
Session Types for Linear Multithreaded
Functional Programming ∗

Vasco T. Vasconcelos
Department of Informatics, Faculty of Sciences, University of Lisbon, Portugal

vv@di.fc.ul.pt

Abstract
The construction of reliable concurrent and distributed systems is
an extremely difficult endeavour. For complex systems, it requires
modular development strategies based on precise interface spec-
ifications that allow the various modules to interact properly. In
this extended abstract we are concerned with message passing sys-
tems where partners engage in long and complex interactions, as
opposed to, say, remote procedure calls composed of a pair of sim-
ple interactions.

Session types allow for the description of continuous series of
interactions between several partners. In the simpler case, they
detail protocols between two partners [Honda et al. 1998]; re-
cently the original setting was widened to encompass multiple part-
ners [Honda et al. 2008].

In this paper we deal with binary sessions only. Through a run-
ning example we visit session types and a functional concurrent
language equipped with buffered semantics. Apart from the tradi-
tional “well typed programs do not go wrong”, the semantics pro-
posed allows for two extra interesting results: the ability to predict
the required buffer size, and that of anticipating an output with re-
spect to an input operation.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages, Theory

Keywords Session types, Functional programming, Linear type
systems, Concurrency

1. Describing Protocols
Our running example consists of a simplified distributed auction
system with three kinds of players, taken from [Vallecillo et al.
2006]:

• Sellers that want to sell items,
• Auctioneers that sell items on their behalf,

∗ ACM, 2009. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in PPDP, VOL#, ISS#, (DATE)
http://doi.acm.org/10.1145/nnnnnn.nnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’09, September 7–9, 2009, Coimbra, Portugal.
Copyright c© 2009 ACM 978-1-60558-568-0/09/09. . . $10.00

• Bidders that bid for an item being auctioned.

Protocols as types The protocol for the seller looks like this.

S e l l e r = ⊕{selling : ! I tem . ! P r i c e .
&{sold : ? P r i c e . end , notSold : end}}

The seller starts by choosing the selling operation on the auction-
eer (selling is one of the various operations the auctioneer provides);
choosing an alternative is indicated by ⊕. It then sends an item
(the item to be sold), followed by the initial price; value sending
is indicated by !. Following that, the seller expects an answer from
the auctioneer; it can come in one of two forms, sold or notSold;
offering alternatives is indicated by &. Together with a sold con-
firmation comes the value the item was sold for; value reception is
indicated by ?. Protocol completion is indicated by end.

The auctioneer, while interacting with a seller, follows the be-
low protocol.

Auc t i o n e e rW i t hS e l l e r = &{selling : ? I tem . ? P r i c e .
⊕{ sold : ! P r i c e . end , notSold : end}}

It starts by offering the selling option, after which it receives an
item and a price, following which it chooses one of two alternatives:
sold or notSold. Selling and buying are complementary activities,
and so are the types that govern them; we call them dual. We can
easily see that when the seller says ⊕, the auctioneer says &, and
similarly for ? and !. Type end is dual of itself.

Now the protocol that bidders are supposed to follow.

Bidde r = ⊕{register : ! Name . ? Item . ? P r i c e .
⊕{ buy : end , notInterested : end}}

Bidders start by selecting option register, then send their name
and wait for an item on sale and its price. They finally reply to
the auctioneer manifesting their interest in the product, selecting
the buy or the notInterested option. The type of auctioneers while
interacting with bidders is the dual of the bidders’ type.

Auct i onee rWi thB idde r = &{register : ?Name . ! I tem .
! P r i c e .&{ buy : end , notInterested : end}}

One might wonder where the actual bidding is happening. Well,
it does not. This is version 0.0 of our system. Bidders are given a
price and must take it or leave it.

Compatibility The auctioneer seems to require two types: one for
interacting with sellers, the other for interacting with bidders. The
type of the auctioneer proper conjoins the two types.

Auc t i on e e r =
&{register : ?Name . ! I tem . ! P r i c e .

