicating
processes are amenable to uniform program analyses for safety assurance, and can be
directly mapped to efficient code in L0, with a formal guarantee of the aforementioned
key correctness properties.

2 Preliminaries

In this section we first clarify our assumptions on a hardware model, followed by a brief
illustration of essential features of DMA operations. Then we present a running exam-
ple for our type-preserving compilation framework, a simple streaming application. In
particular we focus on the behaviour of the double-buffering algorithm used for com-
piling the running example. The algorithm is the standard method for stream and media
processing to make the best of high-performance, multicore computing [21, 37].

2.1 A Hardware Model and DMA Primitives

Hardware Model. We assume an idealised model where a chip consists of multiple
cores of the same Instruction Set Architecture (ISA), each with a local memory. Cores
may or may not allow preemptive threads. Data sharing among distributed cores is
performed via asynchronous data transfer from one local memory to another (DMA),
as illustrated in the following diagram.
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Our focus in the present inquiry is on the DMA-based data sharing among distributed
memories: we do not consider other issues in distributed memory CMP such as the size
of local memory, hierarchical memory organisation, capability control, security and
heterogeneity. These are relatively orthogonal issues whose analysis may benefit from
the understanding of the factor studied in the present paper.

DMA Primitives. Two versions of DMA primitives are known, an asynchronous write
(“put”), and an asynchronous read (“get”). We mainly focus on put for brevity. The
semantics of the put does not demand the sender to know the arrival of data for its
sending action to complete: it is a non-blocking write. This asynchronous nature is
essential for efficiency. Since a remote operation is anyway relatively expensive (even
inside a chip [26]), we amortise the cost by sending a block or blocks of words, which
can total hundreds of thousands of bytes. A sender can block until the data is sent out,
or can be asynchronously notified. The DMA gains further efficiency by sending (even
contiguous) words out-of-order. The receiver can be notified either asynchronously by
a different messaging/interrupt mechanism or by a subsequent locally ordered put to an
associated flag: for example one can place a memory fence [23] between the first put for
data transfer and the subsequent put for a flag, so that the write to the flag (say turning 0
to 1) takes place after all the writes for the first put. Since consecutive writes are often
cheap, this is an efficient method for checking the delivery.

Throughout the present paper, we assume a “macro” command for put, which in-
cludes initiating a send operation (including, if we use the scheme discussed above, a
subsequent fenced flag) and waiting for the data to be sent out from the sender’s local
memory, but not for its arrival (and writing) at the receiver’s remote memory. Thus,
as soon as the data has been sent out, the CPU will become free. This is the standard
usage of put [26], based on which we can easily accommodate an asynchronous noti-
fication as simple optimisation. Dually we assume a single macro command wait for
the receiving side of put, which can, for example, consist of waiting for a fenced flag
to be turned from 0 to 1, as discussed above. Each of these macros can be realised by
a few hardware instructions [23], with different schemes depending on the mechanisms
offered by a given hardware/software environment.

Observations on DMA Primitives Because of its efficiency and flexibility, DMA is of-
ten used (partially or wholly) in multiprocessor system-on-chips. One of the prominent
recent examples include Cell microprocessor [35]. This model considers CMP as a mi-
croscopic form of distributed computing, and is capable of making the most of on-chip
interconnect, suggesting its potential scalability when the number of cores per chip in-
creases and a relative wire delay inside a chip takes effect [9]. It can realise arbitrary
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forms of data sharing among cores’ local memories, and in that sense it is general-
purpose. Being efficient and general-purpose, however, the DMA operations are also
extremely hard and unsafe to program in their raw form: the very element that makes
the DMA operations fast and flexible — asynchronous, direct rewrites of memory —
also makes them unwieldy and dangerous. The direct writes of one memory area to
another, asynchronously issued and asynchronously performed, can easily destroy the
works being conducted by applications. The danger of programming using these asyn-
chronous operations may be compared to that of bare machine-level programming in
sequential computers, without assistance of high-level language constructs such as pro-
cedures and data types and the associated compilation infrastructure, aggravated by the
presence of concurrency and asynchrony.

2.2 Stream Processing and Double-Buffering

A Simple Stream Program We take a simple stream program for data encryption as an
illustration of our compilation framework [38]. Consider the following stream graph.

KernelSource
x[i]

x[i−1]

x[i] x[i−1]
Sink

A data producer Source continuously feeds data to a Kernel, which calculates the XOR
of each element with a key and writes the result on a stream to a consumer Sink. Sink
may also have its own processing on the resulting data. The key used at each turn comes
from (except for the first time) the Kernel’s own output through a feedback, for a cipher
block chaining. Such a stream algorithm can be easily expressed in stream program-
ming languages [4, 12, 39, 43], whose program consists of transformers (called kernels
or actors) connected through directed streams: each actor gets data from its incoming
streams, processes them and places the results to its outgoing streams. For example, in
the application above, a stream program for Kernel will be specified as a transformer
which receives (say) an integer x from an incoming stream, calculates the XOR x⊕ p
where p is a variable storing the preceding value of x (where the initial value of p would
be set to be some encryption key), and places the resulting value to an outgoing stream
as well as assigning it to the new value for p. Stream programming has applications
in DSP, multimedia and scientific computing and enables natural exploitation of par-
allelism at various levels, starting from high-level transformation of stream graphs to
DMA-based multicore execution.

