
Proceedings of the First Workshop
on Programming Language

Approaches to Concurrency and
Communication-cEntric Software

Vasco T. Vasconcelos
Nobuko Yoshida

(editors)

DI–FCUL TR–08–14

May 2008

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

Proceedings of the
First Workshop on

Programming Language
Approaches to Concurrency and

Communication-cEntric Software

June 7, 2008
Oslo, Norway

http://places08.di.fc.ul.pt/

http://places08.di.fc.ul.pt/

Preface

This documents contains the proceedings of PLACES’08, the 1st Workshop on
Programming Language Approaches to Concurrency and Communication-
cEntric Software, held in Oslo, Norway, on June 7, 2008, co-located with the
DisCoTec federated conferences.

PLACES aims to offer a forum where researchers from different fields ex-
change new ideas on one of the central challenges in programming in near future,
the development of programming methodologies and infrastructures where con-
currency and distribution are a norm rather than a marginal concern.

The Program Committee, after a careful and thorough reviewing process, se-
lected for inclusion in the programme 10 papers out of 14 submissions. Each
submission was evaluated by at least two referees, and the accepted papers were
selected during one week electronic discussions.

The volume opens with the abstracts for the invited contributions by Jan Vitek
(Purdue University) and and Alan Mycroft (University of Cambridge), and con-
tinues with the ten technical papers.

Places’08 was made possible by the contribution and dedication of many peo-
ple. First of all, we would like to thank all the authors who submitted papers for
consideration. Secondly we would like to thank our invited and tutorial speakers.
We would also like to thank the members of the Program Committee for their care-
ful reviews, and the balanced discussions during the selection process. Dimitris
Mostrous helped to set up a web page for the PC discussion. Finally, we acknowl-
edge the Discotec general chairs, Frank Eliassen and Einar Broch Johnsen, and
the Workshop chair Amy L. Murphy.

May 2008
Vasco T. Vasconcelos

Nobuko Yoshida

PLACES'08 5

Program Committee
Alastair Beresford, University of Cambridge
Manuel Fähndrich, Microsoft Research
Simon Gay, University of Glasgow
Kohei Honda, Queen Mary University of London
Andrew Myers, Cornell University
Greg Morrisett, Harvard University
Alan Mycroft, University of Cambridge
Vijay A. Saraswat, IBM Research
Vasco T. Vasconcelos (chair), University of Lisbon
Nobuko Yoshida (chair), Imperial College London

Additional Referees
Martin Berger
Marco Giunti
Olivier Tardieu

PLACES'08 6

Contents
Programming Models for Concurrency and Real-time (Invited Talk)

Jan Vitek 8

Enhancing Program Structures for Communication (or, what do we want
sensor-driven systems to tell us?) (Invited Tutorial)
Alan Mycroft 9

Encapsulation and Dynamic Modularity in the Pi-calculus
D. Hirschkoff, T. Hirschowitz, S. Hym, A. Pardon, and D. Pous 10

Session Types as Generic Process Types
Simon Gay, Nils Gesbert, and Antonio Ravara 16

Towards Trustworthy Multiparty Sessions
Roberto Bruni, Ivan Lanese, Hernan Melgratti, Leonardo G. Mezzina, and
Emilio Tuosto 22

Synchronous Multiparty Session Types
Andi Bejleri and Nobuko Yoshida 28

Session-based Choreography with Exceptions
Marco Carbone 34

Compiling the Pi-calculus into a Multi-threaded Typed Assembly Language
Tiago Cogumbreiro, Francisco Martins, and Vasco T. Vasconcelos 40

Type-Directed Compilation for Multicore Programming
Kohei Honda, Vasco T. Vasconcelos, and Nobuko Yoshida 46

Synchronization as a Special Case of Access Control
Franz Puntigam 52

Towards a Symbolic Semantics for Service-oriented Applications
Rosario Pugliese, Francesco Tiezzi, and Nobuko Yoshida 58

Seamlessly Distributed & Mobile Workflow or, the right processes at the right
places
Mikkel Bundgaard, Thomas Hildebrandt, and Espen Højsgaard 64

PLACES'08 7

Invited Talk

Programming Models for Concurrency and
Real-time

Jan Vitek
Purdue University

Modern real-time systems are increasingly large, complex and concurrent pro-
grams which must meet stringent performance and predictability requirements.
Programming those systems require fundamental advances in programming lan-
guages and runtime systems. This talk presents our work on Flexotasks, a pro-
gramming model for concurrent, real-time systems inspired by stream-processing
and concurrent active objects. Some of the key innovations in Flexotasks are that
it support both real-time garbage collection and region-based memory with an
ownership type system for static safety. Communication between tasks is per-
formed by channels with a linear type discipline to avoid copy of messages, and
by a non-blocking transactional memory facility. We have evaluated our model
empirically within two distinct implementations, one based on Purdue’s Ovm re-
search virtual machine framework and the other on Websphere, IBM’s production
real-time virtual machine. We have written a number of small programs, as well
as a 30 KLOC avionics collision detector application. We show that Flexotasks
are capable of executing periodic threads at 10 KHz with a standard deviation of
1.2us and have performance competitive with hand coded C programs.

PLACES'08 8

Invited Tutorial

Enhancing program structures for communication
or what do we want sensor-driven systems to tell us?

Alan Mycroft
University of Cambridge

Increasingly, the world of computation is no longer ”data entry, compute, out-
put”; rather, it consists of islands of reasonably understood autonomous compu-
tation connected by communication. Examples range from interactive websites to
wireless-enabled car satellite navigation units. In such systems, communication
is typically understood at a very low level—a programmer works with streams,
packets and re-tries, often expressed as part of a program library. We believe that
if systems are to get larger and more reliable, higher-level communication specifi-
cations will become essential. By considering a range of systems, including com-
puter architectures, sensor-based computing and client-server web applications,
we identify the core issues presented by today’s standard techniques for express-
ing communication. We then describe some future approaches which attempt to
address these deficiencies.

PLACES'08 9

Encapsulation and Dynamic Modularity

in the π-calculus

Daniel Hirschkoff, Aurélien Pardon, Damien Pous
ENS Lyon, Université de Lyon, CNRS, INRIA

Tom Hirschowitz
LAMA, Université de Savoie, CNRS

Samuel Hym
LIFL, Lille

Abstract

We report on work in progress in the study of high level constructs for
component-oriented programming in a distributed setting. We propose
an extension of the higher-order π-calculus intended to capture several
important mechanisms related to component programming, such as dy-
namic update, reconfiguration and code migration. In order to validate
the definition of our calculus, we study its implementability by describing
an abstract machine for the distributed execution of processes. In doing
this, we are led to define a type system to check statically some proper-
ties that are needed for the correct execution of processes. We describe
current and future directions of research in our programme.

1 A Core Calculus for Dynamic Modularity

This paper describes work on component-oriented programming and the π-
calculus. Our long term goal is the design and implementation of a prototype
programming language meeting the following requirements.

- It should be suitable for concurrent, distributed programming. For instance,
usual distributed, parallel algorithms should be easily implementable, as well as
lower-level communication infrastructure for networks. Furthermore, it should
enjoy a well-understood and tractable behavioural theory.

- It should provide constructs for modularity, in the standard, informal sense
that programs should be built as an assembly of independent computation units
(or modules) interacting at explicit interfaces. Moreover, modularity should
come with encapsulation features, e.g., it should be possible to exchange two
modules implementing the same interface without affecting the rest of the code.

- The modular structure of programs should be available at execution time,
so as to ease standard dynamic operations such as migration, dynamic update,
or passivation of modules. We call this requirement dynamic modularity. The
notion of dynamic modularity gathers the most challenging features of compo-
nent based programming we are interested in modelling and analysing.

- Finally, we are seeking a reasonably implementable language, at least per-
mitting rapid prototyping of distributed applications.

For lack of space, we give mostly informal descriptions of our contributions.
The current state of our technical definitions (in draft form), as well as the

1

PLACES'08 10

implementation described in Sect. 2, are available from [7].

In order to provide a formal treatment of the questions described above, we
study an extension of the higher-order π-calculus, called kπ. We choose the
π-calculus for two main reasons: first, message-based concurrency seems an ap-
propriate choice to define a model for concurrent programming at a reasonable
level of abstraction. Second, working in the setting of a process algebra like
the π-calculus makes it possible to define a core formalism in which we can
analyse the main questions, both theoretical and pragmatic, related to the im-
plementation of primitives for dynamic modularity. Third, we might hope for
this to benefit from the considerable amount of research that has been made on
π-calculus based formalisms.

Our calculus inherits ideas from numerous previous studies, among which [6,
5, 3], and in particular the Kell calculus [2, 9]. The grammar for processes is as
follows, – we suppose two sets of names (a,m, k, x) and process variables (X):

P,Q ::= P |P
∣∣ (νn) P

∣∣ 0
∣∣ n[P]

∣∣ X
∣∣ M.P

∣∣ R . P

M ::= a〈n〉
∣∣ a〈P 〉 R ::= a(x)

∣∣ a(X)
∣∣ n[X]

In addition to the usual π-calculus constructs, we have modules, n[P], which
can be seen as located processes (note that modules can be nested). M.P is a
process willing to emit (first- or higher-order) message M and then proceed as
P . R.P stands for a process willing to acquire a resource: this can mean either
receiving a first- or higher-order message (cases a(x) and a(X), respectively),
or passivating a module.

n1

n2

k1

k2

n3

k3

b

m

a

Due to space limitations, we only provide an
informal description of the (reduction based) op-
erational semantics. A kπ term describes a con-
figuration consisting of a hierarchy of modules, in
which processes are executed. Given some kπ pro-
cesses P, P ′

i , Qi, the diagram we present depicts a
process of the form

(νa)(m[P] | n1[P ′
1 | n2[P ′

2 | n3[P ′
3]]] | k1[(νb)(Q1 | k2[Q2] | k3[Q3])])

(note that the localisation of the restrictions on a and b does not appear on the
picture). There are basically two forms of interaction in kπ: communication
and passivation. Communication involves the transmission of a name or of a
process; it is distant, in the sense that a〈b〉.P can synchronise with a receiver
a(x) . Q sitting in a different location, provided they share the name a. On the
picture, a process running in k3 can exchange messages with another one in n3

(using channel a), as well as with a third process running in k2 (using channel
b). On the contrary, passivation is local: only a process running at n1 is able to
passivate module n2. This is described by the following reduction axiom:

n[P] | n[X] . Q → Q{P/X}

(up to structural congruence, the module being passivated and the process that
takes control over it must be in parallel – as usual, {P/X} denotes capture
avoiding substitution). Passivation is a central construct in our formalism, and
can be used to implement very different kinds of manipulations related to dy-
namic modularity. For instance, taking Q = n′[X] in the above reduction leads

2

PLACES'08 11

to a simple operation of module renaming; with Q = c〈X〉, the module n will be
‘frozen’ and marshalled into a message to be sent on channel c; finally, taking
Q = n[X] |n′[X] makes it possible to duplicate a computation. From the op-
erational point of view, the last two examples clearly involve much more costly
operations than the first one.
Restricted names as localised resources. An important commitment that
we make in the design of kπ is that, contrarily to several existing proposals, we
do not allow channel names to be extruded across module boundaries: neither do
we include an axiom of the form n[(νb) P] ≡ (νb) n[P] in structural congruence,
nor do we implement name extrusion across modules along reduction steps that
would require it.

This design choice is related to the notion of module that we put forward
in kπ: indeed, if we were to allow name extrusion, the possibility to passivate
a module with or without one of its restrictions (depending on whether we per-
form extrusion before passivation) would give rise to unpredictable behaviours
(see [9]). Therefore, we interpret the names declared inside a module as pri-
vate resources, that should remain local to that module. Passivating module n
hence means getting hold of the local computations, as well as of the resources
allocated in n. Typically, names allocated in module n can be viewed either
as temporary resources allocated for the computations taking place at n, or as
methods provided for submodules of n, for which n acts as a library.

As a consequence, the user is made aware of the localisation of resources; this
choice also helps considerably in the implementation of kπ, essentially because
we always know how to route messages to channels (see below; a similar idea is
present in existing implementations of π-calculus related process algebras, such
as [4]). At the same time, this hinders the expressiveness of message passing: a
process willing to send a name n outside the module where the restriction on n is
hosted is stuck. Consequently, for two distant agents to share a common name,
this name should be allocated at a place that is visible for both, i.e., above them
in the hierarchy of modules. In other words, extrusion is not transparent to the
user, and has to be programmed when necessary. Of course, there are situations
where one would like to allocate a new name outside the current module. It
turns out that a corresponding primitive for remote allocation, νn@m, can be
added at small cost to our implementation (Sect. 2).

Experiments with examples show that the idioms we would like to be able
to program are compatible with the discipline we enforce in kπ. Further in-
vestigations need to be made, in particular with larger examples, in order to
understand the possibilities offered by programming in kπ.

2 A Distributed Implementation

In this section, we describe a distributed abstract machine that implements kπ.
This machine abstracts from issues such as data representation, to focus on the
implementation of distributed communication in the presence of passivation.
The design of this machine has been tested on a prototypical distributed imple-
mentation, so as to make sure that our implementation choices are reasonable.
Computation units. The first (standard) feature of our machine is that
it flattens the hierarchy of computation units: for example, each of the seven
modules in the picture shown above is executed in its own asynchronous location

3

PLACES'08 12

by the machine. In order to retain the tree structure, each location stores and
maintains the list of its children locations. As expected, when a module creates
a sub-module, the latter is spawned in a fresh location. In order to make sure
that locations can be implemented in an asynchronous way, we let them interact
only by means of (asynchronous) messages.
Communications. The protocol for distant communication is rather stan-
dard: a process willing to send a message sends it to the location holding the
queue that implements the channel; accordingly, a process willing to receive a
message sends its location to the queue location and suspends execution, so that
it can be awaken when a message is available. Using our interpretation of mod-
ules, the natural location to run the channel queue is that of the module that
created the name; this is made possible by our choice to prevent the channel
name from being extruded out of this module: if the module gets passivated,
any process trying to communicate on the channel will get passivated as well.
Passivation. First, passivation cannot be atomic, because the hierarchy of
modules has been flattened, as described above (this departs importantly from
the machine in [1]). Thus, we implement it in an incremental fashion, from the
passivated module down to its sub modules, transitively. Along the propagation
of a passivation session, we must handle two main sources of interferences:

- First, in the case where some sub module has already started a passivation,
our machine gives priority to the inner passivation session – the other option
being to cancel the latter and let the dominating passivation proceed instead.

- More importantly, we need to clean up running communication sessions
in the passivated sub modules. As explained above, this is not problematic
for communication on names belonging to the passivated module. For com-
munications on names that reside above the passivated module, we use simple
interactions with the modules owning these names: status messages are used to
query whether commitment to a communication already occurred, so that the
computation can be either completed or aborted.
Distributed Implementation. We have written an OCaml implementation
of this abstract machine [7]. This implementation exploits two libraries: one for
high-level communications, where message passing is executed either as mem-
ory write-ups or as socket communication, depending on whether it is local or
distant; and another one for communication, thunkification and spawning of
OCaml threads, together with their sets of defined names (to optimise the pro-
cess of passivation, the data structure implementing a module comes with a
table collecting all names known by the module). Finally, each syntactic con-
struction of kπ is compiled into a simple function that uses the previous libraries
along the lines of the formal specification of the machine. In particular, we do
not need to manipulate explicit abstract syntactic trees at runtime.
A type system to prevent illegal name extrusions. In order for the
previous algorithms to be correct, we need to make sure that names are not
extruded outside their defining module. A solution would be to inspect the
content of each message at runtime, and to block illegal communications. In
order to avoid the inefficiencies induced by this approach, we rely on a type
system to enforce statically this confinement policy: a well-typed term will
never attempt to extrude a name out of its scope.

Our type system exploits an analysis of the hierarchy of modules to detect
ill-formed communications. An output a〈n〉 is licit only if the restriction binding

4

PLACES'08 13

n is above the one binding a in the structure of modules (or if n is free in the
process). If, instead of a or n, we have names bound to be received (as in, e.g.,
c(x) . a〈x〉), then the type information associated to the transmitting channels
gives an approximation of the module where the names being communicated
are allocated (intuitively, this information boils down to “name x is allocated
above module named m and under module named k” – both informations are
necessary, because the name instanciating x may then be used either as medium
or as object of communication). The communication of process values follows
the same ideas: in a〈P 〉, we impose that all free names of P should be allocated
above a. Consequently, in the type of module names (resp. of channels over
which processes are transmitted), we provide a spatial bound of this kind on
the free names of the process being executed (resp. communicated).

In addition to the standard property of subject reduction, correctness of our
type system is expressed by showing that every typeable process is well scoped,
which intuitively means that such a process does not attempt to emit a name
outside its scope. Since this property is preserved by reduction, we can avoid
checking for scope extrusions at run time.
Correctness of the abstract machine. To validate our implementation
of kπ, we should formally state and prove that the execution of the encoding
of a kπ term corresponds in some sense to the original, source, process. The
reductions of a kπ process and the execution of a machine state are described
by two labelled transition systems. We could hope to establish a bisimulation
result, providing evidence that the compiled version essentially exhibits the
same behaviour as the source process. However, because passivation is not
atomic in our setting (contrarily to [1]), this is not possible. Indeed, consider
the following process: m[a〈u〉 | n[b〈v〉]] | m[X] . Q. The actual execution
of the passivation of m may go through a state where the emission on b is
blocked while the one on a is still active; such a state has no counterpart in
the original calculus. Instead, correctness of our machine is stated as a coupled
bisimulation result [8]: although this behavioural equivalence is weaker than
plain bisimulation, it entails operational equivalence (any kπ reduction step can
be simulated by the machine, and any reduction step of the machine can be
completed into a step of the calculus).