&{ buy : end , notInterested : end } ,
selling : ? I tem . ? P r i c e .
⊕{ sold : ! P r i c e . end , notSold : end}}

The particular types used to interact with sellers and with bid-
ders are subtypes of this type. Advantages include:

• Bidders do not need to know the protocol for sellers,
• The code for bidders may be developed before the introduction

of (online) sellers in the auction system.

The bidder-auctioneer compatibility rests assured: the type for
the auctioneer, Auctioneer, is a supertype of AuctioneerWithBidder
which is dual of the type Bidder of the bidder.

System evolution Evidence collected during the operation of the
auctioneer system version 0.0 suggests that the most common com-
plaint come from sellers and was related to the inability of lowering
the initial price after an unsuccessful auction. After an upgrade, the
new auctioneer now provides a third choice, in addition to sold and
notSold. The new option, lowerYourPrice, reads “We are very ex-
cited about your item; would you consider lowering the price?”.

&{selling : ? I tem . ? P r i c e . S e l l i n g , register : . . . }
where S e l l i n g =
⊕{ sold : ! P r i c e . end ,

notSold : end ,
lowerYourPrice:&{ ok : ? P r i c e . S e l l i n g , noWay: end}}

The obvious question arises: is compatibility still assured? The
old seller still works with the new auctioneer, it just does not use
the new functionality. The new type is far more complex than the
original: additional recursion and one more ⊕ choice. Expanding
recursion we see that all there remains is really one more choice:
the new type is a subtype of the old type.

&{selling : ? I tem . ? P r i c e .
⊕{ sold : ! P r i c e . end ,

notSold : end ,
lowerYourPrice:&{ ok : ? P r i c e . S e l l i n g ,

noWay: end}}}

How does subtyping works on session types? Guided by the
intuition sketched above, subtypes offer less alternatives (&) and
choose more options (⊕). For value input (?), subtypes may take
a subtype as parameter, and for value output (!), supertypes. In
short, input is covariant on the argument and on the set choices,
and output contravariant. In all cases continuations are covariant.
Recursion is “unfolded away” as needed, a co-inductive definition.

Sessions Protocols such as the seller-auctioneer-bidder run be-
tween exactly two partners at a time:

• seller-auctioneer, or
• auctioneer-bidder.

Each such run is called a session.

Channels An auctioneer must be able to conduct multiple ses-
sions in parallel, with different sellers and with different bidders.
And it must not mix sessions, e.g., announcing sold to bidder A
while sending the corresponding Price to bidder B. Each session
is conducted on a different bi-directional communication medium
called channel.

How are such channels created? By using other channels known
to all participants potentially interested on online auctions, e.g.,
distributed on the world-wide-web. We could distinguish linear
channels known by one partner, from shared channels known by
any number of partners, but we prefer to work with a single kind of
channel and distinguish linear from unrestricted (shared) channel
operations. This gives us greater flexibility and a simplified theory.
The annotated type of a buyer is as follows.1

1 The only interesting end is unrestricted.

Buyer = l i n⊕{selling : l i n ! I tem . l i n ! P r i c e .
l i n &{sold : l i n ? P r i c e . un end ,

notSold : un end}}

To lighten the syntax in examples, we henceforth omit all unre-
stricted qualifiers and only annotate linear types.

Now we can go back to session establishment. The common
knowledge between the three kinds of partners is a shared channel,
used to establish linear sessions. Recall the type Auctioneer of the
auctioneer’s session above. Then, the type of the shared channel, as
seen by the auctioneer, is
T = un ! Auc t i on e e r .T

where the !Auctioneer part is responsible for establishing one ses-
sion and the T part for establishing more sessions. This idiom is so
common that we abbreviate it to ∗!Auctioneer.

Subtyping in session types was introduced by [Gay and Hole
2005]. The lin /un session type qualifiers where introduced in [Vas-
concelos 2009] (inspired by [Walker 2005]), which discusses the
apparent variance inversion of subtyping with respect to the usual
practice in the lambda-calculus.

2. Programming
The next step is to program our example. In which language shall
we do it? Functional, imperative, object-oriented? You’ll find all
flavours in the literature (see references in [Vasconcelos 2009]).
The language must however must incorporate concurrency and
threads communicating via message passing; we shall use a call-
by-value concurrent functional language.

