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Abstract. We present a reconstruction of session types in a linear pi
calculus where types are qualified as linear or unrestricted. Linearly qual-
ified communication channels are guaranteed to occur in exactly one
thread, possibly multiple times. In our language each channel is char-
acterised by two distinct variables, one used for reading, the other for
writing; scope restriction binds together two variables, thus establishing
the correspondence between the two ends of a same channel. This mech-
anism allows a precise control of resources via a linear type system. We
build the language gradually, starting from simple input/output, then
adding choice, recursive types, replication and finally subtyping. We also
present an algorithmic type checking system.

1 Introduction

In complex concurrent interactions partners often exchange a large number of
messages as part of a pre-established protocol. The nature and order of this mes-
sages are a natural candidate for structuring interactions themselves. It is in this
context that session types make their contribute by allowing a concise description
of the continuous interactions among partners in a concurrent computation.

For example, consider a simplified distributed auction system with three
kinds of players: sellers that want to sell items, auctioneers that sell items on
their behalf, and bidders that bid for an item being auctioned. The protocol
for sellers is simple: there is only one operation that sellers may invoke on an
auctioneer—selling—where they provide the auctioneer with a description of the
item to be sold (a string), and the minimum price they are willing to sell the
item for. The protocol starts as follows, where ⊕ introduces the choices available
to the seller, and ! the output of a value.

⊕{selling : !String.!Price . . . }

Sellers then wait on the outcome of their request. Two things can happen: either
the item was sold (in which case the seller gets the price the item was sold for), or
the item was not sold. The protocol then continues as below, where & denotes
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the range of alternatives offered by the seller at this point, and ? represents
input.

&{sold : ?Price . . . ,notSold : . . . }
In either case the protocols halts; we indicate that with the end mark. The
complete protocol as seen by the seller can be concisely described.

⊕{selling : !String.!Price.&{sold : ?Price.end,notSold : end}}

The protocol for auctioneers is slightly more complex, for they must interact
not only with sellers but with bidders as well. Starting with the interaction with
sellers, we know that auctioneers must offer a selling alternative, and if such
alternative is taken, then they must accept a string (the item be sold) followed
by the price the seller is asking.

&{selling : ?String.?Price . . . }

The auctioneer then puts the item on sale, and gets back to the seller with one
of the possible outcomes: sold or notSold.

⊕{sold : !Price . . . ,notSold : . . . }

Putting everything together we have two session types, the first for the seller,
the second for the auctioneer.

⊕{selling : !String.!Price.&{sold : ?Price.end,notSold : end}}
&{selling : ?String.?Price.⊕{sold : !Price.end,notSold : end}}

The description implies that sellers should be able to safely interact with
auctioneers; the session types for the two partners make this clear: when the seller
selects the selling choice, the auctioneer offers that exact choice, and conversely
for choices sold and notSold. Furthermore, when the seller outputs a value, the
auctioneer inputs a value of the same type, and when the seller ends the protocol,
so does the auctioneer. We say that the two types are dual, a notion central to
session types.

But the auctioneer should also interact with bidders. Bidders start by reg-
istering themselves, then enter an interactive bidding session, and eventually
unregister, thus leaving the protocol. The auctioneer offers a second option—
register—to be used by bidders.

&{selling . . . , register : . . . }

Bidders on the other hand must follow a protocol of the form ⊕{register : . . . },
dual to that of the corresponding branch in the auctioneer. In summary we have
the following situation

auctioneer : &{selling . . . , register : . . . }
seller : ⊕{selling : . . . }

bidder : ⊕{register : . . . }



P ::= Processes:
x v.P output
x(x).P input
P | P parallel composition
if v then P else P conditional
0 inaction
(νxx)P scope restriction

v ::= Values:
x variable
true | false boolean values

Fig. 1. The syntax of processes

but now the protocol of the auctioneer is not dual to neither that of seller nor
that of the bidder. Subtyping allows to specialize the type of the auctioneer to
that of the seller, as in &{selling . . . }, or to that of the bidder, &{register . . . },
as required by duality.

This chapter introduces a reconstruction of session types based on the ideas
of linear type systems. Session types describe communication channels in the pi
calculus, both linear and shared (or unrestricted). The various concepts usually
associated to session types are introduced piecewise. We start by studying a
language with input, output, parallel composition, and scope restriction. We
then incorporate choice in the form of branching (external choice) and selection
(internal choice). Even though the required machinery is in place, the particular
form of types does not allow to type useful unrestricted channels—recursive types
provide such a facility. Up to this point the language does not allow describing
unbounded computations—we introduce replication for the effect. The next step
is to introduce subtyping, thus enlarging the class of typable programs. The last
step in the development of our language introduces an algorithmic type checking
system. The closing section includes references to the sources of this chapter and
discusses related work.

2 Syntax

Figure 1 presents the syntax of our language. There is one base set only: variables.
When writing processes, any lower case roman-letter except u and v represents
a variable. Depending on the context we also use the word channel to denote a
variable.

In interactive behavior variables come in pairs, called co-variables. The best
way to understand co-variables is to think of them as representing the two ends
of a communication channel—one party writes on one end, others read from the
other end. Interacting threads do not share variables for communication; since



q ::= Qualifiers:
lin linear
un unrestricted

p ::= Pretypes:
bool booleans
end termination
?T.T receive
!T.T send

T ::= Types:
q p qualified pretype

Γ ::= Contexts:
∅ empty context
Γ, x : T assumption

Fig. 2. The syntax of types

a channel is represented as a pair of co-variables, each thread owns its variable.
This mechanism allows a precise control of resources via a linear type system.

The constructors of the language are those of the pi calculus with boolean
values, except for a small difference in scope restriction. The output process x v.P
writes value v on variable x and continues as P . Conversely, the input process
y(z).P receives on variable y a value it uses to substitute the bound variable z
before continuing with the execution of process P . The parallel composition
P | Q allows processes P and Q to proceed concurrently. The conditional process
executes P or Q depending on the boolean value v. The terminated process, or
inaction, is denoted by 0. The particular form of scope restriction (νxy)P is the
novelty with respect to the pi calculus—not only it hides two variables, but it
also establishes x and y as two co-variables, allowing communication to happen
in process P , between a thread writing on x and another thread reading from y.
It should be stressed that (νxy)P is not a short form for (νx)(νy)P ; instead it
binds two co-variables together.

3 Typing

The syntax of types is described in Figure 2. Type qualifiers annotate pretypes.
For pretypes we have bool, the type of the boolean values. Pretype end may
be used to represent a co-variable on which no further interaction is possible.
Pretypes !T.U and ?T.U describe channels ready to send or to receive a value of
type T and then continuing its interaction as prescribed by type U .

Linearly qualified types describe variables that occur in exactly one thread, a
thread being any process not comprising parallel composition. The unrestricted



q ?T.U = q !T.U q !T.U = q ?T.U q end = q end

Fig. 3. The dual function on types

qualifier indicates that the value can occur in multiple threads. A type lin bool
represents a boolean value that can be tested exactly once, whereas un bool de-
scribes a boolean value that can be tested a variable number of times. Similarly
a type lin !T.U represents a channel that can be used once for sending a value of
type T before becoming a channel that behaves as U . A channel un !T.U can be
used multiple types to send values of type T . Typing contexts, also introduced
in Figure 2, gather type information on variables.

To lighten the syntax in examples, we adopt a few abbreviations. First, we
omit all unrestricted qualifiers and only annotate linear types. Second we omit
the trailing 0 in processes. Third, we omit the trailing un end in types. In examples
involving communication we also assume that co-variables are annotated with
subscripts 1 and 2, for example (x1, x2) and (y1, y2).

If x is a variable of an arbitrarily qualified type, a is a variable of an unre-
stricted type and c a variable of a linear type, then the first two processes are
well formed, whereas the last one is not.

x true.x(y) :-)
a true | a true | a false :-)

c true | c false :-(

Type duality plays a central role in the theory, ensuring that communication
on co-variables proceeds smoothly. Intuitively, the dual of output is input and
the dual of input is output. In particular if U is dual of T , then q?S.U is dual of
q!S.T . Pretype end is dual of itself; duality is not defined for the bool type. The
definition is in Figure 3.