Double Buffering In order to execute such a stream graph in a distributed memory
CMP, the first step is to enlarge data granules, through the standard strip mining tech-
nique [29]: for example we may decide to treat these streams by units of say 16kB. This
allows actors to exchange data in large blocks, instead of byte by byte (which would
incur high overheads). We then program these three actors to exchange data strips (each
of size 16kB) through an interactional algorithm called double buffering [37], illustrated
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Fig. 1 Double-Buffering
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in Figure 1, which is often found at the heart of implementations of stream programs in
CMP. 5 Kernel uses two 16kB arrays, or buffers, named A and B in the picture: while
Source uses a single 16k array (in practice it can use a large cyclic buffer), fed by, say, a
byte stream from an external channel. The central idea of the algorithm is to repeat the
following procedure.

While Kernel is receiving data into array A from Source, it processes data in
array B and sends the result to Sink; it then repeats the process by exchanging
the roles of A and B.

The five steps in Figure 1 materialise this idea:

(a) Kernel tells Source it is ready to receive an initial strip at buffer A;
(b) Source starts sending to A; asynchronously Kernel tells Source it is also ready to

receive at buffer B, and again asynchronously Sink tells Kernel it is ready to receive
at its own 16kB array;

(c) Kernel finishes processing its A-strip and sends the resulting data to Sink, while
Source is sending a strip to B;

(d) Source continues sending to B; Kernel asynchronously tells Source it is ready to
receive at A (since Kernel has now sent out its A-strip); again asynchronously Sink
tells Kernel it is ready to receive the next strip;

(e) Now the situation is symmetric with respect to (c): Source writes to A and Kernel
writes from B. We now go back to (b).

5 An effective method to allocate/schedule actors in a CMP environment is an interesting prob-
lem: we do not address this issue here because it involves runtime resource management, which
is outside the focus of our present discussions.
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The algorithm allows asynchrony among computations and communications with min-
imal synchronisation to prevent data pollution. By overlapping computation and com-
munication [7, 14], it makes the most of the available hardware resources, allowing
concurrent and asynchronous execution of computation and communication. This al-
lows the effective usage of available communication bandwidth in code execution, the
tenet of effective network programming.

3 The Intermediate Language with Multiparty Session Types

This section introduces imperative processes with multiparty session types [41] as an
intermediate language using the double-buffering example. This intermediate language
serves two purposes. First, it provides an effective source language for compilation
into a typed assembly language for CMP. Second, it offers an expressive target lan-
guage into which we can efficiently and flexibly translate different kinds of high-level
programs. This latter aspect is based on the observation that many concurrent and po-
tentially concurrent programs (such as a streaming example above) can be represented
as a collection of structured conversations, where we can abstract the structure of data
movement in their programs as types for conversations. Through the use of these types
and associated program analyses, we can formally ensure communications in programs
are free from synchronisation and type errors, and satisfy progress.

3.1 Double Buffering in the Intermediate Language

The double buffering algorithm is both imperative and interactional, with highly struc-
tured communication structures. Asynchrony between sending and receiving is funda-
mental for its efficiency. The aim of the design of the intermediate language L1 (for
Session-typed Intermediate Language) is to allow a precise and flexible typed descrip-
tion of such interactional imperative programs with precision and flexibility, in a form
directly translatable to the execution mechanisms of distributed CMP.

Figure 2 shows the description of the double buffering algorithm in L1. Program
Main first finds three idle (virtual) cores denoted p0 to p2 (newPlace) and creates a
new service channel a (newChan) to be used for the session initialisation by programs
Source, Kernel, and Sink, running at different cores (spawn). Each “place” denotes an
abstract unit of processing and memory resources, which may as well be considered as
a virtual notion of a core with local memory in a distributed CMP chip.

The first line in Source represents session initialisation (on channel a); this is the
point where Source receives the channels shared by all participants. The asynchronous
session types in L1 require distinct channels to be used for distinct communications
(except for communications iterated in a loop, which use the same channels), essential
for translation into DMA operations. Thus we use four channels r1,r2,s1,s2 between
Source and Kernel, and another four between Kernel and Sink. Now Source starts a
conversation: after feeding its array through a for-loop (foreach(i : 1..n) denotes the
pointwise iterator for processing arrays which allows us to work with non-trivial pro-
grams without addressing array-bound checks [6]), it waits for an “A-ready” signal
through r1 (“?” denotes input), sends the data in the array through s1 (“!” for output);
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Fig. 2 Double-Buffering Algorithm in L1

Main Program :
newPlace p0,p1,p2;
newChan a;
spawn(Source(a))@p0;
spawn(Kernel(a))@p1;
spawn(Sink(a))@p2

Source(a) :
a[0](r1r2s1s2t1t2u1u2).
newVar y : int[n];
µX .(

//send to xA
foreach(i : 1..n){

y[i] = get int();
}
r1?(); s1!〈y〉;
//send to xB
foreach(i : 1..n){

y[i] = get int();
}
r2?() ;s2!〈y〉;X

)