Let us start with the code for a particular seller. Suppose that c
is the name of the channel leading to the auctioneer.
s e l l e r S e s s i o n : : S e l l e r → un i t
s e l l e r S e s s i o n c =

s e l e c t selling on c ;
send ”psp” on c ;
send 100 on c ;
case c of {

sold ⇒ r e c e i v e x from c i n
p r i n t (”made ” ˆ x ˆ ” eu ro s ! ”) ,

notSold ⇒ p r i n t (” next t ime I ’ l l ask 9 9 . 9 ! ”)
}

The auctioneer starts by choosing the selling alternative: choos-
ing an alternative is indicated by the select -on primitive operation.
It then sends the item to be sold and the initial price, using two
send-on expressions. The protocol continues with the seller accept-
ing two alternatives, sold and notSold, expressed by the case-of op-
eration. The sold branch starts with the reception of the actual price
the item was sold for, and indicated by the receive-from expression.
Notice the one-to-one correspondence between the operations on
channel c and the type Seller above.

The code for a bidder, below, should be easy to understand.
b i d d e r S e s s i o n : : B idde r → un i t
b i d d e r S e s s i o n c =

s e l e c t register on c ; send ” vasco ” on c ;
r e c e i v e i t em from c i n
r e c e i v e p r i c e from c i n
i f i t em = ”psp” and p r i c e < 100
then s e l e c t buy on c
e l s e s e l e c t notInterested on c

Again, collecting all the operations on channel c yields the
type Bidder above. Notice that in both pieces of code channel c
is consumed to the end, as expected: the initial part of the type for
the channel is linear and must be consumed; the last part (end) is
unrestricted and may remain.

Finally the auctioneer, the most sophisticated piece of code; to
be continued below.

Auc t i o n e e r S e s s i o n : : Auc t i on e e r → ∗? Repo s i t o r y
→ un i t

Auc t i o n e e r S e s s i o n c =
case c of {

selling ⇒ −− hand l e s e l l e r s ’ r e q u e s t s
register ⇒ −− hand l e b i dde r s ’ r e q u e s t s

}

Bootstrapping How do sellers and bidders start sessions? By re-
questing a new, private, channel on the auctioneer’s public, shared,
name. Notice that by subtyping both functions seller and bidder
may be given arguments of a type dual to that of the auctioneer,
which we denote by dual(∗!Auctioneer) = ∗?(dual Auctioneer).

s e l l e r : : ∗? S e l l e r → un i t
s e l l e r a = r e c e i v e c from a i n s e l l e r S e s s i o n c
b i d d e r : : ∗? B idde r → un i t
b i d d e r a = r e c e i v e c from a i n b i d d e r S e s s i o n c

How do auctioneers start sessions? By creating a fresh channel
and sending it to clients. We shall distinguish two identifiers for the
same underlying channel, two channel endpoints: d is the endpoint
to be used by the client (bidder or seller), c is the endpoint used by
the auctioneer itself.

a u c t i o n e e r : : ∗ ! Auc t i on e e r → ∗? Repo s i t o r y → un i t
a u c t i o n e e r a r =

channe l c , d i n send d on a ;
f o r k (case c of {selling ⇒ s e l l c r ,

register ⇒ r e g i s t c r }) ;
a u c t i o n e e r a r

The shared repository Concentrate on the selling option; some
pseudo-code first.

r e c e i v e i t em from c i n
r e c e i v e p r i c e from c i n (put i tem p r i c e) ;
i f (wasSold i tem)
then s e l e c t sold on c ; send (g e tP r i c e i tem) on c
e l s e s e l e c t notSold on c

We have to program functions put, wasSold, and getPrice . But
these three functions deal with a shared repository, hence its ac-
cesses must be governed by a protocol. For example the put func-
tion becomes

put : : I tem → P r i c e → ∗? Repo s i t o r y → un i t
put i tem p r i c e r =

r e c e i v e d from r i n s e l e c t put on d ;
send i t em on d ; send p r i c e on d

where r is the shared name for the repository. Operations wasSold
and getPrice must be dealt together to take advantage of the case
construct.