Based on duality, we would like to accept the first two processes, but not the
last two.

x1 true | x2(z) :-)
x1 true.x1(w) | x2(z).x2 false :-)

x1 true | x2 false :-(
x1 true.x1(w) | x2(z).x2(t) :-(

One might expect duality to affect the parameter of the sent and the received
type, e.g., q ?T.U = q !T .U . That would be unsound as the example below shows.
Consider the process:

x1 y2 | x2(z).z true | y1 false :-(



Context split

∅ = ∅ ◦ ∅ Γ1 ◦ Γ2 = Γ

Γ, x : un p = (Γ1, x : un p) ◦ (Γ2, x : un p)
Γ = Γ1 ◦ Γ2

Γ, x : lin p = (Γ1, x : lin p) ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ, x : lin p = Γ1 ◦ (Γ2, x : lin p)

Context update

Γ = Γ + ∅ Γ = Γ1 + Γ2

Γ, x : T = Γ1 + (Γ2, x : T )

Γ = Γ1 + Γ2

Γ, x : un p = (Γ1, x : un p) + (Γ2, x : un p)

Fig. 4. Context split and context update

The following context is expected to type the process, where the argument
y2 : !bool of the send operation on x1 is dual of parameter z : ?bool in the re-
ceive operation on x2.

x1 : !(!bool), x2 : ?(?bool), y1 : !bool, y2 : !bool

Yet the process reduces to an illegal process, where y1 and y2 are not dual.

y2 true | y1 false :-(

For each qualifier q we define a predicate also named q which is true of types
qp and also of contexts x1 : qp1, . . . , xn : qpn. We maintain the linearity invariant
through the standard linear context splitting operation. When type checking
processes with two sub-processes we pass the unrestricted part of the context to
both processes, while splitting the linear part in two and passing a different part
to each process. In this way, if x is a linear variable then the process x true | x true
is not typable, since x can only occur in one of the parts, allowing to type one but
not both processes. Figure 4 defines the context splitting relation Γ = Γ1 ◦ Γ2.
Notice that in the third rule, x is not in Γ2 since it is not in Γ = Γ1 ◦ Γ2, and
similarly for the last rule and Γ1.

Equipped with the notions of context splitting and type duality we are ready
to introduce the typing rules. We distinguish typing rules for values with judg-
ments of the form Γ ` v : T , from those for processes with judgments Γ ` P .
The rules are in Figure 5.

Our type system maintains the following invariants.

– Linear channels occur in exactly one thread;
– Co-variables have dual types.

We want to make sure that linear variables are not discarded without being
used; the base cases of the type system check that there is no linear variable in
the context. In particular, in rules [T-Var], [T-False] and [T-True] for values
and [T-Inact] for processes, we check that Γ is unrestricted. Notice that this
does not preclude type T itself from being linear in rule [T-Var]. The typing



Typing rules for values

un(Γ )
Γ ` true : q bool

un(Γ )
Γ ` false : q bool

un(Γ1, Γ2)

Γ1, x : T, Γ2 ` x : T
[T-False] [T-True] [T-Var]

Typing rules for processes

un(Γ )
Γ ` 0

Γ1 ` P Γ2 ` Q
Γ1 ◦ Γ2 ` P | Q

[T-Inact] [T-Par]

Γ1 ` v : q bool Γ2 ` P Γ2 ` Q
Γ1 ◦ Γ2 ` if v then P else Q

Γ, x : T, y : T ` P
Γ ` (νxy)P

[T-If] [T-Res]

Γ1 ` x : q ?T.U (Γ2, y : T ) + x : U ` P
Γ1 ◦ Γ2 ` x(y).P

[T-In]

Γ1 ` x : q !T.U Γ2 ` v : T Γ3 + x : U ` P
Γ1 ◦ Γ2 ◦ Γ3 ` x v.P

[T-Out]

Fig. 5. Typing rules

rules for values are those one finds in the linear lambda calculus—boolean values
have type bool, variables have the type prescribed by the context. Rule [T-Var]
allows variable x to occur anywhere in the context, as opposed to just at the
beginning or at the end.

Rule [T-Par] uses context splitting to partition linear variables between the
two processes: the incoming context is split into Γ1 and Γ2, and we use the former
to type check process P and the latter to type check process Q. Rule [T-If] for
the conditional process splits the incoming context in two parts: one used to
check the condition, the other to check both branches. The same context for the
two branches is justified by the fact that only one of P or Q will be executed.
The qualifier of the boolean value is unimportant.

For rule [T-Res] we add to the context two extra hypotheses for the newly
introduced variables, at dual types. The rule captures the essence of co-variables:
they must have dual types.

Similarly to the rule for parallel composition, rule [T-In] splits the context
into two parts: one to type check variable x, the other to type check continua-
tion P . If x is of type q ?T.U , we know that the bound variable y is of type T ,
and we type check P under the extra assumption y : T . Equally important is the
fact that the continuation uses variable x at continuation type U , that is, process
x(y).P uses variable x at type q ?T.U whereas P may use the same variable this
time at type U . If x is a linear variable then it is certainly not in Γ2 because it
is in Γ1. If, on the other hand, x is unrestricted then context updating is only
defined when U is equal to q?T.U , which will become possible in Section 6.

The rule for sending a value, [T-Out], splits the context in three parts, one to
check x, another to check v and the last to check continuation P . Similarly to the
rule for reception, the continuation process uses variable x at the continuation



P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P
(νxy)P | Q ≡ (νxy)(P | Q) (νxy)0 ≡ 0 (νwz)(νxy)P ≡ (νxy)(νwz)P

Fig. 6. Structural congruence

type, that is, x v.P uses x at type q!T.U , whereas P uses the same variable at
type U .

The dual function is not total: it is not defined on bool, nor on any type
“terminating” in bool, such as ?bool.bool. Had we incorporated other base types
in our language (integers for example), duality would not be defined on them
as well. Duality is a function defined on session types only: input, output, and
the terminated session end. Imagine that we set bool = bool; we would be able to
type process

(νxy)if x then 0 else 0

or any process reducing to it.
There are many interesting pi calculus processes that our type system fails

to check, including x true | x true. In order to type this process we seek a context
associating an unrestricted type to x, as in x : !bool.T . Then the third premise of
rule [T-Out] reads (x : !bool.T )+(x : T ) which cannot be fulfilled by any type T
built from the syntax in Figure 2. Clearly, so far, we are dealing with a language
of linear channels only.

The following structural property of the type system is useful in the proof of
preservation (Theorem 1).

Lemma 1 (Unrestricted weakening). If Γ ` P then Γ, x : un p ` P .

Proof. The proof follows by induction on the structure of the derivation. We
need to establish a similar result for values, whose proof is a simple case analysis
on the two applicable typing rules. The hypothesis un(Γ ) in rule [T-Inact]
establishes the base case. ut

4 Operational Semantics

In our language parenthesis represent bindings—variable y occurs bound in
x(y).P and in (νxy)P ; variable x occurs bound in (νxy)P . A variable that
occurs in a non-bound position within a process is said to be free. The set
of free variables in a process P , denoted by fv(P ), is defined accordingly, and
so is alpha-conversion, as well as the capture-free substitution of variable x by
value v in process P , denoted by P [v/x]. We work up to alpha-conversion and
follow Barendregt’s variable convention, whereby all variables in binding occur-
rences in any mathematical context are pairwise distinct and distinct from the
free variables.



(νxy)(x v.P | y(z).Q | R) → (νxy)(P | Q[v/z] | R) [R-Com]
if true then P else Q → P [R-IfT]
if false then P else Q → Q [R-IfF]

P → Q

(νxy)P → (νxy)Q
[R-Res]

P → Q

P | R → Q | R [R-Par]

P ≡ P ′ P ′ → Q′ Q′ ≡ Q
P → Q

[R-Struct]

Fig. 7. Operational semantics

To evaluate processes we use a small step operational semantics. As usual in
the pi calculus, we factor out a structural congruence relation on processes al-
lowing the syntactic rearrangement of these, thus contributing for a more concise
presentation of the reduction relation.

Structural congruence, ≡, is the smallest congruence relation on processes
that satisfies the axioms in Figure 6. The axioms are standard in pi calculus.
The first three say that parallel composition is commutative, associative and
contains the terminated process 0 for neutral. The first rule on the second line
is called scope extrusion, and allows the scope of a ν-binder to extend to a new
process Q or to retract from this, as needed. Notice that the proviso “x, y not
free in Q” is redundant in face of the variable convention, for x occurring bound
in (νxy)P cannot occur free in Q. The last two rules allow to collect unused
restrictions and to exchange the order of bindings.