Kernel(a) :
a[1](r1r2s1s2t1t2u1u2).
newVar xA,xB : int[n];
newVar key : int = KEY;
r1!〈〉; r2!〈〉;
µX .(

//process xA
s1?xA;
foreach(i : 1..n){

xA[i] := xA[i]⊕ key;
key := xA[i];

};
t1?(); u1!〈xA〉; r1!〈〉;
//process xB
s2?xB;
foreach(i : 1..n){

xB[i] := xB[i]⊕ key;
key := xB[i];

};
t2?(); u2!〈xB〉; r2!〈〉; X

)

Sink(a) :
a[2](r1r2s1s2t1t2u1u2).
newVar z : int[n];
µX .(

//receive & print xA
t1!〈〉; u1?z;
foreach(i : 1..n){
print z[i];

};
//receive & print xB
t2!〈〉; u2?z;
foreach(i : 1..n){
print z[i];

};
X

)

repeats the same for r2 and s2, and returns to the main loop. Communication is purely
asynchronous—the sending order is not guaranteed to be preserved at arrival.

Kernel, after allocating its variables (including the initial key value), signals Source
that its buffers are both empty, via channels r1 and r2; then enters the main loop, where
it proceeds as follows: first receives a datum at buffer xA via s1, goes through the buffer
taking the XOR element-wise, after which it waits for Sink’s cue via t1 (which may have
already arrived asynchronously), and finally sends out the buffer contents to Sink via u1,
and tells Source via r1 that it is ready to receive at buffer A. It then works similarly for
the second buffer. Sink acts in a way symmetric to Source (print prints a datum).

The three programs precisely describe the interactional behaviour informally illus-
trated in Figure 1.

3.2 L1 with Multiparty Session Types

We now outline how these structured dialogues can be abstracted as types for conver-
sations in the form of multiparty session types [20], where pure asynchrony in com-
munication is captured by a subtyping relation [33]. For example, in Figure 2, we see
Source interacting with Kernel through channels r1, s1, r2 and s2 in this order, which is
different from what we read from Kernel which starts by interacting at r1 and r2. How
can we make sure that the Source’s behaviour correctly matches that of the Kernel?
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The theory of multiparty session types can type-abstract and verify the structure of a
whole conversation. In the present context, the most notable feature of these types is that
they can formally guarantee communication-safety and progress (deadlock-freedom).
From a design viewpoint, developing a distributed program including a compilation
framework demands a clear formal design as to how multiple participants communicate
and synchronise with each other. These are the reasons why we start from a global type
G, which plays the role of a type signature for distributed communications. These global
types present an abstract high-level description of the protocol that all participants have
to honour when an actual conversation takes place [20].

Once this signature G is agreed upon by all parties as the global protocol to be
followed, a local protocol from each party’s viewpoint, local type Ti, is generated as a
projection of G to each party. If the global signature is too rigid, an individual party
might wish to change their implementation locally. In this case, each local type Ti can
be locally refined to, say, T ′i , possibly yielding optimised protocols that are realised by
programs Pi. If all the resulting local programs P1, ..,Pn can be type-checked against
refined T ′1 , ..,T

′
n , then they are automatically guaranteed to interact properly, without

incurring in communication mismatch or getting stuck inside sessions, while precisely
following the intended scenario.

Global Types. The development of type-safe programs for a double-buffering algorithm
starts from designing the global type G,

µt.(
Kernel→ Source : r1〈〉;
Source→ Kernel : s1〈U〉;
Sink→ Kernel : t1〈〉;
Kernel→ Sink : u1〈U〉;

Kernel→ Source : r2〈〉;
Source→ Kernel : s2〈U〉;
Sink→ Kernel : t2〈〉;
Kernel→ Sink : u2〈U〉; t)

where Source, Kernel and Sink denote participant names, identified as p0,p1 and p2 in
the program in Figure 2.

A global type p→ p′ : k 〈U〉;G′ means that participant p sends participant p′ a mes-
sage of type U on channel k, and then interactions described in G′ take place. In this
example, U denotes an int-array type. Type µt.G is use for recursive protocols where
t, t′, . . . are type variables.

The global type G uses recursion to describe an infinite loop where Kernel first
notifies Source via r1,r2 that it is ready to receive data in its two channels s1,s2 (a
signal at ri says si is ready); Source complies, sending two chunks of data sequentially
via s1,s2. Then Kernel (internally processes data and) waits for Sink to inform (via
t1, t2) that Sink is ready to receive data via u1,u2; upon receiving the signals, Kernel
sends the two chunks of processed data to Sink. This global protocol specifies a safe
and deadlock-free scenario.

Local Session Types and Refinement. Once given global types, a programmer can
develop code, one for each participant, incrementally validating its conformance to the
projection of G onto each participant by efficient type-checking. When programs are
executed, their interactions are guaranteed to follow the stipulated scenario. The type
specification also serves as a basis for maintenance and upgrade.
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Local session types abstract sessions from each endpoint’s view. For example, Type
k!〈U〉 expresses the sending of a value of type U on channel k. Type k?〈U〉 is its dual
input. The relation between global and local types is formalised by projection, written
G!p and called projection of G onto p, defined as in [20].