c h e c k I f S o l d : : I tem → l i n⊕{ sold : . . . } (
∗? Repo s i t o r y (un i t

c h e c k I f S o l d i tem c r =
r e c e i v e d from r i n
s e l e c t wasItSold on d ; send i t em on d ;
case d of {

notSold ⇒ s e l e c t notSold on c ,
sold ⇒ s e l e c t sold on c ;

r e c e i v e p r i c e from d i n send p r i c e on c}

Sessions c and d are now mixed, but the types remain apart.
The type of d is obtained by gathering the operations on channel d
(and forgetting those on c). All our types are (lin or un) qualified:
T (U is an abbreviation for lin T → U . Function checkIfSold
would not type check under type Item → lin⊕{sold:...} → ... for
the lambda abstraction λr. receive ... is typed under an environ-
ment containing a linear entry c: lin⊕{sold:...}. Hence the corre-
sponding linear function constructor (.

Using functions put and checkIfSold , we can easily write the
selling branch of the auctioneer,

s e l l : : l i n ? Item . l i n ? P r i c e . l i n⊕{ sold : . . . } (
?∗ Repo s i t o r y (un i t

s e l l c r =
r e c e i v e i t em from c i n
r e c e i v e p r i c e from c i n
put i tem p r i c e r ;
c h e c k I f S o l d i tem c r

yielding the following type for the session conducted by the shared
repository.

Repo s i t o r y =
l i n⊕{wasItSold : l i n ! I tem .

l i n &{sold : l i n ? P r i c e . end , notSold : end } ,
put : l i n ! I tem . l i n ! P r i c e . end}

Session delegation Noticed the copy-cat in function checkIfSold?
Option notSold is forwarded from the repository (d) to the client (c),
and so is option notSold, and so is price . Why not trust the seller’s
channel to the repository? The repository takes care of replying
directly to the client.

c h e c k I f S o l d i tem c r =
r e c e i v e d from r i n s e l e c t wasItSold on d ;
send i t em on d ; send c on d

How does the type of the repository with delegation look like?
The linear part, the part that governs the session the public name
establishes, is

Repo s i t o r y = l i n⊕{wasItSold : l i n ! I tem . !U. end}
put : l i n ! I tem . l i n ! P r i c e . end ,

where U = l i n &{sold : l i n ? P r i c e . end , notSold : end}

where one can easily see the delegation of a channel (of type U)
during the run of the protocol with the repository. Notice that the
seller is not aware of the delegation; it need not change its type nor
its code.

To complete our example, suppose that we would like function
put to read the price from channel c, rather than receiving the price
as a parameter. We need to pass c to the function; we may be
tempted to write the following code.

s e l l c r =
r e c e i v e i t em from c i n
put i tem r c ;
c h e c k I f S o l d i tem c r −− not t y p ab l e

Channel c is a linear value; once passed (on a function or on
another channel), it cannot be further used. In order for function
checkIfSold to be able to use c, function put has to return the
channel. The code becomes:

s e l l c r =
r e c e i v e i t em from c i n
c h e c k I f S o l d i tem (put i tem c r) r −− ok

where the revised version of function put receives a channel at type
lin ?Price . lin⊕{sold:...} and returns the same channel, now at type
lin⊕{sold:...}.

Functional languages with session types go back to [Vasconce-
los et al. 2004, 2006] and [Neubauer and Thiemann 2004a]. The
language here presented is inspired in [Gay and Vasconcelos 2008,
Vasconcelos et al. 2006].