The operational semantics is defined in Figure 7. In rule [R-Com], a process
willing to send a value v on variable x, in parallel with another process ready to
receive on variable y, engages in communication only if x, y are two co-channels,
that is if the two processes are underneath a restriction (νxy). In that case,
both prefixes are consumed and v replaces the bound variable z in the receiving
party. The binding (νxy) persists, in order to potentiate further interactions in
the resulting process. Process R witnesses reduction on unrestricted channels; it
may represent the terminated process 0 on reduction on linear channels. A direct
consequence of this rule is that communication cannot happen on free variables
for there is no way to tell what the co-variables are.

Rules [R-IfT] and [R-IfF] replace a conditional process with the then branch
or with the else branch, depending on the value of the condition. Rules [R-Res]
and [R-Par] allow reduction to happen underneath scope restriction and par-
allel composition, respectively. Finally, rule [R-Struct] incorporates structural
congruence in the reduction relation.

Unlike the linear lambda calculus, our type system offers no guarantee of
progress. If fact processes can deadlock quite easily, it suffices to create two



sessions that read and write in the “wrong” order.

x1 true.y1 false | y2(x).x2(w) :-)

Even though one finds processes prefixed at any of the four linear variables, and
the types are dual, the order by which the two threads order these prefixes is
not conducting to reduction. An even more crafty process, uses channel passing
to end up with a cycle including a single thread.

x1 y1 | x2(z).z true.y2(w) :-)

The rest of this section is dedicated to the proof of the main results of our
language.

Equipped with the notion of free variables and substitution we can prove two
important results of our type system. Strengthening allows to remove extraneous
entries from the context, but only when the variable does not occur free in the
process. Clearly we have x : ?bool ` x(y), but not ` x(y). Also, linear variables
occur in the context only if free in the process, e.g., x : lin?bool ` 0 is not a valid
judgement.

Lemma 2 (Strengthening). If Γ, x : T ` P and x 6∈ fv(P ) then Γ ` P and
un(T ).

Proof. The proof is by induction on the structure of the derivation. The hypoth-
esis un(Γ ) in rule [T-Inact] establishes the base case. ut

The following result relates judgments Γ ` P and the free variables of P .

Lemma 3 (Free variables).

– If Γ ` P and x ∈ fv(P ) then x ∈ Γ .
– If Γ, x : lin p ` P then x ∈ fv(P ).

Proof. The proofs are by induction on the derivations. ut

The Substitution Lemma plays a central role in proof of type preservation
(Theorem 1).

Lemma 4 (Substitution). If Γ1 ` v : T and Γ2, x : T ` P and Γ1◦Γ2 is defined
then Γ1 ◦ Γ2 ` P [v/x].

Proof. The proof is by induction on the typing derivation and uses Strengthening
and Weakening and Free variables (Lemmas 1, 2, and 3). This is the most elabo-
rate proof in this section. We start with the simple observation that if Γ1 ` v : T
then either v = true and un(Γ1) or v is a variable and Γ1 = Γ3, v : T, Γ4 and
un(Γ3, Γ4). For the base case (rule [T-Inact]), we know that un(Γ2) and un(T ).
The result follows by Strengthening and Weakening. For each inductive case we
prove two situations separately: lin(T ) and un(T ). ut



The next lemma states that structural equivalent processes can be typed
under the same contexts, and is used in the [R-Struct] case of the proof of
preservation.

Lemma 5 (Preservation for ≡). If Γ ` P and P ≡ Q then Γ ` Q.

Proof. The proof is by a simple analysis of derivations for each member of each
axiom. We use Weakening, Strengthening, and Free variables (Lemmas 1, 2,
and 3), and must not forget to check the two directions of each axiom.

A representative case is scope restriction. To show that, if Γ ` (νxy)P | Q
then Γ ` (νxy)(P | Q), we start by building a derivation for Γ ` (νxy)P |
Q, to conclude that Γ must be of the form Γ1 ◦ Γ2, that Γ1, x : T, y : T ` P ,
and that Γ2 ` Q. To build a derivation for the conclusion we start with Γ2 `
Q and distinguish two cases. If T is linear, then (Γ1, x : T, y : T ) ◦ Γ2 = Γ1 ◦
Γ2, x : T, y : T ; otherwise use Weakening to conclude that Γ2, x : T, y : T ` Q and
(Γ1, x : T, y : T ) ◦ (Γ2, x : T, y : T ) = Γ1 ◦ Γ2, x : T, y : T . In either case complete
the proof with rules [T-Res] and [T-Par].

In the reverse direction, to show that if Γ ` (νxy)(P | Q) then Γ ` (νxy)P |
Q, we consider two cases, depending on whether rule [T-Res] introduces an un-
restricted or a linear type. For the former, applying rules [T-Res] and [T-Par]
from the conclusion Γ ` (νxy)(P | Q), we know that Γ = Γ1 ◦ Γ2, that
Γ1, x : T, y : T ` P and that Γ2, x : T, y : T ` Q. To build a derivation for the
conclusion, we apply Strengthening to the hypothesis on Q to obtain Γ2 ` Q,
and then apply [T-Res] and [T-Par] as required.

If on the other hand T is linear, by Free variables there is one only way to
split Γ1 ◦Γ2, x : T, y : T ; we have Γ1, x : T, y : T ` P and Γ2 ` Q and we conclude
the proof using rules [T-Res] and [T-Par]. ut

Theorem 1 (Preservation). If Γ ` P and P → Q then Γ ` Q.

Proof. The proof is by induction on the reduction derivation, and uses Weaken-
ing and Substitution (Lemmas 1 and 4). The inductive cases are straightforward;
we use Lemma 5 in case [R-Struct].

The most interesting case is when the derivation of the reduction step ends
with rule [R-Com]. Suppose that [T-Res] introduces x : q!T.U, y : q?T.U . Build-
ing the tree for the hypothesis, we know that Γ = Γ1 ◦Γ2 ◦Γ3 ◦Γ4 where Γ3 ` R.
At this point we distinguish two cases depending on nature of qualifier q. If linear
then we have Γ1, x : U ` P and Γ2, z : T, x : U ` Q and Γ4 ` v : T . From Γ4 ` v : T
and Γ2, z : T, x : U ` Q we use Substitution to obtain Γ4 ◦Γ2, x : U ` Q[v/z]. We
then conclude the proof with rules [T-Par], [T-Par], [T-Res].

If q is unrestricted, we have (Γ1, x : q!T.U)◦x : U ` P , and (Γ2, y : q?T.U, z : T )◦
y : U ` Q and Γ4, x : q!T.U ` v : T . The first context splitting operation is de-
fined only when q!T.U is U , and the second when q?T.U is U . Then we use
Weakening four times: to go from Γ1, x : U ` P to Γ1, x : U, y : U ` P , from
Γ2, z : T, y : U ` Q to Γ2, z : T, x : U, y : U ` Q, from Γ3 ` R to Γ3, x : U, y : U ` R,
and from Γ4, x : U ` v : T to Γ4, x : U, y : U ` v : T . Using Substitution, we con-
clude the proof as in the case of q linear. ut



We now look at the guarantees offered by typable processes. To study what
can go wrong with our machine, we look at the syntax of processes (Figure 1)
and the reduction relation (Figure 7), and try to figure out in which cases can the
machine get stuck, that is, not able to proceed because of ill-formed processes.
There is an obvious case: the value in the condition is neither true nor false in
rules [R-IfT] and [R-IfF]. But there are other processes that may prevent the
machine from advancing. These include processes with two threads sharing a
variable, but using it with distinct interaction patterns, and two threads each
possessing a co-variable, but using them in non-dual patterns.

a true | a(z) :-(
(νx1x2)(x1 true | x2 true) :-(
(νx1x2)(x1(z) | x2(w)) :-(

We say that a process is non well-formed if it can be written as (νx̃ỹ)(P |
Q | R) up to structural congruence, and one of the following happens.

1. P is of the form if v then P ′ else P ′′ and v 6= true, false; or
2. P is of the from x v.P ′ and Q is x(z).Q′; or
3. P is of the from xi u.P

′ and Q is yi v.Q′, or P is of the form xi(z).P
′ and Q

is yi(z).Q′.