Now we give the local types of Source, Kernel and Sink.

Tsource = µt.r1?〈〉;s1!〈U〉;r2?〈〉;s2!〈U〉; t
Tkernel = µt.r1!〈〉;s1?〈U〉; t1?〈〉;u1!〈U〉;r2!〈〉;s2?〈U〉; t2?〈〉;u2!〈U〉; t
Tsink = µt.t1!〈〉;u1?〈U〉; t2!〈〉;u2?〈U〉; t

The local type of the program Kernel in Figure 2 is given below but it does not match
the local type Tkernel, which is directly projected from global type G.

T ! = r1!〈〉;r2!〈〉; µt.s1?〈U〉; t1?〈〉;u1!〈U〉;r1!〈〉;s2?〈U〉; t2?〈〉;u2!〈U〉;r2!〈〉; t

Our purpose is to refine Tkernel so that the new local protocol allows further asynchrony
by overlapping communication and computation while still conforming to G [7, 14]; this
allows us to start from a sequential global type, which is easily checked to be correct
and deadlock-free, and refine it to a more optimised protocol, while guaranteeing that
all participants still safely interact, e.g., that Kernel can interact with Source and Sink
safely so that their interactions as a whole conform to the original global type G.

In the refined protocol T !, Kernel notifies Source via both r1,r2 before entering
the loop, allowing Source to start its work. Now inside the loop, the refined protocol
dictates that Kernel first receives data from Source via its first channel s1, processes the
data and sends out the result to Sink via its first channel u1 and immediately notifies
Source via r1 that it is ready on its first channel, allowing Source to start sending data
early. Kernel then repeats the same procedure for its second set of channels shared with
Source and Sink. In this way, the refined local type says that Kernel can process data
it has already received in one channel while still receiving data in the other, noting that
sending, transferring and receiving large pieces of data can be time consuming.

We now summarise how this optimised local protocol is in fact safe with respect to
the other participants conforming to G, through the notion of asynchronous communi-
cation subtyping. The justification is non-trivial: it uses a combination of a partial com-
mutativity of the input and output actions and nested unfolding of recursive types [33].
The two key subtyping rules for permuting finite actions we use are as follows:

k!〈U〉;k′?〈U ′〉;T0 ' k′?〈U ′〉;k!〈U〉;T0 (k (= k′)
k!〈U〉;k′!〈U ′〉;T0 ' k′!〈U ′〉;k!〈U〉;T0 (k (= k′)

In the first rule, the left-hand type allows for more asynchrony (optimal) than the right-
hand side type since the output action on k can be performed without waiting for the
input on k′. The second rule permutes the two outputs at distinct names since they are
sent asynchronously. The rule ' are applied to only finite length of the session types
(hence ' is decidable). We write T ) T ′ for T ′ ' T .

To define the subtyping for recursive types, we need to combine ' with unfolding.
We call a relation ℜ ∈ Type×Type an asynchronous subtype simulation if (T1,T2) ∈ℜ
implies the following conditions.
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1. If T1 = end, then unfoldn(T2) = end.
2. If T1 = k!〈U1〉;T ′1, then unfoldn(T2)) k!〈U2〉;T ′2, (T ′1 ,T

′
2) ∈ℜ and (U1,U2) ∈ℜ.

3. If T1 = k?〈U1〉;T ′1, then unfoldn(T2) = k?〈U2〉;T ′2, (T ′1 ,T
′

2) ∈ℜ and (U2,U1) ∈ℜ.
4. If T1 = µt.T , then (unfold1(T1),T2) ∈ℜ.

where unfoldn(T ) is the result of inductively unfolding the top level recursion up to
a fixed level of nesting. The coinductive subtyping relation T1 <: T2 (read: T1 is an
asynchronous subtype of T2) is defined when there exists a type simulation ℜ with
(T1,T2)∈ℜ. An output of T1 can be simulated after applying asynchronous optimisation
) to the unfolded T2. We also need to ensure object type U1 is a subtype of U2. This
subtyping relation T <: T ′ is decidable if all channels under each recursive prefix are
distinct. T ! and Tkernel satisfy this condition since r1,s1, t1,u1,r2,s2, t2 and u2 are distinct
under the recursive prefix.

To show that T ! <: Tkernel, we start by unfolding Tkernel once to obtain

T0 = r1!〈〉;s1?〈U〉; t1?〈〉;u1!〈U〉;r2!〈〉;s2?〈U〉; t2?〈〉;u2!〈U〉;Tkernel

Then r1!〈〉 matches the initial part of T !. To simulate the r2!〈〉 part of T !, r2!〈〉 is per-
muted by applying the asynchronous subtyping rules above, together with transitivity.

T0 ) T ′0 = r1!〈〉;r2!〈〉;s1?〈U〉; t1?〈〉;u1!〈U〉;s2?〈U〉; t2?〈〉;u2!〈U〉;Tkernel.

Let T ! = r1!〈〉;r2!〈〉;T !
R . Thus the unfold of T !

R must be simulated by T ′.