3 Future Work

Module Interfaces. As it is, the type system of Sect. 2 associates to a
module name a rudimentary information, which is only related to the regions
accessed by processes running within this module (properties like “this module
has only access to references situated above module m”). It would be interesting
to define more informative module interfaces, that in particular would describe
the behaviour associated to the usage of the names hosted by the module (as well
as the interfaces associated to submodules, recursively). Existing type systems
for π-calculus based formalisms, as well as for object-oriented languages, should
be relevant for this.
Handling (re)binding. In its current form, kπ only makes it possible to
implement limited forms of dynamic modularity. When a module is passivated,
it can be moved around, duplicated, and computation can be resumed, as long

5

PLACES'08 14

as the confinement constraints associated to the localisation of restrictions are
respected. In writing examples in kπ, it appears that it would be helpful, when
passivating a module, to be able to somehow disconnect it from some of the local
resources it is using. This would make it possible to send the passivated module
outside the scope of the names it was using, to another site where computation
can be resumed after connecting again to another bunch of resources. Extending
kπ with mechanisms for dynamic (re)binding while keeping the possibility to
assert statically properties of modules about their usage of resources is a difficult
task. The work on Acute [10] may provide interesting inspiration for this.
Optimisations of the machine. The definition and implementation of the
abstract machine plays an essential role in the design of kπ, because it provides
practical insight on the main design decisions behind the formal model. In
addition to that, the implementation also suggests several improvements or
extensions, that we would like to study further. We have already mentioned
the primitive for remote name allocation νn@m, an operation that in principle
can be encoded, but comes at a very low cost as a primitive, given the current
design of the machine. Another direction worth investigating is how the general
behaviour of the machine can be specialised by taking into account informations
such as, e.g., the fact that a whole module hierarchy runs on a single machine.
Proof of correctness. The abstract machine of Sect. 2 provides a rather
low-level description of how kπ processes should be executed in a distributed
setting. Proving its correctness, i.e., that the result of the compilation exhibits
the same behaviour as the original source process, is a challenging task. The
main difficulty is that proofs of this kind tend to be a really large piece of math-
ematics; appropriate techniques are necessary to render them more tractable,
in order to be able to complete them. This is the case in our setting, notably
because the passivation mechanism brings several technical subtleties.
Behavioural equivalences. Not only do we want to execute kπ programs,
but we also would like to state and prove their properties. At a foundational
level, we would be interested in analysing the notion of behavioural equivalence
provided in kπ, and in understanding the role of passivation in this respect.

References
[1] P. Bidinger, A. Schmitt, and J.-B. Stefani. An Abstract Machine for the Kell Calculus. In In
Proc. FMOODS ’05, volume 3535 of LNCS, pages 31–46. Springer, 2005.
[2] P. Bidinger and J.-B. Stefani. The Kell Calculus: Operational Semantics and Type System.
In In Proc. FMOODS ’03, volume 2884 of LNCS, pages 109–123. Springer, 2003.
[3] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming. PhD thesis,
Ecole Polytechnique, 1998.
[4] C. Fournet, F. Le Fessant, L. Maranget, and A. Schmitt. JoCaml: A Language for Concur-
rent Distributed and Mobile Programming. In In Proc. Advanced Functional Programming 2002,
volume 2638 of LNCS, pages 129–158. Springer, 2002.
[5] M. Hennessy. A Distributed π-calculus. Cambridge University Press, 2007.
[6] T. Hildebrandt, J. C. Godskesen, and M. Bundgaard. Bisimulation Congruences for Homer —
a Calculus of Higher Order Mobile Embedded Resources. Technical Report TR-2004-52, Univ. of
Copenhagen, 2004.
[7] D. Hirschkoff, T. Hirschowitz, S. Hym, A. Pardon, and D. Pous. kπ: specification, working
drafts and prototype implementation. available from http://www.ens-lyon.fr/LIP/PLUME/kp, 2008.
[8] J. Parrow and P. Sjödin. Multiway synchronizaton verified with woupled simulation. In In
Proc. CONCUR, pages 518–533, 1992.
[9] A. Schmitt and J.-B. Stefani. The Kell Calculus: A Family of Higher-Order Distributed Process
Calculi. In In Proc. Global Computing, volume 3267 of LNCS, pages 146–178. Springer, 2005.
[10] P. Sewell, J. J. Leifer, K. Wansbrough, F. Zappa Nardelli, M. Allen-Williams, P. Habouzit,
and V. Vafeiadis. Acute: high-level programming language design for distributed computation. In
In Proc. ICFP, pages 15–26. ACM, 2005.

6

PLACES'08 15

http://www.ens-lyon.fr/LIP/PLUME/kp

Session Types as Generic Process Types

Simon J. Gay1 Nils Gesbert1 António Ravara2

13th May 2008

1 Introduction

Session types [7, 4] are an increasingly popular technique for specifying and
verifying protocols in concurrent and distributed systems. In a setting of point-
to-point private-channel-based communication, the session type of a channel
describes the sequence and type of messages that can be sent on it. For example

& 〈service : ! [int] .?[bool] . end, quit : end〉

describes the server’s view of a channel on which a client can select either service
or quit. In the former case, the client then sends an integer and receives a
boolean; in the latter case, the protocol ends. From the client’s viewpoint, the
channel has a dual type in which the direction of messages is reversed:

⊕〈service : ?[int] . ! [bool] . end, quit : end〉

Session types provide concise specifications of protocols and allow certain prop-
erties of protocol implementations to be verified by static typechecking. Origi-
nally formulated for languages similar to pi-calculus, type systems incorporat-
ing session types have now been defined for other language paradigms including
object-oriented languages [2] and service-oriented systems [1].

The theory of session types was developed in order to analyse a particular
correctness criterion for concurrent systems: that every message is of the type
expected by the receiver, and that whenever a client selects a service, the server
offers a matching service. Igarashi and Kobayashi [5] have taken a different
approach to type-theoretic specifications of concurrent systems, by developing a
single generic type system for the pi-calculus from which numerous specific type
systems can be obtained by varying certain parameters. Their motivation is to
express the common aspects of a range of type systems, enabling much of the
work of designing typing rules and proving type soundness to be packaged into
a general theory instead of being worked out for each case. In the generic type
system, types are abstractions of processes, so that the typing rules display a
very direct correspondence between the structure of processes and the structure
of types. There is also a subtyping relation, which can be modified in order
to obtain specific type systems; this allows, for example, a choice of retaining

1Department of Computing Science, University of Glasgow
2SQIG at Instituto de Telecomunicações and Departamento de Matemática, IST, Technical

University of Lisbon

PLACES'08 16

or discarding information about the order of communications. A logic is pro-
vided in which to define an ok predicate that is interpreted both as a desired
runtime property of processes and as a correctness condition for typings. This
double interpretation allows a generic type soundness theorem to be proved, but
means that type checking becomes more like model checking unless the specific
subtyping relation can be exploited to yield an efficient type checking algorithm.

Kobayashi [6, Section 10] has stated that the generic type system (GTS)
subsumes session types, although without presenting a specific construction.
The purpose of the present paper is to clarify the relationship. This is relevant
to the design of programming languages for distributed systems. For example: if
we want an object-oriented language with static typing of protocols, is it better
to work directly with session types or to develop an object-oriented formulation
of GTS? However, the present paper considers pi-calculus so that we can study
a precise question about two type systems for essentially the same language.

Kobayashi did not explain what it means for GTS to “subsume” session
types. We interpret it as defining a translation J·K from processes and type
environments in the source language into GTS, satisfying as many of the fol-
lowing conditions as possible. (1) JP K should have a similar structure to P . (2)
There should be a correspondence in both directions between the operational
semantics, ideally P −→ Q if and only if JP K −→ JQK. (3) There should be a
correspondence in both directions between typing derivations, ideally Γ ` P if
and only if JΓK . JP K. (4) Type soundness for session types should follow from
the generic type soundness theorem.

We take the source language to be the version of session types defined by Gay
and Hole [3]. This version does not include the accept/request primitives [7, 4]
and does not consider progress properties [2]. We remove recursive types, for
simplicity, and make some changes to the structural congruence relation, to
remove inessential differences compared with GTS. Three key issues remain.
First, translating the polarities in the source language: x+ and x− refer to the
two endpoints of channel x. Second, translating the labels used in branching
and selection (external and internal choice). Third, obtaining a correspondence
between subtyping in the source language and the subtyping relation which is
always present in GTS. The present paper focuses on the first two points and
does not discuss subtyping. We satisfy conditions (1–4) above in some form,
although the details are more complicated.

From now on we refer to the source language as session processes and the
target language as generic processes.

2 Translation

Processes and types. The languages share common process constructors
(inaction, parallel composition, scope restriction1, and replication), differing
basically in two ways. In session processes, (1) channels are decorated with
polarities (absent in generic processes), and processes only synchronise if the
subjects have complementary polarities; (2) there are constructors for branch,
an input labelled external choice, and select, to choose a branch of the choice.
Generic processes instead have mixed guarded sums (but no labels), and input
and output actions are decorated with events (taken from a countable set).

1Following a suggestion by Kobayashi, we have added a type annotation to ν in GTS.

2

PLACES'08 17

Common Syntax C ::= 0 | (P1 | P2) | ∗P

Source Language P ::= C | (νx : S)P | xp?[y] . P | xp ! [yq] . P (xp 6= yq)
| xp . {li : Pi}n

i=1 | xp / l . P

polarities p ::= + | − | ε

Session Types S ::= end | ?[S1] . S2 | ! [S1] . S2 | & 〈li : Si〉ni=1 | ⊕ 〈li : Si〉ni=1

Target Language P ::= C | (νx̃ : τ) P |
∑n

i=1 Gi

guarded processes G ::= x ! [ỹ] . P | x?[ỹ] . P

Generic Types Γ ::= 0 |
∑n

i=1 γi | (Γ1 | Γ2) | (Γ1 & Γ2)
guarded types γ ::= x ! [τ] . Γ | x?[τ] . Γ

tuple types τ ::= (x̃)Γ

Figure 1: Syntax

Since these tags are only relevant for liveness properties like deadlock-freedom,
which we do not address in this work, we omit them.

Consider x, y from a countable set of channels, disjoint from a finite set of
N labels, ranged over by l, li. The grammars in Figure 1 define the languages of
both sessions and generic processes and types. Session processes are monadic
(for simplicity), while generic processes are polyadic (as required by the encod-
ing). A session type environment is a finite mapping from polarised channels
to session types, ∆ = xp1

1 : S1; . . . ;xpn
n : Sn. A generic type environment is a

process type Γ. We write
∏n

i=1 Pi for P1 | · · · | Pn and
∧n

i=1 Γi for Γ1& · · ·&Γn.
We consider the operational semantics of both languages based on a reduc-

tion relation. However, for session processes, instead of the original structural
congruence relation, we take the structural preorder of the generic processes.

Encoding processes and type environments. For each input-guarded la-
belled sum the translation creates a new name for every possible label, sends
them all to the channel subject of the input, and waits in an input-guarded
sum where the subjects correspond to the labels in the original process and a
fresh channel is received for the continuation of the protocol. Output selection
is encoded dually.

Polarities distinguish between the two endpoints of a channel; communica-
tion only occurs between x+ and x−. Erasing polarities would translate pro-
cesses that do not reduce into processes that reduce. However, it is possible to
solve this problem by inserting some type information into the translated pro-
cess. But when translating scope restriction, one cannot prefix the body of the
process, otherwise there would be no meaningful operational correspondence.
Therefore, for each source channel we introduce a pair of target channels, one
for each polarity, and a forwarder between them, which is in parallel with the
translated process.

Let σ be a numbering of the labels from 1 to N . For any channels p, m,
the rules in Figure 2 inductively define the forwarder from p to m following
the structure of a session type S. Consider the translation homomorphic for
common processes. The rules in Figure 3 inductively define the translation
JP KΓϕ of the session process P into a generic process, where ϕ is an injective

3

PLACES'08 18

fw (p, m, end) = 0

fw (p,m,?[S1] . S2) = m?[z] . p ! [z] . fw (p, m, S2)
fw (p,m, ! [S1] . S2) = p?[z] . m ! [z] . fw (p, m, S2)

fw (p, m,& 〈li : Si〉ni=1) = p?[κ1 . . . κN] . (νλ1 . . . λN) m ! [λ̃] .∑n
i=1 λσ(li)?[m′] . (νp′ : LSi | SiM)κσ(li) ! [p′] . fw (p′,m′, Si)

fw (p, m,⊕〈li : Si〉ni=1) = m?[κ1 . . . κN] . (νλ1 . . . λN) p ! [λ̃] .∑n
i=1 λσ(li)?[p′] . (νm′ : LSi | SiM)κσ(li) ! [m′] . fw (p′,m′, Si)

Figure 2: Definition of the forwarder

Jxp ! [yq] . P KΓ,xp:![S1].S2
ϕ = ϕ(xp) ! [ϕ(yq)] . JP KΓ,xp:S2

ϕ

Jxp?[y] . P KΓ,xp:?[S1].S2
ϕ = ϕ(xp)?[z] . JP KΓ,xp:S2

ϕ+{yε 7→z}

Jxp / l . P KΓ,xp:⊕〈l:S,...〉
ϕ = ϕ(xp)?[λ1...N] . (νz : LS | SM)λσ(l) ! [z] . JP KΓ,xp:S

ϕ+{xp 7→z}

Jxp . {li : Pi}KΓ,xp:&〈li:Pi〉
ϕ = (νλ1...N)ϕ(xp) ! [λ̃] .

∑n
i=1 λσ(li)?[z] . JPiK

Γ,xp:Si

ϕ+{xp 7→z}

J(νx : S) P KΓϕ = (νp,m : (p, m)(Jp : SK |
q
m : S

y
|
q
p : S

y
| Jm : SK))

(fw (p, m, S) | JP KΓ,x+:S,x−:S
ϕ+{x+ 7→p;x− 7→m})

Figure 3: Process translation

mapping from the free polarised channels in P to channels of generic processes
and Γ is a session type environment such that Γ ` P (we omit ϕ and Γ when not
relevant). The rules in Figure 4 inductively define the translation of the session
type environment Γ to a generic type environment, where ϕ is an injective
mapping from dom(Γ) to the set of channels. Let LSM stand for (z)Jy : SKy 7→z.
The last rule uses the notion of dual session type (denoted S), which exchanges
inputs and outputs, and branch and selection [3].

3 Results

We state operational and typing correspondences.

Theorem 1. For any well-typed closed session process P , whenever P −→ Q,
then JP K −→n JQK with n = 2 or 4, depending on whether the reduction step is
a communication or a selection.

The extra steps are due to the forwarders and the encoding of labels. We
require the source process to be well-typed to ensure that the forwarders be-
have correctly. There is also a reverse correspondence. It is complicated to
state correctly, because a forwarder adds a one-place buffer to the synchronous
communication of the pi-calculus; some deadlocked processes in the session cal-
culus can, when translated, take one reduction step. In future, we would like to
obtain a full abstraction result with respect to some behavioural equivalence.

4

PLACES'08 19

Jxp1
1 : S1, . . . , x

pn
n : SnKϕ = Jxp1

1 : S1Kϕ | · · · | Jxpn
n : SnKϕ

Jxp : endKϕ = 0

Jxp : ?[S1] . S2Kϕ = ϕ(xp)?[LS1M] . Jxp : S2Kϕ

Jxp : ! [S1] . S2Kϕ = ϕ(xp) ! [LS1M] . Jxp : S2Kϕ

Jxp : & 〈li : Si〉ni=1Kϕ = ϕ(xp) !
[
(λ1, . . . , λN)

∧n
i=1 λσ(li) ! [LSiM]

]
Jxp : ⊕〈li : Si〉ni=1Kϕ = ϕ(xp)?

[
(λ1, . . . , λN)

∧n
i=1 λσ(li) !

[
LSiM

]]
Figure 4: Type environment translation

Typing correspondence. Let the subtyping relation of the generic type sys-
tem be such that: (1) Sequential information about the communications on
different channels is removed (Igarashi and Kobayashi’s Sub-Divide rule); (2)
subtyping can occur beneath a prefix (input or output); (3) type 0 is a subtype
of ∗0; (4) the sum operator is idempotent. Moreover, let ok(Γ) hold if and
only if Γ is well-formed (meaning that whenever a communication is possible,
the type sent is a subtype of the one expected by the receiver) and either: Γ
reduces in one step to 0; or for any free variable x of Γ, there exists a session
type S such that Γ ↓ {x} ≥ Jx : SK |

q
x : S

y
, where ≥ is the subtyping rela-

tion and Γ ↓ {x} is the restriction of Γ to x (that is Γ with all actions whose
subject is not x removed). The first condition ensures a correct use of labels in
a branching/selection, and the second one deals with regular session channels.
Note that ok(Γ) is stable by reductions, meaning that if Γ −→ Γ′ and ok(Γ)
hold, then ok(Γ′) holds. This makes ok a proper consistency predicate.

Lemma 1.
q
p : S

y
| Jm : SK . fw (p, m, S)

Theorem 2 (Completeness). For any session process P and any corresponding
ϕ, if ∆ ` P then J∆Kϕ . JP K∆ϕ .

The ok predicate is checked in the typing rule for ν, so this theorem implies
that bound channels in JP K are used consistently.

The reverse direction is more difficult to state. GTS types more processes,
for the following reason. Sending a message of type end in the session calculus
removes the channel from the sender’s environment, but in GTS, sending a
message of type 0 does not remove any capabilities.

Theorem 3 (Soundness). Let P be a closed session process. If JP K is well-
typed in the generic type system and no type annotation of P is end, then P is
well-typed as a session process.

Since the conditions of the generic type soundness theorem hold in this
setting, we also conclude the desired runtime safety property of session types.

4 Conclusion

We have defined a translation from a system of session types for the π-calculus
into Igarashi and Kobayashi’s generic type system (GTS). We have proved cor-
respondence results between process reductions in the two systems, and between

5

PLACES'08 20

typing derivations; we can also apply the generic type soundness theorem. The
translation clarifies the relationship between session types and GTS, and pro-
vides an interesting application of GTS. Because GTS can also represent more
complex behavioural properties including deadlock-freedom, embedding session
types into it may suggest ways of extending session types with such properties.