Typable processes are not necessarily well-formed. The process if x then 0 else 0
is typable under context x : bool, yet we consider it an error for x is not a boolean
value. But if P is closed (hence typable under the empty context, by Strength-
ening, lemma 2) and x is bound by a (νxy) binder, then rule [T-Res] introduces
two dual types in the context, x : T, y : T , where T is necessarily different from
bool, for duality would not be defined otherwise.

Theorem 2. If ` P then P is well formed.

Proof. The proof is by contradiction. We build the derivation for ` (νx̃ỹ)(P1 |
P2 | P3); in each of the three cases a simple analysis of the hypothesis shows
that P is not typable. ut

5 Choice

Choice allows processes to offer a fixed range of alternatives and clients to select
among the variety offered. We extend the syntax of our language with support
for offering alternatives, called branching, and to choose among the alternatives,
called selection. The details are in Figure 8, where we add to our repertoire
another base set—labels. Lower case letters l and m are used to denote labels.

A process of the form xC l.P selects one of the options offered by a process
prefixed at the co-variable. Conversely, a process x B {li : Pi}i∈I offers a range
of options, each labelled with a different label in the set {li}i∈I . Such a process
handles a selection at label lj by executing process Pj .



New syntactic forms

P ::= . . . Processes:
xC l.P selection
xB {li : Pi}i∈I branching

p ::= . . . Pretypes:
⊕{li : Ti}i∈I select
&{li : Ti}i∈I branch

New duality rules

q ⊕{li : Ti}i∈I = q&{li : Ti}i∈I q&{li : Ti}i∈I = q ⊕ {li : Ti}i∈I

New typing rules

Γ2 ` x : q ⊕{li : Ti}i∈I Γ2 + x : Tj ` P j ∈ I
Γ1 ◦ Γ2 ` xC lj .P

[T-Sel]

Γ1 ` x : q&{li : Ti}i∈I Γ2 + x : Ti ` Pi ∀i ∈ I
Γ1 ◦ Γ2 ` xB {li : Pi}i∈I

[T-Branch]

New reduction rules

j ∈ I
(νxy)(xC lj .P | y B {li : Qi}i∈I | R) → (νxy)(P | Qj | R)

[R-Case]

Fig. 8. Choice

Imagine a data structure mapping elements from a given type Key to a
type Value. Among its various operations one finds put and get. To put key k
associated to a value v one writes:

mapC put.map k.map v

To get a value from a map one sends a key and expects a value back, but
only if the key is in the data structure. If not then we should be notified of the
fact. We use labels some and none to denote the result of the get operation.
Further, if the key is in the map, we expect a value as well. Here is a client that
runs process P if the key is in the map, and runs Q otherwise.

mapC get.map k.mapB {some : map(x).P,none : Q}

Types for the new constructors are ⊕{li : Ti}i∈I and &{li : Ti}i∈I , represent-
ing channels ready to select or to offer li options. In either case type Tj describes
the continuation once label lj has been chosen. Select types are akin to labelled
variants in sequential languages, whereas branching types can be compared to
labelled records. The new type structures are interpreted as non-ordered records;
we do not distinguish &{l : T,m : U} from &{m : U, l : T}.



The type of the map, as seen from the side of the client, that is the type of
variable map, is as follows.

⊕{put : !Key.!Value, get : !Key.&{some : ?Value.end,none : end}}

The two new pretypes are dual to each other. In the third example below x
is obviously unrestricted.

x1 C l | x2 B {l : 0} :-)
x1 C l | x2 B {l : 0,m : 0} :-)

x1 C l | x1 Cm | x1 Cm | x2 B {l : 0,m : 0} :-)
x1 true | x2 B {l : 0} :-(

x1 C l | x2(z) :-(
x1 C l | x2 B {m : 0} :-(

To type check a branching process prefixed by x at type &{li : Ti}i∈I we
have to check each of the possible continuations Pi at x : Ti. We use the exact
same Γ2 in all cases for only one of the Pi will be executed, similarly to rule for
the conditional process. If rule [T-Branch] introduces an external choice type
&{li : Ti}i∈I , rule [T-Sel] eliminates the dual, internal choice type ⊕{li : Ti}i∈I .
To type check a process selecting label lj at name x at type ⊕{li : Ti}i∈I , we
have to type check the continuation process at the correspondent type x : Tj . In
both cases, and similarly to the rules for output and input in Figure 5, context
splitting Γ ◦ x : T must be defined.

The operational semantics is extended with rule [R-Case]. The rule follows
the pattern of [R-Com]: the two processes engaging in reduction must be under-
neath a prefix that puts the two co-variables in correspondence. The selecting
party continues with process P , the branching party with the body of the selected
choice, Pj .

Exercise 1. Sketch a proof of type preservation for the new language.

Exercise 2. What are the new errors associated with the constructs for branching
and selection? Redefine the notion of well formed processes. Sketch a proof for
the type safety result.

6 Recursive Types

The typing rule for the output process (rule [T-Out] in Figure 5) does not allow
to type check a process x v.P with x unrestricted, for it requires the continu-
ation T of type un!T.U to be equal to un!T.U itself. We would like to consider
as a type the regular infinite tree solution to the equation U = un!T.U . A finite
notation for such a type uses the µ-notation, as in µa.un!T.a.

Figure 9 includes recursive types in the syntax of types, where we rely on
one more base set, that of type variables. Recursive types are required to be



New syntactic forms

T ::= . . . Types:
a type variable
µa.T recursive type

New duality rules

µa.T = µa.T a = a

Fig. 9. Recursive types

contractive, i.e., containing no subexpression of the form µa1 . . . µan.a1. The µ
operator is a binder, giving rise, in the standard way, to notions of bound and
free variables and alpha-equivalence. We denote by T [U/a] the capture-avoiding
substitution of a by U in T . Rather than defining type equivalence directly, we
rely on the definition of subtyping discussed in Section 8. In any case, types
are understood up to type equivalence, so that, for example, in any mathemat-
ical context, types µa.T and T [µa.T/a] can be used interchangeably, effectively
adopting the equi-recursive approach.

The dual function descends a µ-type and leaves type variables unchanged.
To check that a given type T is dual of another type U , we first build the type T
and then use the definition above. For example, to show that µa.?bool.!bool.a
is dual of !bool.µb.?bool.!bool.b, we build µa.?bool.!bool.a = µa.!bool.?bool.a, and
then show that µa.!bool.?bool.a = !bool.µb.?bool.!bool.b.

The new type constructors are not qualified, instead µa.T takes the qualifier
of the underneath type T . Contractivity ensures that types can be interpreted
as regular infinite trees; it also ensures that we can always find out what the
qualifier of a type is. Since not all type constructors are qualified anymore, we
have to adjust the un and the lin predicates on types. Predicate q is true of types
qp as before; and is now true of type µa.T if it is true of type T .

Unlike the linear lambda calculus where unrestricted data structures may
not contain linear data structures, unrestricted channels can carry both unre-
stricted and linear channels. Consider the type ?(lin!bool).T of an unrestricted
channel that receives a linear channel capable of outputting a boolean value.
The following sequent is easy to establish,

x2 : ?(lin!bool).T ` x2(z).z true | x2(w).w false :-)

but only for an appropriate type T . We have seen that it must be equivalent to
?(lin!bool).T , that is T must be µa.?(lin!bool).a. This form of types is so common
that we introduce a short form for them, simply writing ∗?(lin!bool).

Our language does not include tuple passing as a primitive construct, rather
it can only send or receive a single value at a time. Fortunately, tuple passing is
easy to encode. To send a pair of values u, v of types T,U over a linear channel x,
we just send the values, one at a time; no interference is possible due to the linear



nature of the carrier channel.

x 〈u, v〉.P = xu.x v.P

If the tuple is to be passed on a unrestricted channel, then we must protect
the receiving operations from interference, creating a new lin?T. lin?U channel
to carry the values. The standard encoding for the binary sending and receiving
operations are as follows.

x1 〈u, v〉.P = (νy1y2)x1 y2.y1 u.y1 v.P

x2(w, t).P = x2(z).z(w).z(t).P

The encodings are typable in our language, if we choose variable y1 of appro-
priate linear type, lin!T.lin!U , and dually for y2. Variable x1 is then of type
∗!(lin?T.lin?U), and dually for x2. We abbreviate the type of channel that sends
a pair of values of types T and U to ∗!〈T,U〉, and dually for a channel that
receives a pair of values, ∗?〈T,U〉.