T ′ = s1?〈U〉; t1?〈〉;u1!〈U〉;s2?〈U〉; t2?〈〉;u2!〈U〉;Tkernel.

Next we unfold T !
R as:

s1?〈U〉; t1?〈〉;u1!〈U〉;r1!〈〉;s2?〈U〉; t2?〈〉;u2!〈U〉;r2!〈〉;T !
R

The first three types s1?〈U〉; t1?〈〉;u1!〈U〉 can be simulated by T ′ in this order. However
to simulate r1!〈〉 in above T !

R , Tkernel must be unfolded again since the type in front of T ′
does not include r1!〈〉 outside the recursive prefix. Hence we apply the asynchronous
subtyping rule to solve the following relation:

r1!〈〉;s2?〈U〉; t2?〈〉;u2!〈U〉;r2!〈〉;T !
R <: s2?〈U〉; t2?〈〉;u2!〈U〉;

r1!〈〉;s1?〈U〉; t1?〈〉;u1!〈U〉;
r2!〈〉;s2?〈U〉; t2?〈〉;u2!〈U〉;Tkernel

By applying) to the r.h.s., r1!〈〉 can be permuted to the top. Then we can use the input
and output subtyping simulation rules in order to achieve the original pair (T !

R , T ′)
again. This concludes the verification of the double-buffering example.

Subject reduction for L1 is proved as in [33], just by replacing the standard branch-
ing subtyping relation in [20] to the one which incorporates asynchronous commutative
subtyping in [33]. We can also obtain the three key correctness properties, communi-
cation safety, type safety and progress, as stated in [20, §5]. Hence we can formally
show that the double-buffering example in L1 is correct with respect to these proper-
ties — neither deadlock, type-error nor communication mismatch can happen in the
interactions among the three participants.
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3.3 Further Safety Analysis

One of the key merits of the use of type signatures for interactions, multiparty session
types, in the present compilation framework is that they enable and facilitate various
safety analyses pertaining to communication actions (hence their DMA translations).
One of such analyses is the following race freedom analysis, where we guarantee that,
when communication operations in L1 are compiled into DMA primitives, no local
writes will interfere with remote writes. This analysis is done at the L1 level. The net
consequence is that, as far as the compiled code from L2 to L1 is statically checked to
be safe by this analysis, its further compilation into L0 is ensured to be race-free.

We illustrate the basic idea via an example. Assume given three participants, (say)
Alice, Bob and Carol, where Alice sends a boolean value to Bob, Bob sends an integer
to Carol, and Carol sends another integer to Alice. Note there is a causal chain from
the initial output by Alice to the final input, again at Alice.6 Now assume the following
is the program for Alice, with sb its initial output channel to Bob and sa its final input
channel from Carol:

sb!〈true〉; . . . ; sa?〈x〉; print(x); (3.1)

Now let us fill “. . . ” in (3.1) as follows.

sb!〈true〉; x := 5; sa?〈x〉; print(x); (3.2)

Assuming x is private, the coloured command can have a local write at x in parallel with
the remote write at the same variable x, the latter represented as communication through
the channel sa but which is in effect carried out, in the compiled code, as a DMA write
on x. This asynchronous remote write at x can take place concurrently as the local write
at x by the command x := 5. Thus we do not know whether 5 or a different number by
the remote write will get printed in the final print command.

Next we consider the following variation of the program above:

x := 5; sb!〈true〉; y := 5; sa?〈x〉; print(x); (3.3)

In this case, assuming the causally chained communications among Alice, Bob and
Carol as specified above, we have no racing at x (as far as x and y are not aliased).
This is because we know Carol will write only after this program does the first output
above, via sb: as far as x is used for reading or writing after this prompting output via
sb — which will eventually initiate the asynchronous write at x via sa — there can be
no interference. Let us summarise this principle:

If a participant’s output action is the cause of its subsequent input for a vari-
able x, then using x between the prompting output and the subsequent input is
dangerous. We want to prevent such dangerous occurrences of variables.

Several observations are due:
6 Such causal chains can be altered by permutations discussed in the previous subsection. Thus

these chains need be extracted from the minimal local types of programs (which coincide with
the principal types algorithmically inferred from untyped processes [33]).
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– The safety property crucially depends on causality information (i.e. the relationship
between an input and its prompting output) derived from session types.

– Once given this causality information, the standard control flow analysis can quickly
check the existence/lack of such a dangerous path (modulo e.g. dead branches).

– This analysis can be done regardless of high-level languages in L2: it can be uni-
formly performed on all typable programs in L1.

This analysis is crucial for ensuring safety in the use of DMA operations. Note the
analysis does not have to be performed for each L1 program: it suffices to ensure, once
and for all, that a compilation from a given high-level language at L2 never induce
dangerous processes in L1 in the above sense.

Another significant program analysis which can exploit the session type structures
in L1 is the guarantee of the progress property, or of the lack of a deadlocked input.
This property is immediately ensured when no two sessions interleave with each other,
or no other blocking operations are present, which may often be the case in the compiled
code. When two or more sessions can interleave, we can use many type-based and other
analyses which can ensure the lack of deadlocks in communication, exploiting session
type structures including its linearity.