In our opinion, despite the translation into GTS, session types themselves
remain of great interest for programming language design, for several reasons.
First, session types are a high-level abstraction for structuring inter-process
communication [7]; preservation of this abstraction and the corresponding pro-
gramming primitives is very important for high-level programming. Second,
there is now a great deal of interest in session types for languages other than
the π-calculus. Applying GTS would require either translation into π-calculus,
obscuring distinctive programming abstractions, or extension of GTS to other
language, which might not be easy. Third, proofs of type soundness for session
types are conceptually fairly straightforward, even when these are liveness prop-
erties, as is frequently the case. The amount of work saved by using the generic
type soundness theorem is relatively small. Fourth, for practical languages we
are very interested in typechecking algorithms for session types; GTS does not
yield an algorithm automatically, so specific algorithms for session types need
to be developed in any case.

Acknowledgements.António Ravara is partially supported by the Portuguese
Fundação para a Ciência e a Tecnologia (via SFRH/BSAB/757/2007 and project
Space-Time-Types, POSC/EIA/55582/2004), by FEDER, by the EU IST proac-
tive initiative FET-Global Computing (project Sensoria, IST–2005–16004), and
by the EPSRC grant EP/F037368/1 “Behavioural types for object-oriented lan-
guages”. Nils Gesbert is supported by the EPSRC grant EP/F065708/1 “Engi-
neering Foundations of Web Services: Theories and Tool Support”. Simon Gay
is partially supported by both EPSRC grants. We are grateful to Lúıs Caires,
Kohei Honda, and Naoki Kobayashi for useful comments and discussions.

References

[1] M. Carbone, K. Honda, and N. Yoshida. Structured global programming for com-
munication behaviour. ESOP, LNCS 4421:2–17, 2007.

[2] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session
types for object-oriented languages. ECOOP, LNCS 4067:328–352, 2006.

[3] S. J. Gay and M. J. Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2/3):191–225, 2005.

[4] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline
for structured communication-based programming. ESOP, LNCS 1381:122–138,
1998.

[5] A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. Theoretical
Computer Science, 311(1–3):121–163, 2004.

[6] N. Kobayashi. Type systems for concurrent programs. Formal Meth-
ods at the Crossroads, LNCS 2757:439–453, 2002. Extended version at
www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf.

[7] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. PARLE, LNCS 817:398–413, 1994.

6

PLACES'08 21

Towards trustworthy multiparty sessions⋆

(extended abstract)

Roberto Bruni1, Ivan Lanese2, Hernán Melgratti3,
Leonardo Gaetano Mezzina4, and Emilio Tuosto5

1 Dipartimento di Informatica, Università di Pisa, Italy
2 Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy

3 Departamento de Computación, Universidad de Buenos Aires, Argentina
4 IMT Lucca, Institute for Advanced Studies, Italy

5 Department of Computer Science, University of Leicester, UK

1 Introduction

A lively research direction in concurrent and distributed computing is pushing
for a synergic design of theoretical frameworks and programming mechanisms
that help theoreticians and practitioners to cope with the complexity of large
system development and analysis. Among others, type-based approaches look
rather handy both for theoretical and applied research. Process calculi provide
a paradigmatic example: they offer a convenient formal setting for modeling
modern systems (e.g., Service Oriented Computing (SOC) [2, 8, 4]) and yield a
natural framework for enforcing desired properties using behavioral types [5].

Recently, researchers have shown a growing interest around the notion of
a multiparty session [6, 1], because typical modern distributed applications can
involve the coordination of many endpoints. Remarkably, SOC adds a further
difficulty as endpoints may be dynamically discovered and assembled. In fact,
SOC aims to the seamless and trustworthy integration of separately developed
computational entities, called services. To achieve this, matching criteria must
be available for comparing a service description against the requirements of the
invoker before binding the two.

µse (read “muse”, after MUltiparty SEssions) [3], is a process calculus for
expressing computations where endpoints dynamically join existing multiparty
sessions. In this context, it is crucial to have type systems for the early detection
of possible sources of incompatibility.

In this paper we consider µse without name passing and intra-site commu-
nication (§ 2) and sketch a type system aimed to guarantee a weak form of
compatibility (§ 3), in the sense that all the interactions required by each local
task can be provided either by endpoints currently participating to its session
or by endpoints that can join that session later.

This is work in progress and we plan to refine the type system to have stronger
guarantees. Due to space limitation we cannot give a comprehensive presentation
of our ideas, which will be spelled out in the full version of this paper.

⋆ Research supported by the FET-GC2 EU project IST-2005-16004 Sensoria by the
UK project HiDeA4SOC and by the Italian FIRB project TOCAI.

PLACES'08 22

S, T ::= l :: a ⇒ P Service definition P, Q ::= 0 Empty process
| l :: P Located process | c.P Action prefix
| S|T Parallel composition | install[a ⇒ P].Q Service installation
| (νn)S New name | invoke a.P Service invocation

| r
·
= s explicit substitution | mergep e.P Entry-point

| r ⊲ P Endpoint
| P |Q Parallel composition
| (νn)P New name
| rec X.P Recursive process
| X Recursive call

Fig. 1. Syntax of systems and processes

c.P
c
−→ P mergep e.P

ep

−→ P invoke a.P
⊥a
−−→ P a ⇒ P

r⊤a
−−→ r ⊲ P

P
α
−→ Q α ∈ {⊥a, c, ep}

r ⊲ P
r α
−−→ r ⊲ Q

P
α
−→ Q α /∈ {⊥a, c, ep}

r ⊲ P
α
−→ r ⊲ Q

install[a ⇒ R].P
a[R]
−−−→ P

P
a[R]
−−−→ Q

l :: P
τ
−→ l :: Q | l :: a ⇒ R

P
α
−→ Q α /∈ {a[R]}

l :: P
α
−→ l :: Q

A
r c
−−→ A′ B

r c
−−→ B′

A|B
τ
−→ A′|B′

A
re+

−−→ A′ B
se−

−−→ B′

A|B
τ
−→ A′|B′|s

·
= r

S
r⊤a
−−→ S′ T

r⊥a
−−→ T ′

S|T
τ
−→ S′|T ′

A
α
−→ A′

A|B
α
−→ A′|B

A
α
−→ A′ n /∈ n(α)

(νn)A
α
−→ (νn)A′

A ≡ A′ A′ α
−→ B′ B′ ≡ B

A
α
−→ B

Fig. 2. Operational semantics

2 µse Basics

The syntax of µse is in Fig. 1. We assume given sets of names for services
(ranged by a, ...), sessions (r, s, ...), communication channels (x, ...), co-actions
(x, ...), entry-points (e, ...), and sites (l, ...). We let c, ... range over x, x, ... and
let c = c.

Processes P, Q, ... comprise ordinary operators such as the nil process 0, par-
allel composition P |Q, communication prefixes c.P , recursion rec X.P and name
restriction (νn)P , together with primitives invoke a.P for service invocation,
install[a ⇒ P].Q for dynamic installation of new services, r ⊲ P for session end-
points and mergep e.P for dynamic merge of sessions on suitable entry-points.
Merge prefixes are polarized with p ∈ {+,−}. Trailing occurrences of 0 will
be omitted. Systems S, T, ... comprise located service definitions l :: a ⇒ P or
processes l :: P , parallel composition S|T , name restriction (νn)S, and explicit

fusions of session names r
·

= s. We let A,B, ... range over systems and processes.
The operational semantics of µse is in Fig. 2. It relies on the structural

congruence in Fig. 3. Roughly, the following interactions are possible. If service
definition l :: a ⇒ P is available, an invocation to a within a session r creates a
new endpoint l :: r ⊲ P for r on site l. The prefix install[a ⇒ R].P dynamically

PLACES'08 23

A|A′ ≡ A′|A A|0 ≡ A (A|A′)|A′′ ≡ A|(A′|A′′)

(νn)(νm)A ≡ (νm)(νn)A
(νn)A ≡ A

(νn)(A|A′′) ≡ A|(νn)A′′

ff

if n 6∈ fn(A)

rec X.P ≡ P{rec X.P/X} r ⊲ (νn)P ≡ (νn)(r ⊲ P), if n 6= r

l :: (νn)P ≡ (νn)(l :: P) l :: P |l :: Q ≡ l :: (P |Q)

(r
·
= r) ≡ 0 (νr)(r

·
= s) ≡ 0 r

·
= s|P ≡ r

·
= s|P{r/s} (r

·
= s) ≡ (s

·
= r)

r ⊲ (s
·
= t|P) ≡ (s

·
= t)|r ⊲ P l :: (r

·
= s|P) ≡ (r

·
= s)|l :: P

Fig. 3. Structural congruence rules

installs a new service definition a ⇒ R at the top of the site where it runs. Dual
action prefixes c.P and c.Q can synchronize only if they run on endpoints of the
same session. Complementary merges in sessions r and s on the same entry-point
e (i.e., merge+ e and merge− e) can synchronize, releasing the fusion r

·

= s.

Example 1. Consider T1 = (νr1, r2, r3)(l1 :: P1 | l2 :: P2 | l3 :: P3), where:

P1 = r1 ⊲ merge+ e1.x.y

P2 = r2 ⊲ merge− e1.merge+ e2.x

P3 = r3 ⊲ merge− e2.y

Session r1 and r2 join together on the entry-point e1 and session r2 and r3 join
on e2. After two steps, S reduces to (νr1)(l1 :: r1 ⊲x.y | l2 :: r1 ⊲x | l3 :: r1 ⊲ y),
where x.y, x and y run in the same session.

Example 2. The two-buyers-protocol below is inspired by an example in [6]. Let
T2 = (νr1, r2)(l1 :: Buy1 | l2 :: Buy2 | ls :: Sell), where

Buy1 = r1 ⊲ invoke sell .title.quote.bid.Q1

Buy2 = r2 ⊲ invoke offer .title.quote.bid.Q2

Sell = sell ⇒ title.install[offer ⇒ merge+ e.(title.quote.quote.Q)].merge− e

The service sell waits for a buyer to require a quote for a book (title). The
buyer at l1 invokes sell so that the new service offer is installed. Upon the
invocation from the buyer at l2, offer provides the book’s title so that quotes
are communicated to both buyers after the sessions are merged by the service.
Finally, the buyers communicate over bid and the negotiation is concluded by
the interactions among Q, Q1 and Q2 (not modeled here).

3 Types for Dynamic Multiparty Sessions

We consider types generated from the following CCS-like grammar:

ρ, σ ::= 0 | c.ρ | σ|ρ | β | µβ.ρ

PLACES'08 24

(Tzero)

Γ ; ∅ ⊢ 0 : {0 ր 0}

(Taction)

Γ ;∆ ⊢ P : {σ ր ρ}
Γ ;∆ ⊢ c.P : {c ∗ σ ր ρ}

(Tvar)

Γ, X : Φ; ∆ ⊢ X : {Φ}

(Tinvoke)

Γ ; ∆ ⊢ P : {σ1|σ2 ր ρ} Γ (a+) = σ ր ρ′ Γ (a−) = 0 ր σ2

Γ ;∆ ⊢ invoke a.P : {σ|σ1 ր σ2|ρ}

(Trec)

Γ, X : Φ; ∆ ⊢ P : {Φ}
Γ ; ∆ ⊢ rec X.P : {Φ}

(Tinstall)

Γ ; ∆ ⊢ P : {σ1|σ2 ր ρ} Γ (a+) = σ1 ր σ2 Γ (a−) = 0 ր ρ′ Γ ; ∆ ⊢ Q : {Φ}
Γ ; ∆ ⊢ install[a ⇒ P].Q : {Φ}

(Tmerge)

Γ ;∆ ⊢ P : {σ1|σ2|σ3 ր ρ} Γ (ep) = σ|σ2 ր σ3 Γ (ep) = σ′|σ′′ ր ρ′ σ ≈ σ′′

Γ ; ∆ ⊢ merge
p e.P : {σ′|σ1|σ

′′ ր σ2|σ3|ρ}
(Tpar)

Γ ; ∆1 ⊢ P : {σ ր ρ} Γ ;∆2 ⊢ Q : {σ′ ր ρ′}
Γ ;∆1|∆2 ⊢ P |Q : {σ|σ′ ր ρ|ρ′}

(Tses)

Γ ; ∆ ⊢ P : {σ ր ρ}
Γ ;∆, r : σ ⊢ r ⊲ P : {0 ր 0}

(Tservice)

Γ ; ∆ ⊢ P : {σ1|σ2 ր ρ} Γ (a+) = σ1 ր σ2 Γ (a−) = 0 ր ρ′

Γ ;∆ ⊢ l :: a ⇒ P : {0 ր 0}
(Tloc)

Γ ; ∆ ⊢ P : {Φ}
Γ ;∆ ⊢ l :: P : {Φ}

(Tspar)

Γ ; ∆1 ⊢ S : {σ ր ρ} Γ ;∆2 ⊢ T : {σ′ ր ρ′}
Γ ; ∆1|∆2 ⊢ S|T : {σ|σ′ ր ρ|ρ′}

(Tnew)

Γ, n+ : (σ ր ρ), n− : (σ′ ր ρ′); ∆ ⊢ S : {Φ} ρ ≈ ρ′

Γ ;∆ ⊢ (νn)S : {Φ}

(TnewR)

Γ ; ∆, r : σ ⊢ S : {Φ} σ ∈⇓0

Γ ;∆ ⊢ (νr)S : {Φ}

Fig. 4. Type system

with the expected structural properties and labeled transition relation
c

7→.

Type judgments for processes take the form Γ ; ∆ ⊢ P : {σ ր ρ}, meaning
that: (i) P must perform communication activities in σ and ρ, (ii) it plans to
interact as σ with the current participants of its session, (iii) it has delegated
the interaction ρ to other endpoints that P itself will allow to join its session
(via merge or service invocation). For a pair Φ = σ ր ρ, we call σ the current

type, and ρ the delegated type.

The type environment Γ is a finite partial mapping from variables X and
polarized service / entry-point names np (with p ∈ {+,−}) to type pairs σ ր ρ,
with the understanding that actions in ρ are delegated to np. The linear session
environment ∆ is a finite partial mapping from session names r to types σ,
such that ∆(r) represents the parallel composition of the current types of all
endpoints of r. We assume ∆(r) = 0 when r 6∈ ∆. We let ∆1|∆2 denote the
environment ∆ such that ∆(r) = ∆1(r)|∆2(r) for each r ∈ ∆1 ∪ ∆2

Our type judgments are in Fig. 4. They are parametric w.r.t. three notions:
(1) task separation c ∗ σ, (2) type compatibility ≈, (3) session completion ⇓0.

Task separation is used to project the activities of P in separate threads (in
case they must be delegated). Here we take the most relaxed form of separation,
where c ∗ σ = c|σ. Other possibilities exploit prefixes in types to take care of
causality information.

PLACES'08 25

Type compatibility σ ≈ ρ says that σ and ρ are complementary. Let I(σ) =

{c | ∃σ′ : σ
c

7→ σ′} denote the set of initial actions σ can perform. Here we take
the largest relation on types such that whenever σ is compatible with ρ it holds
that either I(σ) = I(ρ) = ∅, or K = I(σ) ∩ I(ρ) 6= ∅ and, for each x ∈ K and

for each σ′ and ρ′ such that σ
x

7→ σ′ and ρ
x

7→ ρ′, then σ′ and ρ′ are compatible.
The completion set ⇓0 contains those types σ that express admissible inter-

actions of multiple endpoints. Here we define ⇓0 as the largest set of types σ

such that: (i) for each c ∈ I(σ) such that c 6∈ I(σ) and for each σ
τ

7→ σ′ there

exists σ′′ such that c ∈ I(σ′′) and σ′
τ

7→
∗

σ′′, (ii) if σ
τ

7→ σ′ then σ′ ∈⇓0.
We say that Γ is well-formed if: (i) whenever Γ (np) = σ ր ρ, then Γ (np) =

σ′ ր ρ′ for some ρ′ ≈ ρ, and (ii) whenever Γ (a−) = σ ր ρ, then σ = 0. We say
that ∆ is fully-formed if whenever ∆(r) = σ, then σ ∈⇓0. We say that a system
S is self-typeable if Γ ; ∆ ⊢ S : {0 ր 0} for some well-formed Γ and fully-formed
∆. For simplicity, we shall omit the type rules for explicit fusion of session names
and restrict to self-typeable systems S without nested sessions and with no free
session name, i.e. such that Γ ; ∅ ⊢ S : {0 ր 0} for some well-formed Γ .

Rule (Tmerge) best illustrates the flavor of our type system. Note that if Γ

is well-formed, it must be ρ′ ≈ σ3. Then: (1) P matches σ3 to ρ′, (2) P delegates
σ2 to the other endpoints of the merged session, (3) the other endpoints of the
session of P delegate σ to the merging endpoint, and symmetrically (4) the
merging endpoint and its partners delegate σ′|σ′′ to the partners of P .

The systems T1 and T2 from § 2 are self-typeable. The type derivation for T1

is reported below, where we omit some labels and rules due to space limitation.

(Tzero)
Γ ; ∅ ⊢ 0 : {0 ր 0}

(Taction)
Γ ; ∅ ⊢ x : {x ր 0}

(Tmerge)
Γ ; ∅ ⊢ merge+ e2.x : {x|y ր 0}

(Tmerge)
Γ ; ∅ ⊢ merge− e1.merge+ e2.x : {0 ր x|y}

(Tses)
Γ ;∆2 ⊢ P2 : {0 ր 0}

(Tloc)
Γ ; ∆2 ⊢ l2 :: P2 : {0 ր 0} (†)

...

Γ ; ∅ ⊢ merge+ e1.x.y : {0 ր x|y}

Γ ; ∆1 ⊢ P1 : {0 ր 0}

Γ ; ∆1 ⊢ l1 :: P1 : {0 ր 0}

(†)

...

Γ ; ∅ ⊢ merge− e2.y : {0 ր y}

...