Here is another example on passing linear tuples on unrestricted channels.
Below is a process that writes two boolean values on a given channel z and then
returns the channel (on a given channel w) so that it can be further used.

p1(z, w).z true.z true.w z :-)

A process that calls p1 to read two boolean values and then writes a third on
channel x can be written as

p2 〈c, x1〉 | x2(z).z false :-)

where p1 is typed at ∗?〈lin!bool.lin!bool.lin?bool, lin?bool〉.
A once linear channel can become unrestricted, we just have to get the right

types. For example, type T = lin!bool.∗?bool describes a channel that behaves
linearly in the first interaction and unrestricted thereafter. Suppose that x1 is of
type T and x2 of type T .

x1 true.(x1(y) | x1(z)) | x2(x).(x2 true | x2 false | x2 true) :-)
x1 true.x1(y).x1(y) | x2(z) :-)

x1 true.x1(y) | x2(y).x2 true | x2(w).x2 true :-(

So now we know that a traditional pi calculus channel that can be used an
unbounded number of times for outputting boolean values is of type ∗!bool, that
is, µa.!bool.a. Conversely, a channel that can be used for reading an unbounded
number of boolean values is of type ∗!bool = µb.?bool.b. What about a channel
that can we used both for reading and for writing? There is no such thing in this
theory; the channel is in reality a pair of co-variables, one to read, the other to
write.

Equipped with the equi-recursive notion of types, typing rules (in Figure 5)
remain unchanged. More importantly, the preservation theorem holds as before,
and we do not even need to touch the proof.



New syntactic forms

P ::= . . . Processes:
∗ x(x).P replication

New typing rules

Γ ` P un(Γ )
Γ ` ∗P [T-Repl]

New reduction rules

(νxy)(x v.P | ∗y(z).Q | R) → (νxy)(P | Q[v/z] | ∗y(z).Q | R) [R-Repl]

Fig. 10. Replication

7 Replication

Up until now our language is strongly normalizing—each reduction step strictly
decreases the number of symbols that compose the processes involved. To provide
for unbounded behavior we introduce a special form of receptor that remains
after reduction, called replication. The details are in Figure 10.

The reduction rule [R-Repl] for a replicated process ∗x(y).P is similar to
that of a simple receptor (rule [R-Com] in Figure 7) in all respects except that
process ∗x(y).P persists in the resulting process.

As an example, consider an iterator of boolean values—a process that offers
operations hasNext and next repeatedly until hasNext returns “no”. Further sup-
pose that the iterator accepts requests at x2. A client that reads and discards
every value from the iterator can be written as follows.

∗ loop(y).y C hasNext.y B {yes : y C next.y(z).loop y,no : 0} | loopx2 (1)

Clearly, the communication pattern of the iterator, as seen by the client at
variable x2, is of the form

lin⊕{hasNext : lin&{no : end, yes : lin⊕{next : lin !bool.lin⊕{hasNext : lin&{. . . }}}}}

which can be written in finite form as follows.

µa.lin⊕ {hasNext : lin&{no : end, yes : lin⊕ {next : lin !bool.a}}} (2)

Notice that the type in equation 2 is equivalent to the following,

lin⊕ {hasNext : µb.lin&{no : end, yes : lin⊕ {next : lin !bool.lin⊕ {hasNext : b}}}}

and that the two types can never be made syntactically equal by finite expansion
alone, yet we would not like to distinguish them, for they have the same infinite
expansion.



New typing rule

Γ ` v : T T <: U

Γ ` v : U [T-Sub]

Fig. 11. Subtyping

The typing rule [T-Repl] for the replicated process ∗x(y).P directly calls
rule [T-In] in Figure 5 for the input process x(y).P . In addition, it requires
the context that types the body x(y).P of the replicated process to be unre-
stricted. To understand what would happen if we relax this restriction, consider
the following process

∗x2(z).c true | x1 true | x1 false :-(

where we would like c to be typed at lin!bool. The process reduces in two steps
to ∗x2(z).c true | c true | c true, invalid given the sought linearity for channel c.
Instead, procedures that use linear values must receive them as parameters,
thus allowing the type system to check possible value duplications. If we pass
channel c as parameter,

∗x2(z).z true :-)

then the procedure can no longer be used by process x1 c | x1 c, because rule
[T-Par] precludes splitting any context in two parts both containing a channel c
of a linear type.

Exercise 3. Prove that type preservation still holds for the language with repli-
cation.

Exercise 4. In this section we made the input process persistent by using replica-
tion. Branching, introduced in Section 5, can be made persistent as well. Devise
a typing and a reduction rule for a replicated branching process ∗xB{li : Pi}i∈I .
Sketch the proof of the corresponding case in the type preservation theorem.

8 Subtyping

Subtyping brings extra flexibility to our type system. The insistence that ar-
guments in output processes exactly match input parameters in corresponding
receivers leads to the rejection of programs that will never go wrong when exe-
cuted.

One example can be found in the introduction. For another, the iterator dis-
cussed in Section 6 imposes a strict discipline on its clients: they must alternate
between operations hasNext and next, as long as hasNext returns yes. A more
liberal server would allow clients to call, after the first hasNext, not only next



but also and again hasNext.

lin&{hasNext : µb.lin⊕ {no : end, yes : lin&{next : lin !bool.

lin&{hasNext : b}, hasNext : b}}} (3)

Now imagine the situation where we have typed both the iterator (prefixed
at x1) and its client (at x2) in context x2 : T, x1 : T , where T is the type in equa-
tion 2, and we now replace the iterator to conform to the type U in equation 3.
Operationally there should be no problem. Below are two snapshots of the sys-
tem where the client is about to ask next, first to the old iterator, and then to
the new.

(νx2x1)(x2 C next.x2(y).loopx2 | x1 B {next : P} | R) (4)

(νx2x1)(x2 C next.x2(y).loopx2 | x1 B {next : P, hasNext : Q} | R)

The types for the client and the server are dual in the first case, but not in
the second. The client at x2 asks ⊕{next : . . . } whereas the iterator at x1 offers
&{next : . . . , hasNext : . . . }. One solution to the problem allows the server to
“forget” options, thus obtaining a type &{next : . . . }, which is now dual to that
of the client.

Subtyping has in our language the generally accepted meaning, where T <: U
indicates that any value of type T can be safely used in a context where a value
of type U is expected, or “every value described by T is also described by U ”.
The new rule is in Figure 11.

To feel how the subsumption rule works we build a derivation for the parallel
composition of the the new iterator and its client. Let

T = lin&{next : T ′}
U = lin&{next : T ′, hasNext : U ′}
Γ1 = Γ ′1, x1 : T

Γ2 = Γ ′2, x2 : T

P1 = x1 B {next : P, hasNext : Q}
P2 = x2 C next.x1(y).loopx2

in

Γ1 ` x1 : T T <: U
[T-Sub]

Γ1 ` x1 : U

···
Γ1, x1 : T

′ ` P

···
Γ1, x1 : U

′ ` Q

Γ1 ` P1

···
Γ2 ` P2

Γ1 ◦ Γ2 ` P1 | P2

So here is our first rule of finite subtyping.

I ⊆ J Ti <: Ui ∀i ∈ I
q&{li : Ti}i∈I <: q&{lj : Uj}j∈J

[S-BranchFin]



Conversely, we can fix the mismatch between the new iterator and its client
by allowing the client to select more options.

I ⊇ J Tj <: Uj ∀j ∈ J
q ⊕{li : Ti}i∈I <: q ⊕ {lj : Uj}j∈J

[S-SelFin]

To understand why we have T <: U in the hypothesis of rule [S-BranchFin],
remember that type S in &{next : S} of the iterator above (equation 2) contains
multiple (infinite, in fact) nested copies of &{next : S} itself, and we want each
of them to be a subtype of the larger type &{next : . . . , hasNext : . . . }. A similar
reason conducts to the exactly same conclusion in the case of [S-SelFin]. For this
reason, in all four session-type constructors, continuations are always co-variant.