3. Syntax and Type Assignment
The syntax of our language is summarized in Figure 1. For sim-
plicity in this section we do not consider choice nor the usual fix
operator used in recursive functions. Variables describing channels

v ::= Values:

x variable

true | false booleans

() unit

fork fork

λx : T.t abstraction

t ::= Terms:

t t application

if t then t else t conditional

send t on x; t output

receive x from x in t input

channel x, x : T in t channel creation

Figure 1. The syntax of terms

q ::= Qualifiers:

lin linear

un unrestricted

p ::= Pretypes:

bool booleans

unit unit

T → T functions

end termination

?T.T receive

!T.T send

T ::= Types:

q p qualified pretype

µa.T | a recursion

Γ ::= Contexts:

∅ empty context

Γ, x : T assumption

Figure 2. The syntax of types and contexts

come in pairs, called co-variables, each attached to one channel
endpoint. Interacting threads do not share variables for communi-
cation; instead, each thread owns one variable describing one end-
point. This mechanism allows a precise control of resources via a
linear type system. For example, if x is a variable of an arbitrarily
qualified type, a is a variable of an unrestricted type, and c a vari-
able of a linear type, then the first two terms are valid whereas the
last is not.

send true on x; receive y from x

fork (send true on a); fork (send true on a); send false on a

fork (send true on c); send true on c

The syntax of types is summarized in Figure 2. For the lambda
calculus, linearly qualified types describe resources that must be
used exactly once; for channel operations such types describe vari-
ables that occur in exactly one thread. In either case, the unre-
stricted (or shared, un) qualifier indicates a value that can occur

∅ · ∅ = ∅ Γ = Γ1 · Γ2

Γ, x : un p = (Γ1, x : un p) · (Γ2, x : un p)

Γ = Γ1 · Γ2

Γ, x : lin p = (Γ1, x : lin p) · Γ2

Γ = Γ1 · Γ2

Γ, x : lin p = Γ1 · (Γ2, x : lin p)

Figure 3. Context splitting

un(Γ)

Γ ` false : q bool

un(Γ)

Γ ` fork : un p (un unit

un(Γ)

Γ, x : T ` x : T

q(Γ) Γ, x : T ` t : U

Γ ` λx : T.t : q T → U

Γ1 ` t1 : q T → U Γ2 ` t2 : T

Γ1 · Γ2 ` t1t2 : U

Γ1 ` t : q bool Γ2 ` t1 : T Γ2 ` t2 : T

Γ1 · Γ2 ` if t then t1 else t2 : T

Γ1 ` x : q ?T.U (Γ2, y : T) · x : U ` t : V

Γ1 · Γ2 ` receive y from x in t : V

Γ1 ` t1 : T Γ2 ` x : q !T.U Γ3 · x : U ` t2 : V

Γ1 · Γ2 · Γ3 ` send t1 on x; t2 : V

Γ, x : T, y : T ` t : U

Γ ` channel x, y : T in t : U

Γ ` t : T T <: U

Γ ` t : U

Figure 4. Typing rules

multiple times in multiple threads. Type lin!(lin bool).un end de-
scribes a channel endpoint that can be used once to output a boolean
value (that can be used once by the receiver) and then behaves as a
shared channel on which no further operation is possible.

Duality is a notion central to session types. It is defined on
session types only,

q ?T.U = q !T.U q !T.U = q ?T.U q end = q end

to be complemented with recursion: µa.T = µa.T and a = a.
For example, if x1 and x2 are two co-variables, then the first

two processes only are valid.

fork (send true on x1); receive z from x2

fork (send true on x1; receive w from x1);

receive z from x2 in send true on x2

fork (send true on x1); send false on x2

fork (send true on x1; send true on x1);

receive z from x2 in send true on x2

Context splitting (Figure 3) is a notion central to linear typing
systems. When type checking processes with two sub-processes we
pass the unrestricted part of the context to both processes, while
splitting the linear part in two and passing a different part to each
process. To ensure that linear objects are used exactly once, and
that communication channels are used according to their protocols,
our type system maintains important invariants.

• Linear variables describing channels occur in exactly one
thread;

• Other variables are used exactly once;
• Co-variables have dual types;
• Unrestricted data structures may not contain linear data struc-

tures.