Γ ; ∆2|∆3 ⊢ l2 :: P2 | l3 :: P3 : {0 ր 0}

Γ ; ∆ ⊢ l1 :: P1 | l2 :: P2 | l3 :: P3 : {0 ր 0}

...
Γ ; ∅ ⊢ T1 : {0 ր 0}

where Γ = { e+

1 : (0 ր x|y), e−1 : (0 ր x|y), e+

2 : (0 ր 0), e−2 : (y ր 0) },
∆1 = {r1 : 0}, ∆2 = {r2 : 0}, ∆3 = {r3 : 0}, and ∆ = {r1 : 0, r2 : 0, r3 : 0}. The
condition of ≈ for e1 is satisfied since x|y ≈ x|y holds and the condition for e2

is satisfied since 0 ≈ 0.

PLACES'08 26

For T2, we assume Q ≡ Q3|Q4 with Q1 ≈ Q3 and Q2 ≈ Q4, write b for bid , t

for title, q for quote, and have Γ ; ∅ ⊢ T2 : {0 ր 0} for Γ shown below (together
with some excerpts of type derivations).

∆ = { r1 : 0, r2 : 0 }
Γ = { sell+ : (0 ր b|t|q|Q3),

sell− : (0 ր b|t.q|Q1),

offer+ : (0 ր b|t|q|Q4),
offer− : (0 ր b|t|q|Q2),

e− : (b ր 0),
e+ : (q|b|Q3 ր 0) }

...

Γ ; ∅ ⊢ t.q.b.Q1 : {b|t|q|Q1 ր 0}

Γ ; ∅ ⊢ invoke sell .t.q.b.Q1 : {0 ր b|t|q|Q1}

Γ ; ∆ ⊢ r1 ⊲ invoke sell .t.q.b.Q1 : {0 ր 0}

Similarly, Γ ; ∆ ⊢ r2 ⊲ invoke offer .t.q.b.Q2 : {0 ր 0}

...
Γ ; ∅ ⊢ t.q.q.(Q) : {q|t|q|Q ր 0}

Γ ; ∅ ⊢ merge+ e.(t.q.q.(Q)) : {b|t|q|Q4 ր q|Q3}

Γ ; ∅ ⊢ offer ⇒ merge+ e.(t.q.q.(Q)) : {0 ր 0}

Γ ; ∅ ⊢ 0 : {0 ր 0}

Γ ; ∅ ⊢ merge− e : {b|q|Q3 ր 0}

Γ ; ∅ ⊢ sell ⇒ t.install[offer ⇒ merge+ e.(t.q.q.(Q))].merge− e : {0 ր 0}

This is still a preliminary study, but we conjecture that self-typeability enjoys
subject reduction and that any non self-typeable system has at least one session
that can deadlock on some pending communication. On the other hand, we point
out that some self-typeable systems can deadlock, because, e.g., rule (Taction)
relaxes the order of execution of actions, and the type system checks neither
that the number of positive merges on an endpoint is the same as the number of
negative merges on such endpoint nor that the number of invocations to a service
is less than the number of times such service is available / installed. We guess
that stronger guarantees can be obtained by restricting the syntax of endpoints,
by tuning the definitions of c ∗ σ, ≈ and ⇓0, and by extending the types with
capability / obligation level annotations à la Kobayashi [7].

References

1. E. Bonelli and A. Compagnoni. Multipoint session types for a distributed calculus.
TGC’07, vol. 4912 of LNCS, pp. 240–256. Springer, 2008.

2. M. Boreale, et al. SCC: a service centered calculus. WS-FM’06, vol. 4184 of LNCS,
pp. 38–57. Springer, 2006.

3. R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. Multiparty sessions in SOC.
COORDINATION’08, vol. 5052 of LNCS, pp. 67–82. Springer, 2008.

4. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. ESOP’07, vol. 4421 of LNCS, pp. 2–17. Springer, 2007.

5. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type disciplines
for structured communication-based programming. ESOP’98, vol. 1381 of LNCS,
pp. 22–138. Springer, 1998.

6. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
POPL’08, pp. 273–284. ACM, 2008.

7. N. Kobayashi. Typical tool. http://www.kb.ecei.tohoku.ac.jp/˜koba/typical/.
8. I. Lanese, V. Vasconcelos, F. Martins, and A. Ravara. Disciplining orchestration and

conversation in service-oriented computing. SEFM’07, pp. 305–314. IEEE, 2007.

PLACES'08 27

Synchronous Multiparty Session Types

Extended Abstract

Andi Bejleri
Imperial College London

Nobuko Yoshida
Imperial College London

Abstract

This abstract continues the work on multiparty session types initiated by
Honda et al. [5] for synchronous communications. Synchronous commu-
nications model control for timing events and strong sequentiality order of
messages. The calculus proposed in this paper has a more relaxed syntax
and operational semantics than the calculus of asynchronous communica-
tion, and the type soundness proof is therefore more straightforward. The
calculus models non-arbitrary transmission of channels via multipolarity
labels, multicasting and invisibility of delegation at global type definition.
A new definition of linearity is provided with the modified causality analy-
sis for ordering communications. The type system of the calculus is proved
to be sound with respect to the operational semantics and coherent with
respect to the global types. The full version of this abstract is found in [1].

1 Introduction

Multiparty session types for an asynchronous communication calculus have re-
cently been introduced by Honda et al. [5] and Bonelli-Compagnoni [2]. The
idea of multiparty session types of the first work is to represent the interactions
between processes globally rather than by a list of binary sessions types as it is
done in the second work. The system given in this abstract follows the typing
theory of the first work.

In the context of multiparty sessions, controlling the timing of events be-
comes important: for example, in a fire control system for a building, we expect
that all the fire alarms run before the elevators are blocked. This scenario would
be modeled by the control process as a multicast send of an ON message to the
fire alarms and a multicast send of a BLOCK message to the elevators. Syn-
chronous communications support control for timing events. In the fire control
example, the second multicast sending will happen only after the message is re-
ceived by the multicast group of the first send, resulting therefore in the desired
behavior of the fire control system.

Binary session types [4, 6] on their own are not rich enough to express de-
pendencies between different interactions in a multiparty session. A notion of
global type is therefore introduced in [5] to formalise the global behavior of
a multiparty session. The example below illustrates the key ideas of multi-
party session, dependencies between interactions and global description. In a
Client-Addition-Successor- Predecessor session, the communication protocol is
defined as: the Client sends two natural numbers to the Addition and waits to
receive from him the sum of them. If the second operand is equal to 0 then
the Addition sends to Client the first operand as result, otherwise it sends the
first operand to the Successor and receives from him the successor of it, then
it sends the second operand to the Predecessor and receives from him the pre-
decessor of it; this behavior is repeated until the second operand is equal to 0.

1

PLACES'08 28

The global description of the communication protocol in a name-arrow based
representation is

Client→ Addition : 〈int〉.
Client→ Addition : 〈int〉.
µt.Addition→ {Successor, Predecessor} : {

true : Addition→ Client : 〈int〉.end,
false : Addition→ Successor : 〈int〉.

Successor→ Addition : 〈int〉.
Addition→ Predecessor : 〈int〉.
Predecessor→ Addition : 〈int〉.t}

where A → B, C : 〈t〉 means that process A sends simultaneously a message of
type t to process B and C, and A → B, C : {l1 : · · · , ..., lj : · · · } means that
process A sends simultaneously a label li where i ∈ {1, ..., j} to process B and
C. We have omitted channels from the example for simplicity.

In binary sessions, the Client-Addition-Successor-Predecessor protocol is
represented by three sessions: Client-Addition1, Successor-Addition2 and Predecessor
-Addition3. The interactive structure of each of the processes is

Client = !〈int〉; !〈int〉; ?〈int〉; end
Addition1 = ?〈int〉; ?〈int〉; !〈int〉; end
Successor = µt.&{true : end, false :?〈int〉; !〈int〉; t}
Addition2 = µt.⊕ {true : end, false :!〈int〉; ?〈int〉; t}

Predecessor = µt.&{true : end, false :?〈int〉; !〈int〉; t}
Addition3 = µt.⊕ {true : end, false :!〈int〉; ?〈int〉; t}

where !〈t〉 denotes an output of type t, ?〈t〉 denotes an input of type t, ⊕{l1 : · · · ,
..., lj : · · · } denotes a choice of a label and &{l1 : · · · , ..., lj : · · · } denotes branch-
ing on a set of labels. Addition consists of three interactive structures each
corresponding to one of the three sessions. This representation of the interac-
tions is well-typed by a binary session type system as the interaction structures
Client-Addition1, Successor-Addition2 and Predecessor-Addition3 are recipro-
cal between them, respectively. However, the binary session representation of
the processes breaks the order of messages because in the case when the second
operand is not 0, Addition should add the second operand to the first one before
returning it to Client and this dependency between the sessions Client-Addition1

and Addition2,3-Successor- Predecessor can not be captured by binary session
types.

In multiparty sessions, the protocol is represented by the global description
given above and as a consequence the interactive structure of the Addition
process is

?〈int〉; ?〈int〉;µt.⊕ {true :!〈int〉; end, false :!〈int〉; ?〈int〉; !〈int〉; ?〈int〉; t}.
The interactive structure of the other processes Client, Successor and Predecessor
is the same. The Addition process has now only one interactive structure that
defines its participation in the session and that respects the definition of the
protocol. Hence, the use of global types allows a more complete and intelligible
definition of communication protocols in multiparty sessions also in presence of
programming features such as recursion, selection-branching and multicasting.

2

PLACES'08 29

In synchronous communications calculi, the runtime sequence of interactions
follows more strictly the one of the global behavior description than the asyn-
chronous communication calculus with queue [5], resulting in a simpler typing
system of the global behavior.
In the global type definition, a programmer does not specify only the commu-
nications of a protocol but also the channels where the communications take
place. This is an important feature in multiparty session types as global types
are not a simple human interpretable descriptive language; global types together
with the projection algorithm and type-system represent a type-checking tool
for communication-based processes.
In the context where different interactions can use the same channel, global
types alone do not guarantee that the message-order at run-time of the session
is the same as the one specified in the global behavior. A linearity property
checks if the use of same channel in two different communications of a global
type does not break the order of messages as specified in the global description.
A precise casual analysis for sequencing two synchronous communications is
provided in the next section. This analysis leads to the definition of causalities
in a global type and the linearity property uses this analysis in a global type to
define when it is safe in terms of non-ambiguity, in two communications to use
the same channel.

Finally, each process is type-checked with the type obtained as the result of
projecting the process identity on the global type. A flavor of the projecting
algorithm is given in the next section. The type-checking algorithm analyses
the process via a bottom-up strategy, starting to type check the process com-
munication behavior (after the state of willing/waiting to initiate a session). If
the type-checking algorithm ends at the stage where the analyser reaches the
inaction process with a bottom session type then the processes satisfy its part
of the communication protocol .

Contributions. The next paragraphs summarize the main technical contri-
butions of this work.

A Simpler Calculus. The syntax of the calculus is more relaxed than the one
introduced by Honda et al. [5]. We do not distinguish syntactically between a
primitive value send and a session channel send following the idea firstly pro-
posed in [3]. The syntax of the calculus does not introduce queues, neither at
programmer code level nor at runtime code level, in contrast to the asynchrony
communication calculus and in accordance to pioneering session calculi [4, 6].

Higher Order Communication. High-order communication, a.k.a. delega-
tion, is defined k!〈k′〉 | k?〈k′〉 in the first system [4] to support it, where the
receiver posses the transmitted channel (k′) at implementation time, so before
the communication takes place. The calculus of this abstract allows the trans-
mission of channels with the receiver not possessing the channels until the com-
munication happens. This feature cannot be supported safely by simply adding
substitution to the receiver end-point in the delegation rule of the operational
semantics of Honda-Vasconcelos-Kubo systems because then one may build a
well-typed term that makes use of the new rule and after some reductions is
ill-typed. The solution proposed in this paper is similar to the one proposed in
[3, 6] with the extension of having multipolarity labeled session channels rather

3

PLACES'08 30

than binary labeled ones.

Multicasting. The calculus supports the delivery of messages to a group of
peers simultaneously (multicasting).

Invisibility of Delegation at Global Types. In the programming method-
ology of the calculus, the global type should define only the interactions of that
session without knowing how this interactions might change due to other possi-
ble global types that formalise delegation. The global types of the Alice-Bob-Carol
example in the asynchronous multiparty [5], Ga = A → B : t1〈s1!〈int〉@B〉.end
and Gb = B → C : s1!〈int〉.end do not support invisibility. The behavior global
type Gb expresses the changes of communications, from A → C to B → C, due
to the delegation in Ga expelling in this way A from being a participant of
session started on b. This inconsistency of information between Gb and the
implementation of session initiated on b makes process A not type-checked
even though it is correct. Following the above methodology, the global types
Ga = A→ B : t1〈s1!〈int〉@A〉 and Gb = A→ C : s1!〈int〉.end type-check all three
processes.

2 Synchronous Multiparty Sessions

The Calculus. The two communication-based operation on session channels
are values sending-receiving and label selection-branching. These two operations
together with recursion represent the core of the calculus operational semantics.
Also multicast session request-acceptance represents a communication idiom
that is used only at session initiation.

The system given in this paper uses the same mechanism as in [3, 6] to sup-
port in a safe way non arbitrary transmission of channels with the only change
of having multipolarity. In other word, their system uses a binary polarity (+,
-) for the binary session calculus because sessions are represented by only two
processes but for the multiparty calculus the number of processes participating
in a session is generally more than two, so we introduce an index label ranging
[1, ..., p], where p is the number of processes involved in a session, which is
assigned to every channel of the session when substituted in a process.

The non capital Latin letters a, b, c, ... represent shared names; e, e′, ... rep-
resent expressions; l, l1, l2, ... refer to branch labels; m1,m2, ..., p, q, ... range
over naturals; κp, ... refer to session channel values; x, y, z, ... refer to variables
of the calculus. The capital Latin letter P, P1, P2, ...Q, ... refer to processes
terms.
The operational semantics communication-based rules for the synchronous com-
munication calculus are

a[2..n] (ỹ).P1 | a[2] (ỹ).P2 | · · · | a[n] (ỹ).Pn
→ (νκ̃)(P1[κ̃1/ỹ] | P2[κ̃2/ỹ] | ... | Pn[κ̃n/ỹ]) [Link]
κi1 [m1, ...,mn]!〈ẽ〉;P1 | κi2 [m1]?(ỹ);P2 | · · · | κin+1 [mn]?(ỹ);Pn+1

→ P1 | P2[ṽ/ỹ] | · · · | Pn+1[ṽ/ỹ] (i1 6= i2 6= · · · 6= in+1, ẽ ↓ ṽ) [Multicasting]

κi1 [m1, ...,mn] � li;P1 | κi2 [m1] � {lj : P2j}j∈I | · · · | κin+1 [mn] � {lj : Pn+1j}j∈I
→ P1 | P2i | · · · | Pn+1i (i1 6= i2 6= · · · 6= in+1, i ∈ I) [MultiLabel]

4

PLACES'08 31

(II) (IO) (OI) (OO) (OO, II) (IO,OI)
A, S A, S S S A, S A, S
P1 → P : k1

P2 → P : k2

P1 → P : k1

P→ P2 : k2

P→ P1 : k1

P2 → P : k2

P→ P1 : k1

P→ P2 : k2

P→ P1 : k
P→ P1 : k

P1 → P : k
P→ P1 : k

Figure 1: Causality Analysis

The other rules are the same as in other session calculi [4, 6, 5].
[Link] initiates a session between n peers. The result of the reduction is the

generation of as many session channels as session variables and the substitution
of them in processes. Note that the session channels for each process are labeled
by a multipolarity label ranging [1, ..., n], where n is the number of processes
involved in the session.

[Multicasting] actions the synchronous value sending-receiving between
two or more peers. The result of the reduction is the substitution of the place
holders with the values received by the receiver. Note that the reduction holds
if the channel names are the same in both peers even though the polarity is
different. The relation ↓ evaluates the expression e to the value v and the value
v to itself.

[MultiLabel] actions the synchronous label selection-branching communi-
cation between two or more peers. The selector process sends the label l i to
the branching processes and the result of reduction are the process that were
labeled by l i (P [2...n]i).

Linearity. Figure 1 presents all the causalities with concrete processes in-
stances for illustration where P, P1, P2 denote processes identities. The letter
A and S represent respectively the asynchronous and synchronous communi-
cation calculus where these cases are considered. All the four causalities are
considered for ordering in this calculus due to its synchronous communication
nature, and there is an order between send-receive (OI), receive-send (IO), be-
tween two sends (OO) and between two receives (II). The send-receive (OI) and
send-send (OO) are not considered in the asynchronous communication calcu-
lus [5]. The (OI) ordering states that process P sends a value before receiving
one and the received value is different from the one sent. Due to independence
of sent-received values, one can receive first and then sends the value without
changing the semantics of the program. In asynchronous communications, (OI)
does not introduce any dependency on messages order so this causality is not
considered. In the second ordering (OO), the messages send are individual and
the order when process P sends to P1 and P2 them does not alter the semantics
of the program, therefore the order introduced by (OO) does not introduce any
dependency on the order of messages.

The intuition behind linearity for synchronous communications is that two
ordered communications n1 = p1 → p′1 : m and n2 = p2 → p′2 : m can use the
same channel if the second communication happens only after the first one. Each
of the two processes involved in n2 have to undertake another communication
(pj → p2/p2 → pj, pk → p′2/p

′
2 → pk) and these communications should happen

after the first communication n1. It is more easy in synchronous communications
to establish when a certain communication has happened or not; i.e if the sender

5

PLACES'08 32

or receiver of that communication action another communication then we are
sure that the former one has happened. In asynchronous communications only
when the receiver of the communication actions another communication then
we are sure that the former one has happened.

Type Preservation. The static type system rules are basically the ones for
binary session calculi [4] with rules that type multicasting session initiation as
in [5] and multipolarity channel restriction as in [6].

The projection algorithm mentioned in Section 1 is defined for primitive
value sending in this section. Let G be linear then the projection of G onto p,
written G�p, is inductively given as:
(p→ p1, ..., pj : m1, ...,mj 〈S̃〉.G′)�pi def=




m1, ...,mj !〈S̃〉; (G′ �pi) if pi = p and pi /∈ p1, ..., pj
mi?〈S̃〉; (G′ �pi) if pi ∈ p1, ..., pj and i ∈ {1, ..., j} and pi 6= p

(G′ �pi) if pi /∈ p1, ..., pj and pi 6= p
G is coherent if it is linear and G �p is well-defined for each process defined

in G similarly for each carried global type inductively.
Preservation Theorem a.k.a. subject reduction ensures that the type of an

expression is preserved during its evaluation.