There remains to study the input and output operations. Suppose the client
delegates its variable just before selecting operation next. Towards this end, the
client uses another channel (another pair of co-variables, y1, y2) and sends its
variable x1 on y1. The receiver gets it in y2 and calls the pending next operation
on the iterator. The code for the receiver, the recipient of delegation, is as follows,

y2(z).z C next

where y2 is naturally typed at lin ?(lin⊕ {next : . . . }). When the new iterator
enters operation, the recipient of delegation can call hasNext (as well as next),
and thus rewrites its code to become:

y2(z).z C hasNext

where y2 is now typed at ?(lin⊕ {next : . . . , hasNext : . . . }). We have seen that
q ⊕ {next : . . . , hasNext : . . . } <: q ⊕ {next : . . . }. If we make

q?(q′⊕ {next : . . . , hasNext : . . . }) <: q?(q′⊕ {next : . . . })

then the piece of code y2(z).z C hasNext typed at the subtype can also be used
where the supertype is expected.

The example allows us to conclude that input is co-variant. A similar reason-
ing on the iterator side would allow to conclude that output is contra-variant.

T ′ <: T U <: U ′

q!T.U <: q!T ′.U ′
T <: T ′ U <: U ′

q?T.U <: q?T ′.U ′
[S-SendFin],[S-RcvFin]

In summary:

– Input operations (?,&) are co-variant; output operations (!,⊕) contra-variant;
– Continuations are always co-variant.

Subtyping in the pi calculus is reversed with respect to that found in the
lambda calculus. The notion of co-variable helps in understanding the phe-
nomenon. Our understanding of T <: U is that x1 of type T can be safely
used in a context where a type U is expected. Then it must be the case that the
context uses, not x1, but x2 the co-channel, hence U must offer more choices, so
that it may be used by x2 : U that selects more choices.

Because of recursive types we use a co-inductive definition, rather than an
inductive definition based on the rules we have sketched above.



Definition 1 (Subtyping). Define the operator F ∈ P(T × T ) → P(T × T )
as follows.

F (R) = {(q end, q end), (q bool, q bool)}
∪ {(q?T.U, q?T ′.U ′) | (T, T ′), (U,U ′) ∈ R}
∪ {(q!T.U, q!T ′.U ′) | (T ′, T ), (U,U ′) ∈ R}
∪ {(q&{li : Ti}i∈I , q&{lj : T ′j}j∈J) | I ⊆ J, (Ti, T ′i ) ∈ R,∀i ∈ I}
∪ {(q⊕{li : Ti}i∈I , q⊕ {lj : T ′j}j∈J) | I ⊇ J, (Tj , T ′j) ∈ R,∀j ∈ J}
∪ {(µa.T, T ′) | (T [µa.T/a], T ′) ∈ R}
∪ {(T, µa.T ′) | (T, T ′[µa.T ′/a]) ∈ R}

Contractivity ensures that F is monotone. By the Knaster-Tarski theorem, F has
least and greatest fixed points; we take the greatest fixed point to be the subtyping
relation, writing T <: U if the pair (T,U) is in the relation.

Lemma 6. Subtyping is a pre-order.

As mentioned in Section 6 type equivalence is defined on top of subtyping:
we say that types T and U are equivalent, and write Y = U , when T <: U and
U <: T . In this case we simply write and write T = U , which should not be
confused with syntactic equality.

The interested reader may have notice that there is already a flavor of sub-
typing in rule [T-Sel], Figure 8, where given label lj in a program, we guess the
remaining labels in the ⊕-type. In fact equipped with subtyping, the rule can be
simplified avoiding mentioning extraneous labels.

Γ1 ` x : q ⊕ {l : T} Γ2 ◦ x : T ` P
Γ1 ◦ Γ2 ` xC l.P

[T-SelSimple]

9 Algorithmic Type Checking

The typing rules provided in the previous sections give a concise specification
of what we understand by well formed programs. They cannot however be im-
plemented directly for two main reasons. One is the difficulty of implementing
the non-deterministic splitting operation, Γ = Γ1 ◦Γ2, for we must guess how to
split an incoming context Γ in two parts. The other is the problem of guessing
the types to include in the context when in presence of scope restriction.

To solve the first problem, we restructure the type checking rules to avoid
having to guess context splitting. To address the second difficulty we seek the
help of programmers by requiring explicit annotations in the scope restriction
constructor. We now write (νxy : T )P , where x is supposed to be of type T and y
of type T in scope P . Changes are in Figure 12.

We have introduced our language piecewise. To simplify the exposition, we
address in this section the language formed by the basics in Figure 5, extended



New syntactic forms

P ::= . . . Processes:
(νxy : T )P annotated scope restriction

Context difference

Γ ÷ ∅ = Γ
Γ1 ÷ L = Γ2, x : un p, Γ3

Γ1 ÷ (L, x) = Γ2, Γ3

Γ1 ÷ L = Γ2 x : T /∈ Γ2

Γ1 ÷ (L, x) = Γ2

Typing rules for values

Γ ` q true : q bool;Γ Γ ` q false : q bool;Γ [A-True] [A-False]
Γ1, x : un p, Γ2 ` x : un p; (Γ1, x : un p, Γ2) Γ1, x : lin p, Γ2 ` x : lin p; (Γ1, Γ2)

[A-LinVar] [A-UnVar]

Typing rules for processes

Γ ` 0 : Γ, ∅ Γ1 ` P : Γ2;L1 Γ2 ÷ L1 ` Q : Γ3;L2

Γ1 ` P | Q : Γ3;L2
[A-Inact] [A-Par]

Γ1 ` v : q bool;Γ2 Γ2 ` P : Γ3;L3 Γ2 ` Q : Γ3;L3

Γ1 ` if v then P else Q : Γ3;L3
[A-If]

Γ1, x : T, y : T ` P : Γ2;L

Γ1 ` (νxy : T )P : Γ2 ÷ {x, y};L\{x, y}
[A-Res]

Γ1 ` x : q?T.U ;Γ2 (Γ2, y : T ) + x : U ` P : Γ3;L

Γ1 ` x(y).P : Γ3 ÷ {y};L\{y} ∪ (if q = lin then {x} else ∅) [A-In]

Γ1 ` x : q!T.U ;Γ2 Γ2 ` v : T ;Γ3 Γ3 + x : U ` P : Γ4;L

Γ1 ` x v.P : Γ4;L ∪ (if q = lin then {x} else ∅) [A-Out]

Γ1 ` P : Γ2; ∅
Γ1 ` ∗P : Γ2; ∅

[A-Repl]

Fig. 12. Algorithmic type checking

with recursive types in Figure 9 and replication in Figure 10. We assume that
type equivalence is decidable, and use letter L to denote a set of variables.

The central idea of the new type checking system is that, rather than splitting
the input context into two (or three) parts before checking a complex process,
we pass the entire context to the first subprocess and have it return the unused
part. This output is then passed to the second subprocess, which in turn returns
the unused portion of the context, and so on. The output of the last subprocess
is then the output of the process under consideration. Sequents are now of forms
Γ1 ` v : T ;Γ2 for values and Γ1 ` P : Γ2;L for processes, with the understanding
that Γ1, v and P form the input to the algorithms and T , Γ2, and L is the output.
Set L collects linear (free) variables in P that occur in subject position,1 and
plays its role in the rule for parallel composition.

1 A variable x occurs in subject position in processes x v.P and x(y).P .



The main change in the re-engineered type system is the treatment of linear
variables (which has moved from the axioms (and rule[T-Repl]) to the rules
that introduce assumptions in the context, [A-Res], [A-In]), of replication and
of parallel composition, [A-Repl], [A-Par]. The base cases for variables and
constants allow any context to pass through the judgement, even when containing
linear types. Two rules, [A-UnVar] and [A-LinVar], replace the single rule for
variables [T-Var] in Figure 5. The former keeps the entry x : T in the returned
context, the latter removes the entry.