Let lin v un. The predicate q is true of types q′p when q′ v q,
and is extended point-wisely to typing contexts. The type assign-
ment system is in Figure 4. The typing rules make sure that linear

values (including abstraction) are not discarded without being used,
by checking that there is no linear variable in context. Function
application crucially takes advantage of context splitting. Notice
that there is no context splitting in the two branches of a condi-
tional, since only one of them will be executed. The rule for chan-
nel creation captures the essence of co-variables: they must have
dual types. The rule for channel reading splits the context into two
parts: one to type check the channel x, the other to type check con-
tinuation t. If x is of type q ?T.U in receive y from x in t, then we
use y : T to type check t. Term receive y from x in t uses x at type
q ?T.U , whereas the continuation t may use x at the continuation
type U .

[Wadler 1990] is one of the first references on linear types
for functional programming. The type system here presented is
inspired in [Gay and Vasconcelos 2008, Vasconcelos 2009, Walker
2005].

Operational Semantics and Main Results To talk about results
we must define an operational semantics. We do not expound the
details for the sake of brevity. The reader may nevertheless expect
the runtime of our language to be composed of expressions running
in parallel, created by the fork expression,

fork t1; t2 → t1 | t2
running under the scope of channel endpoints, created by the
channel expression,

channel x, y in t → (νxy)t

evolving by beta-reduction, and communicating via send-receive
or select -case:

(νxy)(send v on x; t1 | receive z from y in t2 | t3) →
(νxy)(t1 | t2[v/z] | t3)

What can go wrong with programs? The obvious case: the value
in the condition part of an if-term is neither true nor false. More in-
teresting cases encompass different communication patterns on the
same channel end, or channels ends with incompatible communi-
cation patterns.

(νx1x2)(send true on x1 | receive z from x1)

(νx1x2)(send true on x1 | send true on x2)

(νx1x2)(receive z from x1 | receive w from x2)

The main result of our language states that well-typed programs
do not reduce to wrong runtime terms.

4. Buffered Semantics
The runtime system in the previous section is unbuffered. If x1 and
x2 are the two endpoints of a same channel, then the sending party
send v on x blocks waiting for a receiving partner receive z from y,
and conversely. The idea of distinguishing the two channels end-
points is particularly appealing in a distributed setting where one
usually finds buffered semantics. In fact, in distributed environ-
ments channels are usually uni-directional and buffered, for ease
of implementation and performance. Our channels are conceptually
bi-directional, but technical reasons compelled us to distinguish the
two ends of a same channel. We now take this idea one step further
and associate to each such channel endpoint a distinguished buffer
to hold the messages in transit (that is, the values sent and the labels
selected), thus making send a non-blocking operation.

Operational Semantics Once again, we are concise on the de-
scription of the unbuffered semantics. Threads now read from their
own buffer and write on the other endpoint buffer. Buffers are en-
tities running in parallel with threads. A buffer for endpoint x is a

pair containing the address of the other endpoint y, and the actual
elements in the buffer~b. We write all this as x : (y,~b). The channel
creation expression now creates two empty buffers.

channel x, y in t → (νxy)(x : (y, ε) | y : (x, ε) | t)

Writing becomes a non-blocking operation provided the two
buffers are available. Notice that the send operation reads from its
buffer x the address y of the other endpoint, on which it writes.

send v on x; t | x : (y,~b) | y : (x,~b′) → t | x : (y,~b) | y : (x,~b′v)

The receive operation reads from its own buffer provided that it
is not empty.

receive z from x in t | x : (y, v~b) → t[v/z] | x : (y,~b)

The proof of the main result is now more elaborate for it is no
more the case that, in the parallel composition of two threads (t1
and t2) each using one endpoint (x1 and x2) of a same channel, the
two threads see the types of the endpoints at dual types. Intuitively,
the initial part of the type associated with x1 is in its buffer, while
the rest is read from thread t1, and similarly for x2 and t2.

Buffered semantics in session types go back to [Neubauer and
Thiemann 2004b]; they are used in [Fähndrich et al. 2006]. Refer-
ence [Gay and Vasconcelos 2008] contains the details for the se-
mantics here presented.