There are other useful analyses depending on execution environments and kinds of
applications, which will be discussed elsewhere.

4 Compiling Typed Processes to Distributed CMP
4.1 Basic Ideas
Processes with session types are guaranteed to follow rigorous communication struc-
tures, given as types. By tracing a session type, we know beforehand what and when
processes will send and receive messages: we can even statically determine the target
remote addresses of these communications. Such addresses can be exchanged at the
time of session initiation.

Using this information, we can replace each message passing in a typed process
with a direct remote write to the address of a variable in a core’s local memory in a
distributed memory CMP chip. As noted, the addresses of many of these variables can
be known statically, hence can be exchanged at the time of session initiation. This al-
lows an efficient execution of a conversation code, especially when a loop (iteration)
is included inside a session. When one does need to treat dynamically generated data
structures such as trees and graphs, whose size may not be able to be determined stat-
ically, one may also need to have dynamically allocated addresses communicated at
runtime, for their use in subsequent communications. Note such addresses can be pig-
gybacked in preceding messages in the same session.

Since our purpose is to have type-safe compilation, we use a (prototypical) typed
low-level programming language targeted at distributed memory CMP and NoC [2, 10],
which we call L0 for brevity. L0 is based on the C programming language, and features,
among others:

– A two-level code structure where the outer level (called a section) encompasses all
the code to run at a (virtual) core, and the inner level conventional C functions and
variable/data declarations;
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– a new type, place, denoting a core (that can be virtualised and mapped into avail-
able physical cores); and

– primitives to obtain an idle place (newPlace), to launch a new thread at some place
(spawn), to obtain the current place (here), to asynchronously copy an array into
some other place via DMA (put), and to wait for the completion of an incoming
DMA operation (wait).

These constructs, together with the safety conditions for L1 programs, allow a direct
translation from L1 programs to L0 programs. By the type-based analyses on L1 dis-
cussed in the preceding section, the resulting compiled code is guaranteed to satisfy key
correctness properties such as synchronisation/type safety, race freedom, and progress,
as far as we assume a correct compilation. Also note that the type annotations on the
DMA operations in L0 coming from those in the original L1 programs enable us to
perform type-based analyses on L0 programs independently.

Type information for multiparty sessions can be used not only at compile time
from L1 to L0, but also at runtime. For example, process migration will become neces-
sary from various needs for reconfiguration including load balancing. For this purpose,
sound treatment of pending messages are essential, which can be assisted by precise in-
formation on the type signatures of involved conversations. In the following, we focus
on the most basic usage of session type information in compilation to L0, i.e. compila-
tion of session communications to safe and efficient DMA operations. Other usage of
type information will be reported elsewhere.

4.2 Compilation

Figures 3 and 4 present a compilation of our running example into L0. As we have
already observed, all typed message passing is replaced by DMA primitives, using ad-
dresses of the variables in the local memory of a target place for remote asynchronous
write operations, where the addresses are shared by the session initiation protocol
adapted for distributed memory CMP, as described below.

Section Main defines a program comprising a single procedure, necessarily named
main. The program is uploaded at some (virtual) core and the execution of the main
function starts. The first spawn instruction in Main.main copies section Kernel into the
(virtual) core obtained previously via a call to the newPlace primitive (we assume this
operation will block if no core is available), and launches the execution of Kernel .main.

The session initiation protocol works as follows: Kernel writes in variable a0 (re-
ceived from Main at spawn time) a data-structure with two fields to be filled by the
producer and the consumer. These fields are then passed to the respective places at
spawn time. At this point both the producer and the consumer know the remote address
of a variable in the kernel. They can now write in these variables the addresses of the
data structures to be shared later, so that these components can communicate by writing
to these addresses.

Section Producer comprises a local buffer to hold the produced data, two variables
of type Sync (syncA, and syncB) used as a notification for safe DMA operation, and
the variables for the target of the remote addresses of the communication. After the
session initiation, the place running this section continuously fills the local buffer and
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Fig. 3 L0 code for the double buffering example (Main and Producer sections)

typede f i n t [ 4 0 96 ] Bu f f e r ; // 16KBytes b u f f e r
typede f s t r u c t {} Sync ;
typede f s t r u c t {Bu f f e r ∗buf f e rA , Bu f f e r ∗ bu f f e rB} Bu f f e r s ;
typede f s t r u c t {Sync ∗syncA , Sync ∗syncB} Syncs ;

typede f s t r u c t {Syncs ∗ syncs , B u f f e r s b u f f e r s } Consumer In i t ;
typede f s t r u c t {Bu f f e r s ∗ bu f f e r s , Syncs s ync s} P r o d u c e r I n i t ;
typede f s t r u c t {P r o d u c e r I n i t ∗prod , Consumer In i t ∗ cons} S e s s i o n I n i t ;

s e c t i o n Main ( ) {
vo id main ( ) {

p l ace mainPlace = here ( ) ;
p l ace p roduce r = newPlace ( ) ;
p l ace consumer = newPlace ( ) ;
S e s s i o n I n i t a0 ;
spawn Kerne l (&a0 , mainPlace , p roducer , consumer ) at mainPlace ;
wait (&a0 ) ; // s e s s i o n i n i t i a t i o n
spawn Producer ( a0 . prod , mainPlace ) at p roduce r ;
spawn Consumer ( a0 . cons , mainPlace ) at consumer ;