The assumptions for unrestricted types are never consumed, as the following
example shows.

x : ∗!bool ` x true : (x : ∗!bool); ∅

For linear assumptions three things can happen: they may remain (used or not),
they may disappear altogether or they may become unrestricted.

x : lin !bool.lin !bool ` x true : (x : lin !bool); {x}
x : lin !bool ` 0 : (x : lin !bool); ∅

x : lin !bool, y : ∗!(lin !bool) ` y x : (y : ∗!(lin !bool)); {y}
x : lin !bool ` x true : (x : end); {x}

The above examples motivate rule [A-Par]. The output of the first sub-
process P cannot be directly passed to the second subprocess Q; a rule of the
form

Γ1 ` P : Γ2 Γ2 ` Q : Γ3

Γ1 ` P | Q : Γ3

would allow to derive

x : lin !bool.lin !bool. ` x true | x false : (x : end)

x : lin !bool, y : ∗!end ` x true | y x : (x : end, y : ∗!end)

but we know that x : lin !bool.lin !bool. 6` x true | x false and x : lin !bool, y : ∗!end 6`
x true | y x. Instead, we collect in set L all linear (free) subjects in process P and
use context difference to ensure that they do not remain linear in context Γ2.
Type checking continues with process Q in a context where the assumptions for
the (unrestricted) names in L2 have been removed.

Rule [A-Res] ensures that newly introduced linear variables are used to the
end. The premise Γ1, x : T, y : T ` P : Γ2;L2 introduces variables x and y in the
context. If T is linear, then x must be used in P and should not appear in Γ2 in
linear form (it may however still show in unrestricted form). If T is unrestricted,
then x always appear in Γ2. The case for y is similar. Unrestricted types for x, y
must be deleted from the outgoing context of the rule. To handle both the check
that linear variables do not appear in contexts and the removal of unrestricted
variables we use a context difference operator, ÷, in Figure 12. Notation L, x
denotes the set L′ = L ∪ {x} where x /∈ L. Using this operator, the outgoing
context of the rule is Γ2 ÷ {x, y}. Notice that this operator is undefined when
we try to remove a variable of a linear type from a context. Because x and y are



bound, the rule also removes variables x, y from the set L of (free) variables in
subject position.

Rule [A-Out] searches the incoming context Γ1 for the type of x. Then uses
Γ2, the remaining portion of Γ1, to type check value v, to obtain a type T (which
must match the input part of the type for x) and a new context Γ3. This context
is then updated with the new type for x at the continuation type U , and passed
to the subprocess P . Similarly to rule [T-Out] in Figure 5, when q = lin then x
is not in Γ3 and a new assumption for x is introduced in the context; else when
q = un we must have q!T.U = U . The rule outputs a context Γ4 resulting from
type checking the continuation P as well as the set of variables L4 thus obtained,
enriched with subject x if linear.

Rule [A-In] should be easy to understand based on the description of rules
[A-Res] and [A-Out]. Similarly to [A-Out] we look in the input context the
type of x. We then pass to subprocess P the unused portion of the context
together with two new assumptions, for x and for y. In the end, if y remains
in the context then it must be unrestricted. Once again, the context difference
operator both checks that the type of y is not linear and removes it from the the
outgoing context. Because y is bound, the rule removes it from the set L of (free)
variables in subject position, and adds subject x if linear (as in rule [A-Out]).

The rule for replication, [A-Repl], ensures that there are no (free) inputs
and outputs on linear channels in process P by requiring an empty set of free
subjects.

Each rule in the algorithm is syntax directed. Furthermore all auxiliary func-
tions, including type equality, context membership, context difference, and con-
text restriction are computable. We still need to check that this system is equiv-
alent to the more elegant system introduced in the previous sections.

The proof of equivalence can be broken in two standard parts, soundness
and completeness of the algorithm with respect to the declarative system. No-
tice however that the two type systems talk about different languages, languages
that differ in the annotation in the scope restriction constructor. To obtain a non-
annotated process from an annotated one, we use function erase(P ) that removes
all types from an annotated process P . Function erase is a homomorphism ev-
erywhere, except at scope restriction where erase((νxy : T )P ) = (νxy) erase(P ).

Notation U(Γ ) and L(Γ ) refers to the set of unrestricted and linear assump-
tions in Γ , respectively. The following basic properties of the context split oper-
ation are used in the remaining proofs.

Proposition 1. Let Γ1 and Γ2 be two contexts such that Γ1◦Γ2 is defined. Then

1. U(Γ1) = U(Γ2);
2. Γ1 ◦ Γ2 = L(Γ1), Γ2;
3. dom(Γ1) ∩ dom(L(Γ2)) = ∅.

From clause 2 above, taking U(Γ1) for Γ2, we obtain as a corollary that
Γ1 ◦ U(Γ1) = Γ1. From the same clause, when un(Γ1) we know that Γ1 ◦Γ2 = Γ2

and, in particular Γ1 ◦ Γ1 = Γ1.

Lemma 7 (Algorithmic monotonicity).



Values. If Γ1 ` v : T ;Γ2 then Γ2 ⊆ Γ1 and U(Γ1) = U(Γ2);
Processes. If Γ1 ` P : Γ2;L then dom(Γ2) ⊆ dom(Γ1), L ⊆ dom(Γ1), U(Γ2) \

L = U(Γ1), and Γ2 \ L ⊆ Γ1.

The following lemma is used in the proof of soundness.

Lemma 8 (Algorithmic linear strengthening).

Values. If Γ1 ` v : (T ;Γ2, x : lin p), then Γ1 = Γ3, x : lin p and Γ3 ` v : T ;Γ2;
Processes. If Γ1 ` P : (Γ2, x : lin p;L) and x /∈ L, then Γ1 = Γ3, x : lin p and

Γ3 ` P : Γ2;L.

The proviso that x is not in L is important. Take for T the type µα.lin!bool.α.
We have

x : T ` x true : (x : T ; {x})
where the type T of x is invariant, but we know that ∅ 6` x true : ∅;_.

The following lemma is used in the proof of completeness.

Lemma 9 (Algorithmic weakening).

Values. If Γ1 ` v : T1;Γ2 then Γ1, x : T2 ` v : (T1;Γ2, x : T2);
Processes. If Γ1 ` P : Γ2;L then Γ1, x : T ` P : (Γ2, x : T ;L).

Theorem 3 (Algorithmic soundness).

Values. If Γ1 ` v : T ;Γ2, then Γ3 ` v : T and Γ1 = Γ2 ◦ Γ3, for some Γ3.
Processes. If Γ1 ` P : Γ2;_ and un(Γ2) then Γ1 ` erase(P ).

Proof. The proof for values follows from a simple analysis of the derivation of the
sequent. The case for processes follows by induction on the structure of derivation
of the hypothesis. The most interesting case happens when the derivation ends
with rule [A-Par]. By induction we know that Γ2÷L2 ` erase(Q) (*). We claim
that there are Γ4 and Γ5 such that Γ4 ` P : Γ5;L, un(Γ5) and Γ4◦(Γ2÷L2) = Γ1.
Then we use induction again to obtain Γ4 ` erase(Q) (**), and conclude the proof
by applying rule [T-Par] to (*) and (**). The claim follows from the definition
of ÷, monotonicity (lemma 7), strengthening (lemma 8), and proposition 1. ut

Theorem 4 (Algorithmic completeness).

Values. If Γ1 ◦ Γ2 defined and Γ1 ` v : T then Γ1 ◦ Γ2 ` v : T ;Γ2;
Processes. If Γ1 ` erase(P ) then Γ1 ` P : Γ2;_ and un(Γ2).

Proof. The proof for values follows from a simple analysis of the derivation of the
sequent. The case for processes follows by induction on the structure of derivation
of the hypothesis. The most interesting case happens when the derivation ends
with rule [T-Par]. By induction we know that Γ1 ` P : Γ3;L3 and un(Γ3). Since
Γ1◦Γ2 = Γ1,L(Γ2), we weaken the derivation to obtain Γ1◦Γ2 ` P : Γ3,L(Γ2);L3

(*). Again by induction we know that Γ2 ` Q : Γ4;L4 (**) and un(Γ4). We claim
that (Γ3,L(Γ2))÷L3 = Γ2, and apply rule [A-Par] to (*) and (**) to obtain the
result, Γ1 ◦Γ2 ` P | Q : Γ4;L4 and un(Γ4). The claim follows from the definition
of ÷, monotonicity (lemma 7) and proposition 1. ut



10 Notes

Session types for the pi calculus. Work on session types goes back to Honda
and its colleagues at Keio University—Kubo, Takeuchi, and Vasconcelos—first
centering on the type structure, then introducing the notion of channel, and
finally extending the ideas into a more general setting [18, 19, 28]. The original
work introduces session types, describing chained continuous interactions com-
posed of communication (input and output) and binary choice [18]. The central
notion of session types, duality, is also introduced in this work. The subsequent
work proposes, at the language level, the concept of channels distinct from pi
calculus conventional names—channels (linear variables in our terminology) con-
duct a pattern of interaction between exactly two partners, names (unrestricted
variables in this paper) are used by multiple participants to create channels.
The language is constructed around a pair of operations, accept and request,
synchronizing on a common name and establishing a new channel. Channels
are endowed with operations to send and receive base values (including names)
and to perform choices based on labels, as opposed to the binary choice in [18].
The language in reference [19] takes the idea further, allowing channels to be
passed on channels—often called session delegation—thus including two more
operations on channels: to send and to receive a channel.