Theorem 2.1 (preservation) Γ ` P .∆ such that ∆ is coherent and P → P ′

imply Γ ` P ′ .∆′ where ∆ = ∆′ or ∆→ ∆′.

∆ → ∆′ denotes a reduction relation between session types which abstractly
represents the interactions at session channels.

As future work, we plan to extend our system by disallowing at compile time
the inner delegation problem and support safely delegating in multicast. These
two issues are explained in more detail in [1].

References

[1] Andi Bejleri and Nobuko Yoshida. Synchronous multiparty session types.
Available at http://www.doc.ic.ac.uk/~ab406.

[2] Eduardo Bonelli and Adriana Compagnoni. Multipoint session types for a
distributed calculus. Electr. Notes Theor. Comput. Sci., 2007.

[3] Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi
calculus. Acta Inf., 42(2-3):191–225, 2005.

[4] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-based program-
ming. In ESOP, pages 122–138, 1998.

[5] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In POPL, pages 273–284, 2008.

[6] Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language primitives
and type discipline for structured communication-based programming revis-
ited: Two systems for higher-order session communication. Electr. Notes
Theor. Comput. Sci., 171(4):73–93, 2007.

6

PLACES'08 33

http://www.doc.ic.ac.uk/~ab406�

Session-based Choreography with Exceptions

Marco Carbone
Queen Mary University of London

Abstract

Choreography has recently emerged as a pragmatic and concise way of describ-
ing communication-based systems such as web services and financial protocols.
Recent studies have investigated the transition from the design stage of a system
to its implementation providing an automatic way of mapping a choreograhy into
executable code.
In this note, we focus on an extension of choreography with a communication-
based (interactional) exception mechanism and we give its formal semantics. In
particular, we discuss through some examples how interactional exceptions at chore-
ography level can be implemented into end-point code.

1 Introduction
Due to fast-changing technologies and exponential growth of Internet and world-

wide web, applications based on communication are becoming vital in the practical
world. Such communication-centred applications are often known as Web Services,
the first major programming trend which positions communication as a key element of
high-level programming.

An emerging paradigm for programming communication is the so-called Choreog-
raphy. This discipline focuses on the fact that an architect, when designing a distributed
system, no longer describes the behaviour of the single peers (end-point behaviour) but
establishes how the various interactions between entities happen by giving a global de-
scription (choreography) of the system. In a traditional approach, the architect would
describe the communication operations, e.g. an input, that must be performed at each
peer. Unfortunately, this makes very difficult to have a global view of how the whole
system being designed works. On the other hand, global descriptions can picture the
whole scenario of where and when a communication has to happen. The architect will
now decide that e.g. there will be a message from A to B and no longer think how
this will be implemented at A (sending a message) or B (waiting to receive a message).
Hence, choreography offers a vantage view of the system facilitating the design stage
and leaving the implementation details to the (possibly automated) process of generat-
ing an (possibly sound) end-point code, called end-point projection.

Exceptions are a mechanism widely adopted in modern programming languages
(e.g. Java, C#) for dealing with unwanted system behaviours i.e. they are designed
to handle the occurrence of some conditions interrupting the normal flow of execution
of a program. While the classical notion of exception is bound to the local flow of
a process, in communication-centred programming exceptions are about the flow of
interactions where a sudden interruption must involve all interacting participants. We
shall call this kind of exception an interactional exception [5].

This note discusses an extension of choreography with exceptions. In particular, we
will see through examples, how exceptions are naturally interactional in choreography
(choreography is about interactions) while they require exception propagation when
moving to end-point behaviour.

1

PLACES'08 34

2 Extending Choreography with Exceptions
Syntax. The global calculus [3, 4] is a model of choreography based on WS-CDL [10],
the most known language for choreography. We hereby extend it with the new terms
for handling interactional exceptions. Its selected syntax is given by standard BNF.
Below, I, J denote terms of the global calculus:

I, J ::= A→ B : b(s)[t̃, I, J] (init) | 0 (inaction)
| A→ B : s〈op, e, y〉 . I (com) | I | J (par)
| throw (throw) | I + J (sum)
| if e@A then I else J (cond) | (νs) I (new)
| rec X . I (rec) | X (recVar)

where a, b, c, . . . range over service channels which may be considered as e.g. shared
channels of web services; s, t, r range over session channels, the communication chan-
nels freshly generated for each session; A, B,C range over participants who are equipped
with their local variables denoted by x, y, z . . .; e is an arithmetic or other first order ex-
pression; and X ranges over term variables used for recursion.

In the syntax above, terms (init) and (throw) are the novel constructs. (init) de-
scribes a system where participant A invokes a service b located at participant B and
starts a session s. The novelty is in the triple [t̃, I, J]: choreography I, called the default
choreography, describes the normal (or default) behaviour of the system, while J is the
exception handler to be run whenever an exception is thrown. Vector t̃ has a pivotal
role: an exception on any ti has to be propagated (at implementation level) to the whole
t̃ discarding any other handler previously instantiated on any ti. As an example, the
choreography A → B : b(s)[s, B → C : c(t)[t, I, J] , J′] describes a system differ-
ent from the one described by A → B : b(s)[s, B → C : c(t)[(s, t), I, J] , J′]. In
the first case, the raising of an exception in I, would only concern the interactions on
t between B and C while, in the second case, it would also affect the interactions on s.
For consistency, we assume that

For any C → D : a(s′)[t̃′, I′, J′] occurring in A→ B : b(s)[t̃, I, J],
we have ti ∈ t̃′ if and only if t̃ ⊆ t̃′. (1)

(throw) denotes the throwing of an exception. (com) models in-session communica-
tion between participants A and B: message e will be stored in variable y located at B
while op indicates the type of operation [10]. (cond) is the standard conditional oper-
ator where the guard e is evaluated at A. (rec) and (recVar) are respectively recursion
and recursion variable while (sum) is non-deterministic choice. The term (par) is the
parallel composition of choreographies and (new) is session channel restriction. The
syntax presented is not exhaustive and can be extended with other constructs [3, 4].
A simple Financial Protocol. This example and the following one are inspired by [5].
Let us consider a scenario where a buyer Buyer wishes to purchase a product from a
seller Seller. Buyer starts a session with Seller who repeats sending quote updates about
the product price. When Buyer decides to accept a particular quote, without explicitly
notifying Seller, it throws an exception. At this point, Seller and Buyer move together
to a new stage (exception stage) where they exchange information for successfully
terminating the transaction e.g. credit card details for payment and receipt. We can

2

PLACES'08 35

write this protocol in the global calculus as:

1. Buyer→ Seller : chSeller(s) [s,

2. rec X . Seller→ Buyer : s〈update, quote, y〉 .
3. if (y < 100)@Buyer then throw else X,

}
default

4. Seller→ Buyer : s〈conf, cnum, x〉 .
5. Buyer→ Seller : s〈data, credit, x〉]

}
handler

In line 1, Buyer invokes service chSeller from Seller. Line 2 and 3 compose the default
choreography: the interaction Seller → Buyer : s〈update, quote, y〉 models the
sending of a quote quote from Seller to Buyer who will store the received value at
variable y. In line 3, variable y is checked by Buyer and if its value is less than 100, an
exception will be thrown otherwise the course of action will go back to line 2. Lines 4
and 5 describe how the system will handle an exception: Seller will send a confirmation
cnum and Buyer will reply with its credit card credit.
A Financial Protocol with Broker. Following [5], we extend the protocol above in-
cluding a third participant, a broker Broker whose role is to buy from Seller and resell
to Buyer (a typical situation in financial protocols). In this scenario, Buyer will invoke
Broker rather than Seller and act almost identically as in the previous example. On
the other hand Broker, after being invoked by Buyer and checking his reputation, will
invoke Seller and act as Buyer in the previous example. As before, Buyer can raise an
exception in case of quote acceptance but also Broker can throw if Buyer’s reputation
is not satisfactory before even invoking Seller. In the global calculus:

1. Buyer→ Broker : chBroker(s) [s,

2. Buyer→ Broker : s〈identify, id, x〉 .
3. if bad(x)@Broker then throw
4. else Broker→ Seller : chSeller(t)[(s, t), rec X .

5. Seller→ Broker : t〈update, quote, y〉 .
6. Broker→ Buyer : s〈update, y + 10%, y〉 .
7. if (y < 100)@Buyer then throw else X,

 default

8. Seller→ Broker : t〈conf, cnum, x〉 .
9. Broker→ Buyer : s〈conf, x, x〉 .

10. Buyer→ Broker : s〈data, credit, x〉 .
11. Broker→ Seller : t〈data, x, x〉],

 handler



default

12. Seller→ Buyer : s〈reject, reason, x〉 . I]
}

handler

In lines 1 and 2, Buyer invokes service chBroker and sends its identity id to Broker
who, in line 3, will check whether Buyer is bad or not. If Buyer is not trusted, Broker
will raise an exception which will take both Buyer and Broker to an abortion procedure
in line 12 (we leave I unspecified). Note that in this case, Buyer and Broker are the only
participants involved so far and the only ones who will move to another conversation
for handling the exception.

If Buyer can be trusted, Broker invokes service chSeller and forwards to Buyer
all quotes received from Seller increasing them by 10%. As before, Buyer will throw
an exception whenever s/he decides to accept a quote. In this case, as the participants
involved are now Buyer, Broker and Seller, the handler to be executed is the inner
one where Broker will forward messages between Buyer and Seller (lines 8-11). This

3

PLACES'08 36

event will also discard the handler in line 12 which, after session initiation in line 4,
has become inactive.
Semantics. Above, we have shown how interactional exceptions can be exploited for
expressing systems such as financial protocols. Now, we shall formalise the exception
mechanism by defining a reduction semantics for the global calculus that can handle
exceptions. This is done by enhancing the following notation from [3, 4]:

(I, σ)
s̃
−→ (J, σ′)

which says a global description I in a state σ (which is the collection of all local states
of the participants) will be changed into J with a new state σ′. Intuitively, the reduction
semantics of choreography will change the state σ by updating the variables as a con-
sequence of each interaction. Label s̃ is used for discarding already thrown exceptions
on channels si (see below). We shall often omit the label when equal to ∅.

In order to give semantics to the new exception operations, we need to extend the
syntax with the following run-time terms:

try(s̃) {I} catch {J} {{I}}

The term on the left, called try-catch block, reads: “The system is behaving as chore-
ography I; if an exception is thrown on any si then handler J will be run”. This realises
at run-time the default choreography and the handler in initialisation. When an excep-
tion is thrown, we need to make sure that handlers do not get brutally terminated by
an embedding try-catch block. This is ensured by a wrap term {{I}} which reads “the
handler I is being executed”.

We are now able to give the most relevant rules. The semantics transforms session
initialisation into a try-catch term:

A→ B : b(s̃)[t̃, I, J] −→ (νs) try(t̃) {I} catch {J}
The following rule handles the raising of an exception:

I u (I′, S) ⇒ try(t̃) {throw | I} catch {J}
s̃∪S
−→ {{J}} | I′

When a throw is top-level in a try-catch block then the default choreography terminates
and the handler J is run (wrapped). The rule uses a new relation I u (I′, S) called meta
reduction [5]. The initial choreography I is transformed into I′, the result of erasing
and wrapping embedded try-catch blocks; S denotes all those session channels affected
by the exception from nested try-catch blocks. This relation is indispensable in interac-
tional exceptions: choreography I may contain wraps or other try-catch blocks which
should not be brutally erased and an exception should also be raised. The key rule for
defining meta reduction is the following:

I u (I′, S) ⇒ try(t̃) {I} catch {J}u ({{J}} | I′, S ∪ t̃)

We need two more rules to make our semantics sound. One is for removing try-catch
blocks on which an exception has already been thrown:

s̃ ⊆ t̃, I
t̃
−→ I′ and I′ u I′′ ⇒ try(s̃) {I} catch {J}

t̃∪S
−→ I′′

Above, we need I′ u I′′ in case I is a parallel composition of more choregraphies. In
fact, try-catch blocks in parallel with the choreography where an exception was thrown
are left untouched while anything in I is supposed to be terminated.
The following rule removes session channels on the labels when there is a restriction:

I
s̃
−→ J ⇒ (νt) I

s̃\{t}
−→ (νt) J

4

PLACES'08 37

Semantics of the Financial Protocol with Broker. We now show how the rules work
in our second example. When bad(x) holds, we have that

(νs) try (s) { if bad(x) then throw else . . . lines 4-9. . . } catch { J } −→ {{ J }}

where J = Seller→ Buyer : s〈reject, reason, x〉 . I. In the other case, when Buyer
wishes to accept the quote (y < 100). we will have:

(νs) (νt) try (s) {

try (t, s) {
if (y < 100) then throw
else {. . . as line 4. . . }

} catch {. . . as lines 8-9. . . }

} catch { J }

−→ {{ {. . . as lines 8-9. . . } }}

where we have applied the rule for removing the most external try-catch block.
Note that assumption (1) (together with the types defined below) plays a key role in

the semantics when starting from non-run-time choreographies. In fact, this guarantees
that no multiple try-catch blocks for the same session are in parallel, in an outer block.
Types. The type discipline for the calculus is based on session types as in [3, 4]. Writ-
ing θ for first-order value types, the grammar of types is as follows:

α ::= ↓ (θ) .α | ↑ (θ) .α | ⊕ {li : αi}i∈I | &{li : αi}i∈I | α{{β}} | end | rec t .α | t

α and θ are respectively called session types and service types. The grammar follows
the standard session types [6], except for try-catch type α{{β}} [5], the abstraction of a
try-catch block: in α{{β}}, α denotes the type of a service in the default choreography
while β the type in the exception handler.

As an example, the types of services chBroker and chSeller are rec t. ↑ (int) . t{{↓
(int) . ↑ (int)}} and (↓ (int) . rec t. ↑ (int) . t){{⊕{conf :↓ (int) . ↑ (int), reject :
α}}} respectively where α depends on the behaviour in I.
End-Point Projection. We can now conclude our discussion by translating a global
description into its end-point counterpart (EPP). In the financial protocol, we would
have the following behaviour for Buyer and Broker (we omit Seller) in pseudo-code1:

chBroker(s)[s, out(s)(id) . rec X . in(s)(y) . if ok(y) throw else X,
conf : in(s)(x) . out(s)(credit) + reject : in(s)(x) . P]

∗chBroker(s)[s, in(s)(x) . if bad(x) then throw else
chSeller(t)[(t, s),

. . . fwd of quotes from t to s (inner default). . . ,
select(s)(conf) fwd between t and s (inner handler). . .],

select(s)(reject) : P]

where in(s)(x) denotes an input, out(s)(e) an output and select(s)(l) a branch selection.
Initialisation at end-point level is split into two dual operations (as in standard sessions
[6]) but it is enriched with a default process and an exception handler. Note that the two
throws in the choreography have been made local to Buyer and Broker. This follows
the general idea of connectedness (like EPP of if-then-else [4]), where the last active
participant will be the one executing the new action (like throw or guard evaluation).

1The formal semantics for an end-point calculus with exceptions is reported in [5] and it guarantees that
propagation (e.g. from t to s in the example) is sound.

5

PLACES'08 38

In general, the process of EPP can be tricky, because we can easily produce a global
description which does not correspond to a realisable local counterpart. The descrip-
tive principles of Connectedness (a basic local causality principle), Well-threadedness
(a stronger locality principle based on session types) and Coherence (a consistency
principle for description of each participant) guarantee a sound EPP [4].

3 Conclusions and Related Work.
We have introduced the notion of exception for choreography. In particular, we

have extended the syntax of the global calculus [3, 4] with the exception mechanism
and given its formal semantics. The aim of this note was to show with simple but
practical examples how exceptions can be used at choreography level and how they
can be mapped to end-points. In the global calculus, exceptions are a simple form of
transferring execution to a different choreography. But, together with a sound end-point
projection, choreography becomes a powerful tool for designing end-point behaviour
where the raising of an exception will transfer the execution of all end-points to an
exception handling interaction.

We believe that obtaining end-point behaviour from choreography with exceptions
through end-point projection will ensure/relax many of those conditions required for
sound exception propagation in [5] (e.g. liveness comes automatically), though details
are to be seen. Also, principles required for making end-point projection sound such as
connectedness, well-threadedness and coherence [4] should be easily extendable to the
global calculus with exceptions. Another future subject is to implement this framework
for languages for web services and business protocols such as WS-CDL [10].

The notions of choreography and end-point projection have already been formalised
in literature (e.g. [2, 4]). Exceptions for concurrent systems have already been stud-
ied in [1, 7–9] but they are purely local to processes (end-points). To the best of our
knowledge, none of these works discuss exceptions for choreography nor exceptions
for interactions.

References
[1] L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions. In FMOODS’03,

LNCS, pages 124–138. Springer, 2003.
[2] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration confor-

mance for system design. In Coodination, volume 4038 of LNCS, pages 63–81, 2006.
[3] M. Carbone, K. Honda, and N. Yoshida. A calculus of global interaction based on session types. In

2nd Workshop on Developments in Computational Models (DCM), ENTCS, 2006.
[4] M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Programming for Web

Services. In ESOP’07, volume 4421 of LNCS, pages 2–17. Springer, 2007.
[5] M. Carbone, K. Honda, and N. Yoshida. Structured Interactional Exception in Session Types. Sub-

mitted for publication. Available at http://www.dcs.qmul.ac.uk/˜carbonem/exception, Mar
2008.

[6] K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Disciplines for Structured
Communication-based Programming. In C. Hankin, editor, ESOP’98, volume 1381 of LNCS, pages
22–138. Springer-Verlag, 1998.

[7] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. In ESOP ’07,
pages 33–47, 2007.

[8] J. Misra and W. Cook. ORC - an orchestration language. www.cs.utexas.edu/

users/wcook/projects/orc/, 2007.
[9] H. Vieira, L. Caires, and J. Seco. The conversation calculus: A model of service oriented computation.