}}

s e c t i o n Producer ( P r o d u c e r I n i t ∗a1 , p l ace k e r n e l ) {
Bu f f e r b u f f e r ;
Sync syncA ; Sync syncB ;
Bu f f e r s k e r n e l B u f f e r s ;

vo id main ( ) {
put ({& ke r n e l B u f f e r s , {&syncA , &syncB }} , a1 , k e r n e l ) ; // s e s s i o n i n i t i a t i o n
wait (& k e r n e l B u f f e r s ) ; // end s e s s i o n i n i t i a t i o n
produce : {

// Produce b u f f e r A
f o r each ( i : 0 . . 4 0 9 5 ) b u f f e r [ i ] = g e t i n t ( ) ;
wait (&syncA ) ;
put ( b u f f e r , k e r n e l B u f f e r s . bu f f e rA , k e r n e l ) ;
// Produce b u f f e r B
f o r each ( i : 0 . . 4 0 9 5 ) b u f f e r [ i ] = g e t i n t ( ) ;
wait (&syncB ) ;
put ( b u f f e r , k e r n e l B u f f e r s . bu f f e rB , k e r n e l ) ;
l oop produce ;

}}
}

puts it in one of the kernel’s target buffers with a put instruction. A clearance, e.g.,
wait(&syncA), stating that the target buffer is ready must precede the actual placing of
the data in the kernel’s memory.

The Kernel section declares two incoming/outgoing buffers. After session initiation,
it signals the producer that its buffers can now be written (the two instructions that
precede the loop). It then waits for the completion of the DMA operation regarding
the first of its buffers (bufferA), fills it with the XOR of each data element with the
defined key and proceeds to write in the consumer memory, following the same wait-
put protocol used by the producer before writing on the kernel’s memory. Once the
operation is completed, the kernel signals the producer that bufferA is ready to be re-
written, proceeding to process bufferB.

Consumer should be easy to understand, it simply waits for the arrival of each buffer
at the time, printing their contents.
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Fig. 4 L0 code for the double buffering example (Kernel and Consumer sections)

s e c t i o n Kerne l ( S e s s i o n I n i t ∗a0 , p l ace mainPlace , p l ace producer , p l ace consumer ){
P r o d u c e r I n i t a1 ;
Consumer In i t a2 ;
Bu f f e r bu f f e rA ; Sync syncA ;
Bu f f e r bu f f e rB ; Sync syncB ;
i n t key = KEY;

vo id main ( ) {
put ({&a1 , &a2 } , a0 , mainPlace ) ; // s e s s i o n i n i t i a t i o n
wait (&a1 ) ;
wait (&a2 ) ;
put ({&buf f e rA , &bu f f e rB } , a1 . b u f f e r s , p roduce r ) ;
put ({&syncA , &syncB } , a2 . syncs , consumer ) ; // end s e s s i o n i n i t i a t i o n
put ({} , a1 . s ync s . syncA , p roduce r ) ;
put ({} , a1 . s ync s . syncB , p roduce r ) ;
p r o c e s s : {

// Proce s s b u f f e r A
wait (&bu f f e rA ) ;
f o r each ( i : 0 . . 4 0 9 5 ) bu f f e rA [ i ] = bu f f e rA [ i ] ˆ key ;
wait (&syncA ) ;
put ( bu f f e rA , a2 . b u f f e r s . bu f f e rA , consumer ) ;
put ({} , a1 . s ync s . syncA , p roduce r ) ;
// Proce s s b u f f e r B
wait (&bu f f e rB ) ;
f o r each ( i : 0 . . 4 0 9 5 ) bu f f e rB [ i ] = bu f f e rB [ i ] ˆ key ;
wait (&syncB ) ;
put ( bu f f e rB , a2 . b u f f e r s . bu f f e rB , consumer ) ;
put ({} , a1 . s ync s . syncB , p roduce r ) ;
l oop p r o c e s s ;

}}
}

s e c t i o n Consumer ( Consumer In i t ∗a2 , p l ace k e r n e l ) {
Bu f f e r b u f f e r ;
Syncs s ync s ;

vo id main ( ) {
put ({&syncs , {&bu f f e r , &b u f f e r }} , a2 , k e r n e l ) ; // s e s s i o n i n i t i a t i o n
wait (&sync ) ; // end s e s s i o n i n i t i a t i o n
consume : {

// Consume b u f f e r A
put ({} , s ync s . syncA , k e r n e l ) ;
wait (& b u f f e r ) ;
p r i n t f ( ”\ nBu f f e r :\ n” ) ;
f o r each ( i : 0 . . 4 0 9 5 ) p r i n t f ( ”%d ” , b u f f e r [ i ] ) ;
// Consume b u f f e r B
put ({} , s ync s . syncB , k e r n e l ) ;
wait (& b u f f e r ) ;
p r i n t f ( ”\ nBu f f e r :\ n” ) ;
f o r each ( i : 0 . . 4 0 9 5 ) p r i n t f ( ”%d ” , b u f f e r [ i ] ) ;
l oop consume ;