In reference [19], channel passing embodies a technique similar to internal
mobility [27] whereby the sender and the receiver must agree on the exact channel
being handed over, prior to communication itself. Using the notation of this
paper and forgoing the variable convention, if x and y are linear co-variables,
the rule for communicating a linear variable z is of the following form where z
is both free in x z.P and bound y(z).Q,

x z.P | y(z).Q → P | Q

with the understanding that if the receiving process happens to look like y(w).Q
then the bound variable w is renamed as z prior to reduction, if possible.

Gay and Hole proposed a variant to this work by introducing two novelties:
they work directly on the pi calculus and use free session passing [14]. Their
language is similar to that in this paper, except for one small detail: it annotates
variables with polarities +,−. The new reduction rule for session passing is a pi
calculus conventional communication rule (x and y are co-variables).

x v.P | y(z).Q → P | Q[v/z]

Rather than using distinct identifiers x, y that are made co-variables at binding
time (νxy)P , they use one identifier only (x) with polarity annotations (x+, x−)
that is bound as a single variable in process (νx)P . The relation that associates
x+ to x− is left implicit in reduction. In either case, the reason behind the
need for syntactically distinguishing the two ends of a same channel comes from
free session passing: the same thread may end up possessing the two ends of a
channel, as in x+ true.x−(z). After typing x−(z) we are left with a context where
the types for x+ and x− are not dual. They will eventually become dual after



typing the output process, and should be dual when the derivation reaches scope
restriction for x.

Instead we work with two completely unrelated variables x, y that are made
co-variables at binding time only. But there is a fundamental difference between
the polarity notation and the co-variable technique used in this paper. In [14], po-
larity annotated variables are associated to channels; names use non-annotated
variables. As such, there are two communication rules: for channels, on processes
of the form x+ v.P | x−(z).Q, and for names on processes x v.P | x(z).Q. We
work with co-variables in all cases, using a single communication rule for pro-
cesses of the form x v.P | y(z).Q where x and y are co-variables. If needed the
distinction between channels and names is made by the type qualifiers associated
to variables x and y, linear or unrestricted.

Yoshida and Vasconcelos use the polarity technique to endow the language
in [19] with free session passing [34]. All the aforementioned works carefully
manage the typing context in order to maintain the invariant where each channel
is used exactly in one or two threads, with a technique similar to context splitting.
Interesting enough, channel polarities were used in [28], then dropped in [19],
and finally recovered in [14].

The technique of binding the two ends of a channel together is due to Gay
and Vasconcelos [16], working on a buffered semantics where it makes all the
sense to distinguish the two ends of a channel, for each has its own queue for
incoming messages. The same idea is explored by Giunti el al. [17] to show that
the language in [34] equipped with the type system in [19] is type safe even
though it does not satisfy type preservation.

Typing and subtyping. Due to delegation [19], types are usually stratified into
two categories: one for sessions, the other for names. Types for channels include
constructors for input, output, branching, and selection. Those for names in-
clude the standard pi calculus types. The separation of the two universes leads
to duplication (recursion, input/output) and omissions (there is no choice on
names). We take a different approach, starting from pretypes comprising all the
basic types and required constructors, and then using a linear or unrestricted
qualifier depending on the intended usage for the variable, channel or name.

Subtyping as presented in this paper was first introduced by Gay and Hole [14],
co-inductively given the presence of recursive types. Rather than using a separate
subsumption rule, Gay and Hole distribute the possible occurrences of subtyping
by the relevant typing rules. They further present an algorithm for checking the
subtyping relation, used for type checking their language. A proof for Lemma 6
in Section 8 can be found in reference [14].

Gay introduces a notion of bounded polymorphism for the pi calculus with
session types [13] where polymorphism is associated with labels in branching
processes, in such a way that clients selecting a particular branch also instanti-
ate the polymorphic variable with some type. Capecchi, Dezani-Ciancaglini et al.
propose a variant of session types for object-oriented languages where choice is
provided, based not on labels, but on classes [2, 4]. Castagna, Dezani-Ciancaglini
et al. propose a set-theoretic semantics for session types based on a labelled tran-



sition system and on a coinductively-defined notion of duality [6]. The semantics
yields a notion of subtyping and they present an algorithm for deciding the re-
lation. The session types considered in the paper generalize those found in this
work by replacing constructors for branching with boolean expressions.

Linear type systems. A linear type system for the pi calculus was studied by
Kobayashi, Pierce and Turner [21]. There, as in the lambda calculus, a linear
channel is understood as resource that should be used only once. The exactly-
once nature of linear values is at odds with the idea of session types capturing
continuous sequences of interactions, and therefore naturally occurring more
than once in a thread. Instead, a linear channel in this work is understood
as occurring in a single thread, possibly multiple times. The machinery used
here, linear and unrestricted type qualifiers and context splitting, is inspired by
Walker’s substructural type systems [33].

Session types in functional languages. Session types emerged in conjunction
with process calculi. Gradually, the notion was adapted to other paradigms,
including functional languages, object-oriented languages and service-oriented
computing. Together, Gay, Ravara, and Vasconcelos proposed the first functional
language with session types [16, 30, 32]. Neubauer and Thiemann [25] took a
different approach, embedding session types within the type system of Haskell.
Similarly to this chapter, the language in reference [16] works within the standard
framework the linear lambda calculus, treating session types as linear in order
to guarantee that each co-channel is owned by a unique thread. For example,
the type of the receive operation is ?T.U → T ⊗ U so that the channel, with its
new type U , is returned together with the received value T .

Session types in object-oriented languages. The area of session types for object-
oriented languages has attracted a lot of attention. The work by Vallecillo, Vas-
concelos, and Ravara [29] shows how to type the behavior of objects in compo-
nent models, Corba in particular (the example in the introduction is taken from
this work). Starting with the work by Dezani-Ciancaglini, Yoshida et al. [11]
that incorporates channel-based communication in a Java-like language, many
have followed, including [2, 4, 7, 9, 10, 20]. A characteristic of these works is that
a channel is always created and completely used within a single method call, or
else delegated to another method which will have to use the channel to the end.
Mostrous and Yoshida [23] add sessions to Abadi and Cardelli’s object calcu-
lus [1]. Vasconcelos, Gay, et al. use session types to describe the evolving visible
interface of an object, according to the object’s state [31].

Session types in service-oriented computing. The natural ability of session types
to describe protocols have been explored in the realm of service-oriented calculi.
Works like [3, 5, 8, 22], to cite a few, use session types to discipline the interaction
between service providers and clients.



Buffered semantics for session types. Neubauer and Thiemann first proposed
an asynchronous, buffered semantics, allowing two communicating partners to
proceed at distinct rates [26]. The idea is to associate to each co-variable a buffer
to hold both values and labels—readers (input and branching processes) read
from their own buffer; writers (output and selecting processes) write on the co-
channel buffer. Gay and Vasconcelos propose a simpler buffered semantics [15,
16]; Fähndrich et al. [12] also use buffered communication but have not published
a formal semantics.

An interesting application of session types for buffered communication is that
buffer size can be predicted from the session type that describes the channel, thus
ensuring that well-typed programs do not overflow their buffers. This fact is ob-
served in [12] and proved in [16], where it is shown that static type information
can be used to decrease the runtime buffer size and ultimately deallocate the
buffer. Another application explores optimisations by exchanging the order by
which certain communications are performed, allowing for a large transfer to pro-
ceed in front of other lighter transfers [24]. The valid communication exchanges
are captured by a subtyping relation.

Multi-party session types. The language of this chapter disciplines the interac-
tion between two threads; sessions types to describe interaction among multiple
partners is the object another chapter in this book.
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