Bounded Buffers Buffered semantics comes equipped with an
interesting result: one can read from a session type the size of the
buffer required to hold all data that will eventually be written on
the buffer, that is we can statically prevent buffer overflows, under
certain conditions. Two caveats are in order. We assume all data is
of fixed size, so that for, e.g., variable length strings we place in the
buffer a reference to an heap location where we allocate the actual
string. Some session types may require an infinite bound, that is,
the size of the buffer is taken from the set Nat ∪ {∞}.

As an example, the size of the buffer required for a channel of
type Seller at the very beginning of this paper is 2. Why? Because
in the worst case, the buffer will contain a label sold and a value
of type Price. Conversely, the size of the buffer for the dual type,
AuctioneerWithSeller is 3, for the buffer may contain label selling,
and two values of type Item and Price, before the reader thread
starts reading.

For recursive types, we have to reason co-inductively. Inter-
esting enough the bound for recursive type of the Auctioneer
after the upgrade is still 3. How can we find out this value?
Consider the infinite tree obtained by unfolding recursion end-
lessly. Count the maximal sequence of input operations (? and
&); the counting terminates because the tree as only finitely many
different subtrees. In our case the largest sequence of contigu-
ous input operations in the whole type happens in the stretch
lin &{selling: lin?Item.lin?Price .⊕{...}}.

Not all channels can be endowed with finite buffers. Take for ex-
ample a channel governed by type lin !unit .µa?lin bool.a, which
says “I am ready” before embarking on an infinite loop reading
boolean values. A compiler may nevertheless suggest the intro-
duction of a “sync” point after a certain number of reads, as in
µa. lin !unit . lin ?bool. lin ?bool. lin ?bool.a, to require a buffer of fi-
nite length (of size 3, in this case).

How can we incorporate this technology in a compiler? When-
ever the compiler finds an expression channel x, y : T in t it com-
putes the bound of T and generates the buffer for x accordingly, and
similarly for T and y. If one or more of the bounds are not finite
then the compiler may refuse to proceed or else use, say, linked lists
in place of fixed-sized arrays for holding the buffers. Furthermore,
information available during typechecking can be used to generate
code to reduce the size of a buffer and ultimately to deallocate the

buffer of a channel of type end. The formal proof that the session
type of a channel can provide a static upper bound on the size of
its buffer can be found in [Gay and Vasconcelos 2008], and was
observed informally by [Fähndrich et al. 2006].

Anticipating Outputs Suppose that our auctioneer sells a single
product. The code for the regist operation at the auctioneer can be
written as follows.

r e g i s t : : l i n ?Name . l i n ! I tem . l i n ! P r i c e .
l i n &{ buy : . . } (?∗ Repo s i t o r y (un i t

r e g i s t c r =
r e c e i v e name on c i n
send a v e r y l a r g e p r o d u c t d e s c r i p t i o n on c ;
send 100 on c ; . . .

Since the auctioneer sells a single product it cannot employ ag-
gressive marketing techniques based on the nature of the bidder.
Then, knowing that product descriptions are rather lengthy, in or-
der to maximize throughput, the auctioneer may want to send the
product description before actually reading the name of the bidder.

r e g i s t c r =
send a v e r y l a r g e p r o d u c t d e s c r i p t i o n on c ;
send 100 on c ;
r e c e i v e name on c i n . . .

Operationally, communication still proceeds smoothly: the auc-
tioneer writes its two values on the bidder’s buffer, yielding:

d : (c, a very large product description 100)

while the bidder writes is name on the auctioneer’s buffer:

c : (d, ”vasco”)

and then the auctioneer may receive a name on channel endpoint c,
while the bidder receives an item and a price on channel endpoint d.
Because there are distinct buffers for the two channel endpoints no
deadlock arises.