In ESOP’08, LNCS. Springer, 2008.
[10] Web Services Choreography Working Group. http://www.w3.org/2002/ws/chor/.

6

PLACES'08 39

Compiling the π-calculus into a Multithreaded

Typed Assembly Language

Tiago Cogumbreiro∗ Francisco Martins∗

Vasco T. Vasconcelos∗

Introduction. Current trends in hardware made available multi-core CPU
systems to ordinary users, challenging researchers to devise new techniques to
bring software into the multi-core world. However, shaping software for multi-
cores is more envolving than simply balancing workload among cores. In a near
future (in less than a decade) Intel prepares to manufacture and ship 80-core
processors [6]; programmers must perform a paradigm shift from sequential to
concurrent programming and produce software adapted for multi-core platforms.

In the last decade, proposals have been made to compile formal concur-
rent and functional languages, notably the π-calculus [14], typed concurrent
objects [9], and the λ-calculus [13], into assembly languages. The last work goes
a step further and presents a series of type-preserving compilation steps leading
from System F [5] to a typed assembly language. Nevertheless, all theses works
are targeted at sequential architectures.

This paper proposes a type-preserving translation from the π-calculus into
MIL, a multithreaded typed assembly language for multi-core/multi-processor
architectures [16]. We start from a simple asynchronous typed version of the
π-calculus [1, 8, 12] and translate it into MIL code that is then linked to a
run-time library (written in MIL) that provides support for implementation of
the π-calculus primitives (e.g., queuing messages and processes). In short, we
implement a message-passing paradigm in a shared-memory architecture.

Source language. Our starting point is a simple, typed, monadic, asyn-
chronous π-calculus, equipped with integer values, generated by the below gram-
mar.

P,Q : := 0 | x〈v〉 | x(y).P | P | Q | (ν x : T)P | !x(y).P
v : := x | . . . | −1 | 0 | 1 | . . .
T : := int | (T)

Processes, P and Q, comprise the inactive process 0; the output process
x〈v〉 that sends datum v on channel x; the input process x(y).P that receives a
value via channel x and proceeds as P , binding variable y to the received value
in process P ; the parallel composition process running concurrently P | Q;
the restriction process (ν x : T)P that creates a new channel definition local
to process P ; and, finally, the replicated process !x(y).P that represents an

∗University of Lisbon, Faculty of Sciences, Department of Informatics.

1

PLACES'08 40

infinite number of active processes x(y).P running in parallel. Identifiers x and
y are taken from a denumerable set of names. Symbol T is the type of a value:
int represents integer values and (T) denotes a channel type carrying values of
type T . The operational semantics and the type system for the π-calculus are
the standard and can be easily found in the literature [15].

Target language. The target language is a small multithreaded typed as-
sembly language generated by the grammar depicted below, parametric on the
number of registers R and on the number of processors [16]. Another possible
choice for the target language is CMAP [3] which, unlike MIL, is targeted at
mono-processors.

registers r ::= r1 | . . . | rR

integer values n ::= . . . | -1 | 0 | 1 | . . .
lock values b ::= -1 | 0 | 1 | 2 | . . .
values v ::= r | n | b | l | pack τ, v as τ | packL α, v as τ |

v[τ] | ?τ
instructions ι ::= r := v | r := r + v | if r = v jump v |

r := malloc [~τ] guarded by α | r := v[n] | r[n] := v |
α, r := newLock b | α := newLockLinear

r := tslE v | r := tslS v | unlockE v | unlockS v |
α, r := unpack v | fork v

basic blocks I ::= ι; I | jump v | yield

heaps H ::= {l1 : h1, . . . , ln : hn}
heap values h ::= 〈v1 . . . vn〉α | τ{I}

New to typed assembly languages is the inclusion of threads and the use of
locks to discipline shared-memory access by multiple threads running in parallel.
Threads are started using the fork instruction and execute until the processor
is (voluntarily) released with a yield instruction. Lock value 0 designates an
open lock; values 1, 2, . . . , n denote a lock held by n threads with reading
capabilities (shared reading); and value -1 indicates a lock held exclusively.
Lock manipulation is performed by newLock, newLockLinear for lock creation,
tslE, tslS for lock acquisition, and unlockE, unlockS for lock disposal (suffix E for
exclusive, S for shared).

The syntax for types is generated by the following grammar.

types τ ::= int | 〈~σ〉α | ∀[~α].(Γ requires Λ) | lock(α) |
lockE(α) | lockS(α) | ∃α.τ | ∃lα.τ | µα.τ | α

init types σ ::= τ | ?τ
lock permissions Λ ::= (~α; ~α; ~α)
register file types Γ ::= r1 : τ1, . . . , rn : τn

To control concurrent memory access we protect every tuple 〈v1 . . . vn〉 with
a lock α (yielding a value 〈v1 . . . vn〉α of type 〈σ1 . . . σn〉α) and enforce statically,
by means of a type system, that a thread acquires the locks for the tuples it
eventually reads or writes, and that all locks are released before the thread yields

2

PLACES'08 41

the processor. We follow [4] and represent locks by singleton types (lock(α),
where α is a type variable), splitting locks usage into shared, lockS(α), and
exclusive, lockE(α), thus allowing us to implement multiple readers for the same
heap tuple. (Notice that we require every single tuple to be protected by a lock.)
Code blocks are of type ∀[~α].(Γ requires Λ), where the universal abstraction
∀[~α] affects the register file Γ and the triple of required permissions Λ, which
corresponds, respectively, to the required exclusive, shared, and linear locks.
The type system enforces that well-typed programs are free from race conditions.
Details can be found in references [2, 16].

The π run-time library. To implement asynchronous π-calculus channels in
MIL we use channel queues to store messages and input processes waiting for
reduction. We follow the design of Lopes of et al. [10]. A channel queue com-
prises a state (empty, with messages, or with processes), a queue for messages to
be delivered, and a queue for processes waiting for a message. When enqueuing
messages we simply record its argument value. For (replicated) input processes
we record a flag indicating whether the process is to be kept in the channel
after reduction, and its closure that stores the set of variables known by the
process—the environment—and a pointer to its basic block—the continuation.
The following definition makes precise the notion of a channel queue.

ChannelQueue(τ, β) def= 〈State,Queue(τ, β),Queue(Proc(τ, β), β)〉β

Channel queue types are parametric on the type of the messages τ and on the
lock β that enforces mutual exclusion on channel queue operations.

A channel packs together a channel queue and a lock specific for each channel
(i.e., we implement channels as monitors [7]). Notice the usage of the existential
quantifier over locks ∃l in the channel type.

Channel(τ) def= ∃lβ.〈ChannelQueue(τ, β), 〈lock(β)〉β〉γ

Channel types are parametric on the type of the messages τ . Henceforth, we use
a global shared lock γ to protect Channels, and local shared locks α to protect
the different environments. Notice that the run-time API encapsulates lock
usage, keeping API clients from manipulating locks directly.

The API makes available two operations for sending and receiving messages
through channels. Operation send transmits a message (in register r1 of type τ)
through a channel (in register r4). In case there are no receptors waiting on the
channel queue, the message is enqueued. The send code block signature is as
follows:

send ∀[τ](r1 :τ, r4 :Channel(τ))

Operation receive places a process, described by its closure (continuation in
register r1, environment in register r2, and environment’s lock α in register r3),
in a channel (in register r4). Register r6 contains a flag indicating whether the
input process is replicated. As for the case of message sending, input processes
are blocked when there is no pending message for the channel. The code block
signature follows.

receive ∀[α, τm, τe](r1 :Cont(τm, τe), r2 :τe, r3 :〈lock(α)〉α,
r4 :Channel(τ), r6 : int)

3

PLACES'08 42

Compiling π into MIL. The translation from the π-calculus into MIL
comprises the translation of types T [[·]], of values V[[·]](~x, r), and of processes
P[[·]](~x, l,Γ). The translation of types is straightforward.

T [[int]] def= int T [[(T)]] def= Channel(T [[T]])

For simplicity we create a new environment whenever a new name is defined.
The motivation is twofold. First, immutable environments may be shared with-
out contention between multiple threads. Second, processors may optimise the
execution through caching, taking advantage of locality. The type of environ-
ments may be defined parametrically as follows:

Env(x1 . . . xn,Γ, α) def= 〈T [[Γ(x1)]], . . . , T [[Γ(xn)]]〉α

The translation of values follows, where r is the register holding the values
x1 . . . xn in the environment.

V[[v]](x1 . . . xi . . . xn, r)
def=

{
v if v is an integer value
r[i] if v = xi

We are now ready to define the translation of processes, a procedure simpli-
fied by the existence of the API. All processes have access to the environment ~x
in register r2 and to the lock of the environment in register r3. The code block
requires the permission to manipulate tuples protected by shared lock α.

ProcBlock(Γ, ~x) def= ∀[α].((r2 : Env(~x,Γ, α), r3 : 〈lock(α)〉α) requires (;α;))

The translation of processes is parametric on the names ~x representing the
environment. The translation of output and of parallel processes is as follows.

P[[xi〈v〉]](~x, l,Γ) def=
l ProcBlock(Γ, ~x) {
r1 := V[[v]](~x, r2)
r4 := r2[i]
unlockS r3

jump send[τ]
} where τ = T [[Γ(v)]]

P[[P | Q]](~x, l,Γ) def=
l ProcBlock(Γ, ~x) {

fork l1[α]
r4 := l2

fork grabLock[τe][α]
yield

} where τe = Env(~x,Γ, α)
P[[P]](~x, l1,Γ)
P[[Q]](~x, l2,Γ)
l1 and l2 are fresh labels

For the output process, we prepare the registers as expected by code block
send, by moving message v into register r1 and fetching the channel from the
environment into register r4. When translating the parallel process, we fork the
execution of the process on the left, and, because we loose the permission α to
use the environment, we have to acquire it before continue executing the process

4

PLACES'08 43

on the right. Finally, we show the translation of the input process.

P[[xi(y).P]](~x, l,Γ) def=
l ProcBlock(Γ, ~x) {
r4 := r2[i]
unlockS r3

r1 := l1

r6 := 0
jump receive[τe][τ][α]
}

l1 Cont(τ, τe) {
CreateEnvironment(~xy, r2, r4)
r2 := r4

jump l2[α]
}
P[[P]](~xy, l2,Γ)
where τ = T [[Γ(y)]],

τe = Env(~x,Γ, α),
l1 and l2 are fresh labels

In code block l we prepare the parameters for the receive operation, by moving
the channel xi into register r4 and setting the continuation as l1. In the contin-
uation l1, we create the environment for P and, after that, we jump to the body
of the input in l2. The interested reader may refer to the companion technical
report for details [2].

Implementation. The run-time code consists of 19 code blocks and 34 type
definitions, summing a total of 322 lines of MIL code. To execute the run-time,
we depend on 8 registers. The type-checker and the interpreter for MIL, as well
as the compiler for the π-calculus are available at the MIL website [11].

Main (expected) results. The contribution of our work is the translation
of the π-calculus into MIL. In order to substantiate the translation we pursue
two technical results: type-preservation, in the sense that well-typed π processes
are translated into well-typed MIL programs; and operational correspondence,
meaning that the semantics of the source language is preserved by the resulting
MIL programs. For the former result, although we did not check all the proof
details yet, we are confident that such a result holds; our experiments with the
compiler have confirmed such intuition. The latter result we leave entirely for
future work.

Related and future work. All related work we are aware off is geared to-
wards sequential machines. Pict [14] translates the π-calculus into the C pro-
gramming language. Lopes et al. [9] present a framework for compiling process
calculi; contrary to MIL, the target language is untyped. Morrisett et al. [13]
present a translation from the System F into a typed assembly language, two
sequential languages.

We are currently working on a translation from the π-calculus into MIL
equipped with compare and swap rather than locks. Our aim is to obtain a
wait-free implementation of the π-calculus.

References

[1] G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche
1702, INRIA Sophia-Antipolis, 1992.

5

PLACES'08 44

[2] T. Cogumbreiro, F. Martins, and V. T. Vasconcelos. Compiling the π-
calculus into a Multithreaded Typed Assembly Language. DI/FCUL TR
08–13, Department of Computer Science, University of Lisbon, 2008.

[3] X. Feng and Z. Shao. Modular verification of concurrent assembly code
with dynamic thread creation and termination. In Proceedings of ICFP
’05, pages 254–267. ACM Press, 2005.

[4] C. Flanagan and M. Abadi. Types for Safe Locking. In Proceedings of
ESOP ’99, volume 1576 of LNCS, pages 91–108. Springer, 1999.

[5] J.-Y. Girard. The system F of variable types, fifteen years later. Theoretical
Computer Science, 45(2):159–192, 1986.

[6] J. Held, J. Bautista, and S. Koehl. From a few cores to many: A tera-scale
computing research overview. White paper, 2006.

[7] C. A. R. Hoare. Monitors: an operating system structuring concept. Com-
munications of the ACM, 17(10):549–557, 1974.

[8] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Com-
munication. In Proceedings of ECOOP ’91, volume 512 of LNCS, pages
133–147. Springer, 1991.

[9] L. Lopes, F. Silva, and V. T. Vasconcelos. A Virtual Machine for the TyCO
Process Calculus. In Proceedings of PPDP ’99, volume 1702 of LNCS, pages
244–260. Springer, 1999.

[10] L. Lopes, V. T. Vasconcelos, and F. Silva. Fine Grained Multithreading
with Process Calculi. IEEE Transactions on Computers, 50(9):229–233,
2001.

[11] Multithreaded Intermediate Language. http://gloss.di.fc.ul.pt/
mil/.

[12] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part
I/II. Journal of Information and Computation, 100:1–77, 1992.

[13] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed
Assembly Language. ACM Transactions on Programing Language and Sys-
tems, 21(3):527–568, 1999.

[14] B. C. Pierce and D. N. Turner. Pict: A Programming Language Based on
the Pi-Calculus. In Proof, Language and Interaction: Essays in Honour of
Robin Milner, Foundations of Computing. MIT, 2000.

[15] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[16] V. T. Vasconcelos and F. Martins. A multithreaded typed assembly lan-
guage. In Proceedings of TV ’06, 2006.

6

PLACES'08 45

http://gloss.di.fc.ul.pt/mil/
http://gloss.di.fc.ul.pt/mil/

Type-Directed Compilation for
Multicore Programming

Kohei Honda
Queen Mary Univ. of London

Vasco T. Vasconcelos
University of Lisbon

Nobuko Yoshida
Imperial College London

Preamble. In this abstract we outline a general picture of our ongoing work on com-
pilation into multicore CPUs [8, 14, 15]. Our focus is to harness the power of concur-
rency and asynchrony in one of the major forms of multicore CPUs based on nonco-
herent shared memory, using the well-known technology of type-directed compilation
[13]. The key idea is to regard explicit asynchronous data transfer among local caches
as a realiser of communication among processes. By typing processes with a variant of
session types [9, 19], we obtain both type-safe and efficient compilation into processes
distributed over multiple cores.

Concurrency at the Cores of Computing. In spite of the increasing reliance on
distributed components in the Internet and the world-wide web, the basic computing
paradigm for our applications had been centring on monolithic, predominantly sequen-
tial code. This fits our hardware, which is a virtually monolithic Von Neumann Ma-
chine (VNM), even though interactions with the distributed services often necessitate
the use of concurrent threads inside a program.

It is only during the last decade that limiting physical parameters in VLSI manu-
facturing process [8, 14, 16] started to push a fundamental change in the internal en-
vironment of computing machinery, from monolithic Von Neumann architectures to
concurrent ones, the so-called chip-level multiprocessing (CMP from now on), giving
rise to CPUs with multiple cores. A multicore CPU is most effectively utilised by
having multiple programs running concurrently, even inside a single application. Com-
bined with the increasing reliance on distributed components through web services and
sensor networks, computing is now becoming concurrent inside out.

A Machine Model for CMP. Following the standard dichotomy in parallel computer
architecture [4], a multicore CPU can be based on either coherent cache (or SMP),
cf. [11], or non-coherent cache (or non-cache-coherent NUMA), cf. [15]. In the former,
memory coherence is maintained across multiple cores, while in the latter, sharing of
data among cores is performed in non-uniform memory space. This second form is
often found in multiprocessor system-on-chips (MPSoCs) for embedded systems, one
of the areas where multicore CPUs are being effectively deployed centring on a flexible
on-chip interconnect.

A non-uniform cache access can be realised by different methods such as cache-
line locking. One basic method employs direct asynchronous data transfer, or Direct
Memory Access (DMA), to an on-chip memory local to each core. A central obser-
vation underlying this approach is that trying to annihilate distance (i.e. to maintain
strict coherence) is too costly, just as coherent distributed shared memory over a large

1

PLACES'08 46

number of nodes is unfeasible. Thus we regard CMP as distributed VNMs, along the
lines of the LogP model [3] and PGAS [2].

Because of its efficiency and versatility, this framework is widely used in MPSoC
for embedded systems, as noted already, including a major multicore chip [15]. It is a
natural model when we consider CMP as a microscopic form of distributed computing,
suggesting its potential scalability when the number of cores per chip increases. Further
it can realise arbitrary forms of data sharing among cores, and in that sense it is general-
purpose. Being efficient and general-purpose, however, this computing model is also
known to be extremely hard and unsafe to program. Indeed, the very element that
makes the major mode of data sharing in this model, DMA, fast and general-purpose,
also makes it unwieldy and dangerous: it involves raw writes of one memory area
to another, asynchronously issued and asynchronously performed, which can easily
destroy the works being conducted in multiple cores.

It is through the use of types for interaction, as we shall argue, that we can make
the best of this computing model without losing high-level abstraction nor efficiency.
For clarity, we consider an idealised model along the lines of [3], where a chip consists
of multiple isomorphic VNMs, of the same ISA and each with its own memory. Data
sharing is through asynchronous copy of possibly multiple words from one memory
to another, or DMA. For simplicity in this abstract we do not take into consideration
either the size of local memory or the maximum unit of transfer [3], and consider only
a so-called “push” version of DMA (cf. [15]).