}}
}

The resulting code is in direct correspondence with the original typed processes in
its operational structure, and, thanks to the well-typedness of the original process in
L1 with respect to the declared session types, together with the static analysis for race
freedom outlined in §3.3, we can show that the DMA operations in the resulting L0
code faithfully captures all and only communication and other behaviours as found in
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the original L1 program, modulo the translation of the original session initiation into a
protocol realising the equivalent functionality (which distribute remote addresses used
for performing DMA writes: note these addresses in effect act as channel ends in the
original process representation). In fact, the type-directed translation from L1 to L0
can annotate the resulting L0 code with types which closely correspond to those in the
original L1 program. This type annotations make the resulting L0 code amenable to the
type-based analyses isomorphic to those for L1 programs. This ensures, for the resulting
L0 code, the aforementioned three key correctness properties, the synchronisation and
race-error freedom, type-error freedom and progress.

We have developed a prototype compiler targeting for a IBM Cell Broadband En-
gine processor [14], so that we can compile high-level code to low-level code as in
Figures 3 and 4, which can further be compiled and executed on Cell. More discussions
on this implementation are given in Section 5.

4.3 Further Features

There are several key features of our intermediate language which we do not discuss
in the present paper. In particular, although the example under consideration does not
use shared session initialisation channels, we often need a component which accepts
possibly concurrent requests for session initialisation at a shared channel from multiple
clients. Such a channel may be located at main memory or at local memory of a dis-
tributed core. The shared server receives a request, at which point (for example) it may
fork a thread to one of the available cores for serving the client’s needs. Such a frame-
work is especially important for realising shared services used by an unknown number
of client processes, either inside an application or across applications, and demands an
efficient treatment of possibly concurrent requests arriving at a same channel.

We can treat the arrival of such an indeterminate number of requests through several
methods. As a simple way, each core may run a supervisor-mode process to which each
user-level process may ask for communication to a shared channel in a remote core
(note such requests tend to be relatively fewer than communications inside a session, so
that a slightly higher cost for a shared request may be justified). Then a supervisor can
put the request to its own queue in a remote or shared memory, which can be polled by
a receiver of these requests. Putting a request in a queue can be followed by a simple
notification. Such a scheme may be combined with mutual exclusion primitives (lock
and/or compare and swap, see [45]) by multiple threads at the service process.

5 Conclusion

Conclusion and Further Topics. The translation from the initial simple stream applica-
tion to the low-level code based on double buffering, through intermediate representa-
tion as typed processes, suggests flexibility in compilation and execution of concurrent
programs in distributed CMP and other extremely concurrent computing environments,
opening new opportunities and challenges. We already mentioned the use of our re-
cent work [33] in our compilation framework, which is based on a subtyping relation
on multiparty session types which are generalised to capture asynchrony as found in
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the double buffering process above. Further development of the compilation framework
will necessitate new compilation and static analysis techniques for inherently concur-
rent code, a new, scalable runtime framework for dynamic allocations of hardware re-
sources to communicating processes making the best of their type structures, a formal
guarantee of correctness properties for such a runtime, an effective threads scheduling
mechanism in each local core, protection and security mechanisms, and integration and
management of different abstractions for concurrency.

Related Work. There are several recent works which are closely related and will com-
plement the approaches taken in the presented research direction: research from multi-
ple directions will be needed to explore the rich field of structured concurrent program-
ming. Among these related works, we list only a few. Occam-Pi [46] offers a highly
efficient language architecture for channel-based concurrency with potentially millions
of light-weight processes. Sing#, a derivative of C# developed for Singularity OS [11],
uses a variant of session types called contracts to specify the interfaces between OS
components, which communicate via channel-based message passing in shared mem-
ory environments. X10 [6] presents an advanced language constructs for structured,
typed concurrent imperative programming for partitioned shared memory with high-
performance computing as its application domain. Kilim [40] is an actor framework
for Java based on cooperatively-scheduled lightweight threads which communicate by
message-passing. StreamFlex [39] is a real-time stream API for Java guaranteeing sub-
millisecond response times and type safety, using a type-based classification of heap
objects to obtain a high throughput. In all these languages, high-level structuring con-
structs play an essential role not only for clean description of concurrency but also for
efficient program execution.

A preliminary version of this paper was presented in [18].

Implementation Status. We are currently working on the experiments of the general
framework proposed in the present paper. It centres on a simple imperative concurrent
language equipped with multiparty session communications and their types, which is
close to the language we discussed in Section 3. The language, combined with two
other associated languages, is intended to serve as an intermediate language (roughly of
level L1 in Section 1), to which typed high-level concurrent languages such as X10 [6],
StreamIt [42] and others are compiled into.

The current framework implements a series of type-directed translation steps from
high-level typed concurrent languages into C-code targeted at the Cell Broadband En-
gine architecture. Our experiments so far have been restricted to a single Cell processor.
Current efforts focus on, among others, providing support for the deploying of applica-
tions across processors on the same blade and across blades. For that purpose we are
using a cluster of three IBM QS21 bladecenters [22] and their compiler architecture.
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