What other commutations are in order? Suppose the auctioneer
always terminates a session with a bidder by issuing a thank-you
message. Further suppose that the message is the same in both
branches.

r e g i s t c r = . . .
r e c e i v e name on c i n
case c of {
{ sold ⇒ send a−long−thank−you on c ; t1
notSold ⇒ send a−long−thank−you on c ; t2 }

Once again, if the message is lengthy, the auctioneer may antic-
ipate its sending by writing instead

r e g i s t c r = . . .
send a−long−thank−you on c ;
r e c e i v e name on c i n
case c of { sold ⇒ t1 , notSold ⇒ t2 }

The new program still runs smoothly; the problem is at type
level: the auctioneer declares a type that does not match that of the
bidder. The stretch of the new type related with the piece of code
above is

! I tem . ! P r i c e . ! Message . ?Name.&{ buy : end , . . . }

(lin qualifiers omitted) whereas that of the bidder remains

!Name . ? Item . ? P r i c e .⊕{ buy : ? Message . end , . . . }

The new type for the auctioneer is a refinement of the old
type where we anticipate the output with respect to the input, or
dually, postpone the output with respect to the input. We capture
this requirement with an extension of the subtyping relation. If we

denote by I an input operation (that is, ? or &) and by O an output
operation (! or ⊕), then the mnemonic is

OI <: IO

The subsumption rule (in Figure 4) allows to type the new
auctioneer at its old type

?Name . ! I tem . ! P r i c e .&{ buy : ! Message . end , . . . }

which is compatible with that for the bidder, as we have seen.
It should be easy to see that all other possible permutations

either violate type safety or introduce potential deadlocks. The
above subtyping relation was introduced by [Mostrous and Yoshida
2009], in conjunction with a language that also includes (pi calcu-
lus) process passing.

Acknowledgments
The incorporation of session types in functional programming, the
buffered semantics, and the bounded buffers ideas where devel-
oped jointly with Simon Gay [Gay and Vasconcelos 2008]; the con-
crete formulation here presented is however new. The author was
partially supported by the EU IST proactive initiative FET-Global
Computing, project Sensoria, IST–2005–16004.

References
Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen

Hunt, James R. Larus, and Steven Levi. Language support for fast
and reliable message-based communication in singularity OS. SIGOPS
Oper. Syst. Rev., 40(4):177–190, 2006.

Simon Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous
session types. Subsumes Technical Report 2007–251, University of
Glasgow, 2008.

Simon J. Gay and Malcolm J. Hole. Subtyping for session types in the pi
calculus. Acta Informatica, 42(2/3):191–225, 2005.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primi-
tives and type disciplines for structured communication-based program-
ming. In ESOP’98, volume 1381 of LNCS, pages 22–138. Springer-
Verlag, 1998.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. SIGPLAN Not., 43(1):273–284, 2008.

Dimitris Mostrous and Nobuko Yoshida. Session-based communication op-
timisation for higher-order mobile processes. In Typed Lambda Calculi
and Applications (TLCA’09), LNCS. Springer-Verlag, 2009. To appear.

Matthias Neubauer and Peter Thiemann. An implementation of session
types. In Proceedings of PADL’04, volume 3057 of LNCS, pages 56–70.
Springer, 2004a.

Matthias Neubauer and Peter Thiemann. Session types for asynchronous
communication. Unpublished, 2004b.

Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. Typing the
behavior of objects and components using session types. Fundamenta
Informaticæ, 73(4):583–598, 2006.

Vasco T. Vasconcelos. 9th International School on Formal Methods for
the Design of Computer, Communication and Software Systems: Web
Services (SFM 2009), volume 5569 of LNCS, chapter Fundamentals of
Session Types, pages 158–186. Springer-Verlag, 2009.

Vasco T. Vasconcelos, António Ravara, and Simon Gay. Session types
for functional multithreading. In CONCUR’04, volume 3170 of LNCS,
pages 497–511. Springer-Verlag, 2004.

Vasco T. Vasconcelos, Simon Gay, and António Ravara. Typechecking a
multithreaded functional language with session types. TCS, 368(1–2):
64–87, 2006.

Philip Wadler. Linear types can change the world. In M. Broy and
C. B. Jones, editors, IFIP TC 2 Working Conference on Programming
Concepts and Methods, pages 561–581. North-Holland, 1990.

David Walker. Advanced Topics in Types and Programming Languages,
chapter Substructural Type Systems. MIT Press, 2005.

	Describing Protocols
	Programming
	Syntax and Type Assignment
	Buffered Semantics