A Type-Directed Compilation Framework. One of the key features of CMP is its
versatility to host a variety of applications, in size, in granularity of parallelism, and in
the shape of control and data flows. Such applications may be written using domain
specific languages [12, 18]. How can we translate these applications to executables for
CMP? The basic idea of our approach is to stipulate typed communicating processes at
an intermediate compilation step, and perform a type-directed compilation [13] onto a
typed machine language for CMP. Schematically:

DSL (L2)
pi7−→ typed processes (L1) asm7−→ typed assembly language for CMP (L0)

L0, L1, L2 refer to abstraction levels. L2 is a (type-safe) domain specific language,
whose description is compiled into typed communicating processes (L1, which may as
well include imperative features). This is further translated into L0, a typed low-level
language for asynchronous CMP. We illustrate the key ideas of this approach using a
simple example.

Streaming Example We take a simple program for stream cipher [17].

Key Producer

Kernel

Data Producer

Consumer

Data Producer and KeyProducer continuously send a data stream and a key stream re-
spectively to Kernel. Kernel calculates their XOR and sends the result to Consumer.
A high-level specification of such an example — specifying kernels and their connec-
tions through asynchronous streams as Kahn’s networks — can be written using a DSL
for streaming [12, 18], which we omit. Our purpose is to translate this program to a
type-safe multicore program.

2

PLACES'08 47

Processes with Session Types We use processes with session types [9, 19] as an in-
termediate language. Our motivations are two-fold. First it offers an effective source
language for compilation into a typed assembly language for CMP, as we shall discuss
soon. Secondly it offers an expressive target language into which we can efficiently
and flexibly translate different kinds of high-level programs. Many concurrent and po-
tentially concurrent programs (such as a streaming example above) may be represented
as a collection of structured conversations, where we can abstract their structures as
types for conversations.

Below we show a simple process representation of the streaming algorithm given
above. The kernel initiates a session:

Kernel def= def K(d, k, c) = d!〈〉; k!〈〉; d?(x); k?(y); c?(); c!〈x xor y〉; K〈d, k, c〉
in a(d, k, c).K〈d, k, c〉

The channels d and k are used for Kernel to receive data and keys from Data Producer
and Key Producer, respectively, where Kernel notifies Data/Key Producers that it is
ready before receiving data/keys (such an insertion of a notification message before the
reception of datum is needed for safe translation into DMA operations, and follows a
simple discipline which is statically verifiable). The channel c is used for Consumer to
receive the encrypted data from Kernel, which is also used for notifying its readiness
to receive the data. The keyword def denotes the recursive agent; a(d, k, c) is a session
initiation which establishes the session between the three parties; d?(x) is an input
action at d; and c!〈x xor y〉; is an output action at c.

DataProducer can be given as follows.

DataProducer def= def P(d, k, c) = d?(); d!〈data〉; P〈d, k, c〉 in a(d, k, c).P〈d, k, c〉

Consumer def= def C(d, k, c) = c!〈〉; c?(data); C〈d, k, c〉 in a(d, k, c).C〈d, k, c〉

KeyProducer is identical to DataProducer except that it outputs at k rather than at d.
In all these processes, we assume that output actions of these processes are asyn-

chronous (no blocking), and that input actions are synchronous. When these three pro-
cesses are composed, messages are always consumed in the order they are produced
because of the linearised usage of each channel.

The exchange of messages as above forms a “conversation” among processes, with
a precise structure: this structure we abstract below as a type. The session type of the
Kernel is given as:

TK = µt.d! 〈〉; k! 〈〉; d? 〈bool〉; k? 〈bool〉; c? 〈〉; c! 〈bool〉; t

Above µt.T represents a recursive type, k? 〈bool〉 (resp. k! 〈bool〉) denotes the input
(resp. output) of a value of bool-type, and T ;T ′ denotes a sequencing. The type of
the DataProducer is given as t.d? 〈〉; d! 〈bool〉; t. Similarly for KeyProducer and Con-
sumer. Safe parallel composition of communicating code is guaranteed by checking
duality of types: the type of the Kernel and one of the DataProducer are dual to each
other at d, so that there is no communication error occurs at d. Similarly for k and c.

Type-Directed Compilation Processes with session types are guaranteed to follow
rigorous communication structures, given as types. By tracing this session type, we
know beforehand what and when processs will send and receive as messages. Using
this information, we can replace message passing in typed processes with direct mem-
ory write to a multicore chip.

3

PLACES'08 48

main : {
main : {

r1 := get Id leCore
r2 := get Id leCore
r3 := get Id leCore
r4 := get Id leCore
fork dataProducer at r1
fork keyProducer at r2
fork kerne l at r3
fork consumer at r4
yie ld

}
}

dataProducer : {
data : byte [128]
ack : byte [0]
main : {

/ / produce data
get ack
put data in r3 . data
jump main

}
}

keyProducer : {
key : byte [128]
ack : byte [0]
main : {

/ / produce key
get ack
put key in r3 . key
jump main

}
}

consumer : {
buf : byte [128]
ack : byte [0]
main : {

get b u f f
/ / consume buf
put ack in r3 . ack
jump main

}
}

kerne l : {
data : byte [128]
key : byte [128]
buf : byte [128]
ackD : byte [0]
ackK : byte [0]
ackC : byte [0]
main : {

put ackD in r1 . ack
put ackK in r2 . ack
get data ; get key
r5 := 128; jump loop
}

loop : {
when r5 < 0 jump done
r6 := data [r4] ; r7 := key [r4]
buf [r4] := r7 xor r6 ;
jump loop

}
done : {

get ackS
put sum in r1 . arg
jump main

}
}

Figure 1: L0 code for the stream example

Since our purpose is to have type-safe compilation, we use a typed assembly lan-
guage [13] targeted at distributed memory CMP and NoC [1, 5], which we call L0 for
brevity. L0 is built on top of MIL [20], which in turn is a multi-threaded extension of
TAL [13]. Task scheduling is accomplished by loading a program into a core. This
includes copying from the main memory the code and the data required for a run of the
core, as well as a snapshot of the current register values.

Figure 1 presents one possible result of compiling our running example into L0.
As we observed, all typed message passing is replaced by DMA primitives, using ad-
dresses of the variables in the local memory of a target core for remote asynchronous
writes, where the addresses are shared at the time a thread is launched.

The block associated with identifier main defines a program comprising, in this case,
a single basic block, also named main. The program is intended to be uploaded at
some core and its execution launched. Cores terminate their execution with a special
instruction yield, thus joining the pool of available cores. Cores requiring extra workers
get hold idle cores by issuing an instruction of the form r1 := getIdleCore. The first fork

instruction in main.main copies program dataProducer to the core in register r1, copies a
snapshot of its registers to the target core, and launches the execution of basic block
dataProducer.main. Notice that by getting first the number of required cores and then
forking the threads we guarantee that each thread knows all other cores (including its
own) via registers r1 to r4.

The program associated with identifier dataProducer defines a program comprising
two buffer declarations (named data and ack) and a basic block (named main). The core
running this program writes its data buffer into the kernel’s data buffer, but first needs to
make sure it can overwrite the latter. We do all this with L0’s support for DMA opera-
tions. Instruction get ack blocks the core until a corresponding put instruction is issued,
namely via instruction put ackD in r1.ack in basic block kernel.done and the data is safely
written. After put, the producer asynchronously writes its buffer (with put data in r3.data),
for which the kernel waits with aget data instruction.

Program kernel declares three buffers (two incoming, one outgoing), and another
three (empty) buffers used for acknowledgements, signals the data and the key produc-
ers that the respective buffers can be written, waits for the completion of the write oper-

4

PLACES'08 49

A

B B

A

Copy & Processing

Copy End

Copy End Ready

Ready

A

B B

A Copy & Processing

Copy & Processing

A

B

A

B

Copy & Processing

Copy & Processing Copy & Processing

(a) (b)

(c)

Figure 2: Double-Buffering

ations, and embarks on a loop to fill the outgoing (buf) buffer. Finally it asynchronously
writes this buffer into the arg buffer at core consumer before restarting the process. In-
struction when r4<0 jump done is expanded into the two instructions r4 := r4− 1; if r4== 0 jump done,
providing for loops.

Shared Channels. The example under consideration does not use shared access to
main memory. However, it is natural that a program which accepts multiple requests
at a shared channel (located at main memory), receives a request, then forks a thread
to one of the available cores. Generally this demands multiple clients to invoke a
shared channel concurrently. In this and related schemes, a shared initial channel can
be effectively realised by the combination of traditional load and store instructions
together with mutual exclusion primitives (lock [20] or compare and swap) and DMAs.

Further Topics Our approach is based on a simple premise: session types offer rig-
orous abstraction of conversation structures, and, as far as concurrent programs can be
represented as a collection of conversations, we can use their types in order to realise
the same conversations through asynchronous data transfers among local memories of
multiple cores, instead of message passing. Processes offer readable, transparent pro-
gram structures, as well as a target of translation, and types guarantee type-safety of
compiled code.

There are several topics which we could not discuss in this abstract. We however
briefly touch one topic, which is important for practical implementation. The process-
based representation of stream can be made more asynchronous, by transforming the
protocol structure slightly. The transformation is simple. For brevity we consider three-
party interactions, from a single source to the kernel to the consumer, and only present
the session type of the kernel. Let s be a channel used for data-transfer with the right-
hand side, while k is with the left-hand side; and “s C ReadyA;” (resp. “s B ReadyA”)
sends (resp. receives) a signal which tells A is empty.

s C ReadyA; s C ReadyB;
µt.s? 〈T 〉; k B ReadyA; k! 〈T 〉; s C ReadyA; ; s? 〈T 〉; k B ReadyB; k! 〈T 〉; t

This type says: first it sends signal to s; then it gets the data into A from s; once the
data transfer is completed and it gets the signal to tell A is free from k, then it starts
transferring the data to k; similarly for B. This scheme is close to so-called double
buffering technique used in multicore processors [10], as shown in Figure 2: indeed,
by the same translation scheme, this conversation structure is compiled into a (type-

5

PLACES'08 50

safe) double-buffering implementation of streams, which is much more efficient than
the original version due to the exploitation of asynchrony.

This alternative presentation suggests inherent flexibility in compilation and execu-
tion of concurrent programs in CMP and other extremely concurrent computing envi-
ronments, opening new opportunities and challenges. For example we may need more
flexibility and generality in type structures (as in the case of, for example, the typing
for the process representing double buffering discussed above), new compilation and
static analysis techniques, new runtime architectures, and new abstractions. Research
from multiple directions (here we only refer to [2, 6, 7] among many closely related
and/or complementary works) will be needed to explore this rich field of structured
concurrent programming.

References
[1] L. Benini and G. D. Micheli. Networks on chip: a new SoC paradigm. IEEE Computer, 35:1, 2002.
[2] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and

V. Sarkar. X10: an object-oriented approach to non-uniform cluster computing. In OOPSLA, pages
519–538, 2005.

[3] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. Logp: towards a realistic model of parallel computation. SIGPLAN Not., 28(7):1–12, 1993.

[4] D. E. Culler, A. Gupta, and J. P. Singh. Parallel Computer Architecture: A Hardware/Software Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[5] W. J. Dally and B. Towles. Route packets, not wires: On-chip interconnection networks. In DAC,
pages 684–689, 2001.

[6] R. Ennals, R. Sharp, and A. Mycroft. Linear types for packet processing. In ESOP, pages 204–218,
2004.

[7] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, , and S. Levi. Language
support for fast and reliable message-based communication in singularity os. In EuroSys2006, ACM
SIGOPS, pages 177–190. ACM Press, 2006.

[8] P. Gelsinger, P. Gargini, G. Parker, and A. Yu. Microprocessors circa 2000. IEEE SPectrum, pages
43–47, 1989.

[9] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for structured
communication-based programming. In ESOP’98, volume 1381 of LNCS, pages 22–138. Springer,
1998.

[10] IBM. ALF double buffering. http://www.ibm.com/developerworks/blogs/page/
powerarchitecture?entry=ibomb alf sdk30 5.

[11] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded sparc processor. IEEE
Micro, 25(2):21–29, 2005.

[12] C.-K. Lin and A. P. Black. DirectFlow: A domain-specific language for information-flow systems. In
ECOOP, volume 4609 of LNCS, pages 299–322. Springer, 2007.

[13] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly language. ACM
Trans. Program. Lang. Syst., 21(3):527–568, 1999.

[14] K. Olukotun, B. A. Nayfeh, L. Hammond, K. G. Wilson, and K. Chang. The case for a single-chip
multiprocessor. In ASPLOS, pages 2–11, 1996.

[15] D. Pham et al. The design and implementation of a first-generation cell processor. In ISSCC Dig. Tech.
Papers, pages 184–185. IEEE, February 2005.

[16] F. J. Pollack. New microarchitecture challenges in the coming generations of cmos process technolo-
gies. In MICRO, 1999.

[17] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley &
Sons, Inc., 1993.

[18] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex: high-throughput stream programming
in java. In OOPSLA, pages 211–228. ACM, 2007.

[19] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system. In
PARLE’94, volume 817 of LNCS, pages 398–413. Springer, 1994.

[20] V. T. Vasconcelos and F. Martins. A multithreaded typed assembly language. In Proceedings of TV06
- Multithreading in Hardware and Software: Formal Approaches to Design and Verification, 2006.

6

PLACES'08 51

Synchronization as a Special Case of

Access Control

Franz Puntigam

Technische Universität Wien, Institut für Computersprachen
Argentinierstraße 8, A-1040 Vienna, Austria

E-mail: franz@complang.tuwien.ac.at

Abstract

Synchronization ensures exclusive access to shared variables at runtime,
and unique-access control gives similar guarantees at compilation time.
We propose to integrate synchronization into access control in a Java-like
language: Synchronization is based on lockable shared variables accessible
only in the presence of corresponding (partially unique) tokens. We get
more freedom in expressing synchronization at appropriate points, and
the influence of concurrency on the program structure becomes weaker.

1 Motivation

Concurrency is an important aspects of programming where we urgently need
more advanced support. Independently, there is work on language concepts for
describing software architectures at a higher level [1] where techniques allowing
us to constrain access to objects in certain ways play an important role.

In this abstract we consider synchronization to be just a special case of a
technique to ensure unique access. These aspects fit together quite naturally.
However, while access control mechanisms are static we regard synchronization
as inherently dynamic. To overcome this discrepancy we add a dynamic quality
to access control. This approach promises to give us a number of advantages:

• Programmers think in terms of software architecture and accessibility of
methods and variables, and the compiler ensures proper synchronization.
Concurrency need not dominate the program structure.

• Unique access does not depend on threads. Even when using a conven-
tional thread model the identity of threads does not play any role.

• Interfaces specify accessibility and (implicitly) synchronization. Clients
get all information they need to avoid synchronization conflicts.

• There is more freedom in ensuring synchronization at appropriate places.
We can safely move synchronization from servers to clients.

In one aspect the proposed concept resembles the SCOOP model of Eiffel [6]
where preconditions represent synchronization conditions: Synchronization de-
pends only on current values of variables in objects. There is no need for wait
and notify as in Java because variable values can represent waiting conditions.

PLACES'08 52

!x:τ (variable x is of type τ ; exclusive access; x cannot be locked)
x:τ (variable x is of type τ ; exclusive access; x can be locked)
∗x:τ (variable x is of type τ ; shared read-access; x can be locked))
x:σ?τ (if x of type σ, execute method with [x:σ -> x:τ] while x locked)

Table 1: Kinds of tokens representing knowledge about instance variable x

2 Accessibility and Synchronization

In most language concepts ensuring unique access, programmers specify quite
directly that some object is accessible only through a specific reference, this is,
there cannot exist aliases [3]. To support aliasing we take a different approach
expressing accessibility of specific object parts: Programmers annotate

• references with tokens expressing partially unique knowledge about (oth-
erwise usually not visible) variables of the referenced objects1;

• methods with required tokens (this is, what clients must know before
method invocation) and ensured tokens (what clients will know on return).

We distinguish between four kinds of tokens as shown in Table 1. The first two
ensure unique access to variables protected by the variables x encoded in tokens
(see Sect. 3) while the third one supports shared read-access. Using the last
kind we must acquire a lock to get exclusive access. A literal can occur where
the syntax requires a type σ or τ , the type with this literal as its only instance.

We show the use of tokens by an example in a Java-like pseudo-language:

class Window {

public void iconify()[icon:true->icon:false]{..icon=false;...}

public void uniconify()[icon:false->icon:true]{..icon=true;...}

public void update(...)[sync:Unit->sync:Unit]{...}

public Window(...)[->sync:Unit?Unit, !icon:false]{...}

private boolean icon = false;

private Unit sync = new Unit();

}

A client can invoke iconify only with unique knowledge about icon to be
of value true because of a required token icon:true to the left of -> in the
annotation within square brackets. While executing iconify the value of icon
must change to false according to the ensured token to the right of ->. A
new instance of Window gets a token !icon:false, and according to it we can
invoke iconify without synchronization. Tokens can move from one reference
to another as side-effects of parameter passing and assignment:

Window[icon:true] foo(Window[icon:false->] w)

{ if(...) {w.iconify(); return w;} else {return null;} }

On invocation of foo a token icon:false moves from the argument to the
parameter w, and on return icon:true moves from w or null to the result of
foo. We assume null to be associated with every token since no methods are

1Programmers annotate only formal parameters and results of methods. A compiler can

infer corresponding annotations of local variables, instance variables, and class variables.

PLACES'08 53

a ≡ a
a ≡ b b ≡ c

a ≡ c

a ≡ b

b ≡ a

a ≡ a′ b ≡ b′

a, b ≡ a′, b′

a, b ≡ b, a a, (b, c) ≡ (a, b), c a ≡ a, ǫ

∗x:τ ≡ ∗x:τ, ∗x:τ x:σ?τ ≡ x:σ?τ, x:σ?τ x:σ?τ ≡ x:σ?σ, x:σ?τ

a ≡ b

a ≦ b

a ≦ b b ≦ c

a ≦ c

a ≦ a′ b ≦ b′

a, b ≦ a′, b′
a optional

a ≦ ǫ

σ ≤ τ

!x:σ ≦ !x:τ

σ ≤ τ

x:σ ≦ x:τ

σ ≤ τ

∗x:σ ≦ ∗x:τ

σ ≤ σ′ τ ′ ≤ σ′

x:σ?τ ′, x:τ ′?τ ≦ x:σ′?τ

!x:τ ≦ x:τ !x:τ ≦ x:τ?τ x:τ ≦ ∗x:τ x:σ?τ ≦ x:σ?τ ′, x:τ ′?τ

Table 2: Equivalence ≡ and subsumption ≦ of token sequences

invokable through null. When executing w.iconify() the token icon:false

moves from w to this of the window referenced by w, and then icon:true

moves from this to w. The value of icon can be modified only if this has a
corresponding unique token, and as a side-effect this token is modified, too.

Table 2 shows an equivalence and subsumption relation on comma-separated
token lists. Tokens a can be used where tokens b are expected if a ≦ b holds. For
example, we can use !icon:falsewhere icon:false is expected. Tokens of the
forms ∗x:τ and x:σ?τ can be duplicated while the compiler prevents duplication
of unique tokens of the forms !x:τ and x:τ .

Tokens of the form x:σ?τ build the basis for synchronization. Several clients
can have the same token. Through a reference annotated with x:σ?τ we invoke
a method requiring x:σ and ensuring x:τ . However, execution is delayed until
variable x has a value of type σ and is not locked; then, during execution there
is an exclusive write-lock on x, and the token x:σ of this must be modified
to x:τ as side-effect of an assignment to x if τ differs from σ. When invoking
a method requiring ∗x:σ it is sufficient to acquire a shared read-lock. Table 3
shows essential parts of type checking rules for invocations to ensure that clients

have all required tokens and to infer locks to be acquired: In a
b→b

′

−−−→ a′/l the
list a contains available tokens and a′ tokens remaining after invocation, b are
the required and b′ the ensured tokens, and l is the list of needed locks.

In our example, the constructor ensures sync:Unit?Unit (where Unit need
not support any method). Several references to the same window can be an-
notated with this token. When invoking update we get mutual exclusion as
with synchronized methods in Java, but there is an important difference: While
Java’s monitor concept allows the thread holding a lock on an object to invoke
further methods of this object, locks in our approach do not belong to threads,
and in the body of update (and all methods invoked by update) we must not use
sync:Unit?Unit again to avoid deadlocks. Instead, we make use of sync:Unit
associated with this in the body of update, this is, we apply access control
instead of synchronization. We get more safety and possibly more efficiency at
the cost of more verbose annotations needed to ensure unique access.

Using tokens of the form !x:τ (instead of x:τ) clients can decide if they
prefer access control or synchronization. According to Table 2 we can replace
!icon:true with icon:true?false and icon:false?true allowing two clients

PLACES'08 54

a
ǫ→ǫ

−−→ a/ǫ
a

b→b
′

−−−→ a′/l

c, a
c,b→b′

−−−−→ a′/l

a
b→b

′

−−−→ a′/l

a
b→c,b′

−−−−→ c, a′/l

a
b→b

′

−−−→ a′/l

x:σ?τ, a
x:σ,b→x:τ,b′

−−−−−−−−→ a′/wlock(x:σ), l

a
b→b

′

−−−→ a′/l

x:τ?τ, a
∗x:τ,b→∗x:τ,b′

−−−−−−−−−→ a′/rlock(x:τ), l

Table 3: Token checking and lock inference for method invocation (simplified)

to independently and repeatedly invoke iconify and uniconify. Synchroniza-
tion is implicit by waiting until icon is of appropriate value. Such rules are
applicable only if the types in ?-tokens build cycles, this is, method invoca-
tions cause the variable again and again to get values of each type in the cycle.
This concept presumes clients to repeatedly invoke methods corresponding to
all ?-tokens in their scopes. Hence, ?-tokens must not get lost. Token lists not
containing ?-tokens are optional, and a rule in Table 2 allows us to remove them.

To break cycles built by ?-tokens we put the corresponding variable into a
stop mode causing clients to get exceptions instead of a lock on the variable.

3 Static Guarantees

Static type checking gives the following guarantees:

• Always at most one thread can write to a variable y. All methods writing
to a shared variable y must require a token !x:τ or x:τ – all tokens with
the same x and with arbitrary type τ . The instance or class variable x

protects y. No two tokens of the form !x:τ or x:τ must exist simultaneously
with the same x belonging to the same object. We ensure uniqueness by
avoiding token duplication wherever aliases may be introduced.

• A variable y is readable only while no other thread can simultaneously
write to y. All methods possibly reading from an instance or class variable
y must require a token !x:τ , x:τ , or ∗x:τ where variable x protects y.

• Synchronization is continuous: There are sequences of method invocations
causing all invoked methods to become executable (if all methods termi-
nate in finite time). We require cycles on the types in tokens of the form
x:σ?τ and avoid loss of such tokens. Cycles can occur only if methods
changing tokens according to each step in the cycles actually exist. To-
kens in annotations of class and instance variables easily get lost. Such
variables must not be annotated with ?-tokens.

• As a simple approach to ensure deadlock freeness we create a global order-
ing of variable names and check for all tokens used as required tokens or
associated with formal parameters (to the left of ->) in a method if each
x in tokens of the form x:σ?τ precedes each y in tokens of the form y:τ or
∗y:τ . We can get false positives because of missing static information and
propose to issue a warning instead of an error message if a check fails.

• Subtyping considers tokens and, therefore, synchronization and access con-
trol according to the principle of substitutability.

PLACES'08 55

Annotations of variables (but not parameters) can depend on current values
of variables in tokens. Such annotations are lengthy and instable when expressed
explicitly. Fortunately, a compiler can infer them: It collects information about
available as well as required tokens from specifications of invoked methods. All
tokens available for a variable at the end of a method are regarded as annotations
of the variable depending on the ensured tokens of the method. These tokens are
assumed as available at the begin of methods requiring corresponding tokens.

4 Discussion and Related Work

In the proposed approach, concurrency is based on threads, locks, and val-
ues of shared variables. In this respect there are similarities with the SCOOP
model [6]. Both models disclose information on the variables used for synchro-
nization. The way how and the time when such information becomes available
to clients is different: Every client can get access to such variables at runtime in
the SCOOP model while access control in our model causes much information
to be available at compilation time and usually only few clients can access the
variables. The access control mechanism adds a new dimension to concurrent
programming and reduces the importance of dynamic synchronization.

There are many approaches to ensure unique access [4], most of them by
avoiding aliases. The token-based approach used in this work was developed
from process types [7], an object-oriented variant of linear types. This concept
restricts the way how objects can be accessed. Tokens express all information
clients need to provide required and avoid conflicting synchronization [8].

In the author’s previous work, tokens always have been separate entities
without relationship to variables. It is a new contribution to regard tokens as
static abstractions of concrete variables that can be locked. The kinds of tokens
in Table 1 were developed as a consequence. They turned out to be useful for
simple programs. Some other kinds of tokens were rejected because they either
were not consistent with more important tokens or turned out to be less useful.

This work has the following goals: Program structures implied by concur-
rency shall be independent from those implied by object-oriented principles,
and program code shall be stable when refactoring concurrency. It is impor-
tant that method specifications do not distinguish between access control and
synchronization. We can invoke a method in many different contexts. The
code is stable because most likely we need not change the method if we replace
synchronization with access control or move the point of synchronization.

By locking variables instead of objects we get finer granularity for synchro-
nization and keep concurrency independent from object-oriented factorization.

We can create new threads as in Java or as side-effect of invoking asyn-
chronous methods as in Polyphonic C# [2]. In contrast to those in Java, threads
in our approach need not have any identity: The thread that acquired a lock
is in no way privileged compared to other threads because only the (statically
checked) availability of tokens counts, not the thread identity.

The proposed approach exposes more information to clients than necessary:
Synchronization used only to ensure simple mutual exclusion (as expressed by
sync:Unit?Unit) need not be visible and can be added later on without chang-
ing interfaces [8]. We can avoid exposure of such information (and thereby
soften dependences between concurrency and object factorization) by making

PLACES'08 56

tokens implicit through special cases in our mechanism. However, even implicit
tokens can suffer from deadlocks and become visible in corresponding warnings.

There are approaches to concurrent object-oriented programming that avoid
low-level locking and still ensure atomicity [5]. It is an open question how to
combine such techniques with access control.

5 Conclusions

Synchronization and access control ensuring unique access to shared variables fit
together quite naturally. We explored an approach to integrate synchronization
resembling that in the SCOOP model into a token-based access control mech-
anism. It turned out to be possible and beneficial to annotate methods with
access information not distinguishing between static access control and dynamic
synchronization. Static type checking ensures unique access to shared variables
as well as continuity of synchronization.

References

[1] Jonathan Aldrich, Craig Chambers, and David Notkin. Archjava: Con-
necting software architecture to implementation. In Proceedings of the 24th

International Conference on Software Engineering, pages 187–197, Orlando,
Florida, May 2002. ACM.

[2] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency ab-
stractions for C#. ACM Transactions on Programming Languages and Sys-

tems, 26(5):269–804, September 2004.

[3] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic universe
types. In Erik Ernst, editor, ECOOP – Object-Oriented Programming, vol-
ume 4609 of Lecture Notes in Computer Science, Berlin, Germany, July 2007.
Springer-Verlag.

[4] Sophia Drossopoulou, David Clarke, and James Noble. Types for hierarchic
shapes. In ESOP, pages 1–6, 2006.

[5] Tim Harris and Keir Fraser. Language support for lightweight transactions.
In OOPSLA’03, pages 388–402, Anaheim, California, USA, October 2003.
ACM.

[6] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
second edition edition, 1997.

[7] Franz Puntigam. Coordination requirements expressed in types for ac-
tive objects. In Mehmet Aksit and Satoshi Matsuoka, editors, Proceedings

ECOOP’97, volume 1241 of Lecture Notes in Computer Science, pages 367–
388, Jyväskylä, Finland, June 1997. Springer-Verlag.

[8] Franz Puntigam. Internal and external token-based synchronization in
object-oriented languages. In Modular Programming Languages, 7th Joint

Modular Languages Conference, JMLC 2006, volume 4228 of Lecture

Notes in Computer Science, pages 251–270, Oxford, UK, September 2006.
Springer-Verlag.

PLACES'08 57

Towards a Symbolic Semantics for
Service-oriented Applications∗

Rosario Pugliese Francesco Tiezzi Nobuko Yoshida

Dipartimento di Sistemi e Informatica Department of Computing
Università degli Studi di Firenze Imperial College London

{pugliese,tiezzi}@dsi.unifi.it yoshida@doc.ic.ac.uk

Abstract

We introduce a symbolic characterisation of the operational semantics of
COWS, a formal language for specifying and combining service-oriented applica-
tions, while modelling their dynamic behaviour. This alternative semantics avoids
infinite representations of COWS terms due to the value-passing nature of commu-
nication. Finite representations can pave the way for the development of efficient
analytical tools, such as e.g. behavioural equivalences and model checkers. We
illustrate our approach through a ‘translation (web) service’ scenario.

1 Introduction
The recent success of e-business, e-learning, e-government, and other similar emerging
models, has led the World Wide Web, initially thought of as a system for human use,
to evolve towards an architecture for service-oriented computing (SOC) supporting
automated use. SOC advocates the use of loosely coupled ‘services’, to be understood
as autonomous, platform-independent, computational entities that can be described,
published, discovered, and assembled, as the basic blocks for building interoperable
and evolvable applications. The most successful instantiation of the SOC paradigm
are probably the web services, that are sets of operations that can be invoked through
the Web via XML messages complying with given standard formats. To support the
web service approach, several new languages and technologies have been designed and
many international companies have invested a lot of efforts.

Current software engineering technologies for SOC, however, remain at the de-
scriptive level and lack rigorous formal foundations. We are still experiencing a gap
between practice (programming) and theory (formal methods and analysis techniques)
in the design of SOC applications. The challenges come from the necessity of dealing
at once with issues like communication, co-operation, resource usage, security, failures,
etc. in a setting where demands and guarantees can be very different for the many dif-
ferent components. Many researchers have hence put forward the idea of using process
calculi that, due to their algebraic nature, convey in a distilled form the compositional
programming style of SOC. Thus, many process calculi have been designed (see e.g.
[3, 2, 8, 6, 1, 4]), addressing one aspect or another of SOC and aiming at assessing the
adequacy of diverse sets of primitives w.r.t. modelling, combining and analysing SOC
applications.
∗This work has been partially supported by the EU project SENSORIA, IST-2005-016004.

1

PLACES'08 58

By taking inspiration from well-known process calculi and from the standard lan-
guage for orchestration of web services WS-BPEL [12], in [10] we have designed
COWS (Calculus for Orchestration of Web Services), a process calculus for specify-
ing and combining service-oriented applications, while modelling their dynamic be-
haviour. We have shown that COWS can model distinctive features of web services,
such as, e.g., correlation-based communication, compensating activities, service in-
stances and interactions among them.

Equivalence and model checkers, and other similar verification tools, do not work
directly on syntactic specifications but rather on abstract representations of the be-
haviour of processes. Thus, for value-passing languages, such as COWS, using an
inappropriate representation can lead to unfeasible verifications. Indeed, according to
the COWS’s original operational semantics, if the communicable values range over
an infinite value set (e.g. natural numbers, strings), the behaviour of a service that
performs a receive activity is modelled by an infinite abstract representation. Such
representation is a Labelled Transition System whose initial state has infinite outgoing
edges, each labelled with an input label having a different value as argument and lead-
ing to a different state. Hence, by taking inspiration from Hennessy and Lin [7], we
are currently defining a symbolic operational semantics for COWS. The new semantics
associates a finite representation to each COWS term and can therefore pave the way
for devising efficient reasoning mechanisms and tools to analyse COWS terms.

In the rest of this abstract, we presents syntax and main features of COWS ‘at
work’ on modelling an Italian-English translation (web) service (Section 2), and dis-
cuss verification problems and the major intuitions underlying the symbolic operational
semantics for COWS (Section 3).

2 COWS: a Calculus for Orchestration of Web Services
In this section, we present COWS main features and syntax in a step-by-step fashion
while modelling an Italian-English translation (web) service. Due to lack of space,
here we only provide an informal account of the semantics of COWS and refer the
interested reader to [10, 9] for a formal presentation, for examples illustrating peculiar-
ities and expressiveness of the language, and for comparisons with other process-based
and orchestration formalisms.

Let us consider a web service that provides to its customers an Italian-English trans-
lation service. Specifically, when the service is invoked by a customer, that commu-
nicates first her partner name and then an Italian word, it replies to the request with
either the corresponding English word or the string “unknown word”. A high-level
specification of the service can be rendered in COWS as follows:

[x] t • req?x . [y] t •word?y . x • resp!trans(y) (1)

where t is the translation service partner name, req, word and resp are operation names,
x and y are variables that store the customer partner name and the Italian word to be
translated respectively, and trans() is a total function that maps a large subset of Ital-
ian words to the corresponding English ones and returns the string “unknown word”
for all words that do not appear in the Italian words set. The service simply performs
a sequence of two receive activities t • req?x and t •word?y, corresponding to reception
of a request and of an Italian word sent by a customer, and replies with the translated
word, by invoking the operation resp of the customer by means of the invoke activity
x • resp!trans(y). Receives and invokes are the basic communication activities provided

2

PLACES'08 59

by COWS. Besides input parameters and sent values, they indicate the endpoint, i.e.
a pair p • o made of a partner name p and an operation name o, through which the
communication should occur. Differently from most process calculi, receive activities
in COWS bind neither names nor variables. The only binding construct is delimitation:
[d] s binds the delimited object d in the scope s (the notions of bound and free oc-
currences of a delimited object are defined accordingly). For example, the service (1)
uses the delimitation operator to declare the scope of variables x and y. An inter-service
communication takes place when the arguments of a receive and of a concurrent invoke
along the same endpoint do match1, and causes replacement of the variables arguments
of the receive with the corresponding values arguments of the invoke (within the scope
of variables declarations). For example, variable x will be initialised by the first receive
activity with data provided by a customer.

At a lower level, the service could be described in terms of three entities composed
by using the parallel composition operator | that allows them to be concurrently ex-
ecuted and to interact with each other. Then, the COWS specification of the translation
service can be

[reqDB1, reqDB2, respDB1, respDB2] (Translator | DB1 | DB2) (2)

The delimitation operator is used here to declare that reqDB1, reqDB2, respDB1 and
respDB2 are private operation names known to the three components Translator, DB1
and DB2, and only to them (at least initially, since during a computation private names
can be exported exactly as in π-calculus). The three subservices are defined as follows:

Translator , [x] t • req?x . [y] t •word?y .
[k] (t • reqDB1!y | [x1] t • respDB1?x1 . (kill(k) | {|x • resp!x1|})
| t • reqDB2!y | [x2] t • respDB2?x2 . (kill(k) | {|x • resp!x2|}))

DB1 , t • reqDB1?“a”. t • respDB1!“to”
+ t • reqDB1?“albero”. t • respDB1!“tree”
+ . . . + t • reqDB1?“zucca”. t • respDB1!“pumpkin”

DB2 , [z] (t • reqDB2?z. t • respDB2!“unknown word”
+ t • reqDB2?“a”. t • respDB2!“to”
+ t • reqDB2?“abate”. t • respDB2!“abbot”
+ . . . + t • reqDB2?“zuppo”. t • respDB2!“soaked”)

Service Translator is publicly invocable and can interact with customers other than
with the ‘internal’ services DB1 and DB2. These latter two services, instead, can only
be invoked by Translator (indeed, all the operations used by them are restricted) and
have the task of looking up in databases the English word corresponding to a given
Italian one and replying accordingly. In particular, DB1 performs a quick search in a
small database of commonly used words, while DB2 performs a slower search in a big-
ger database (that exactly corresponds to that modelled by the function trans()). For
performance purposes, after the two initial receives, Translator invokes services DB1
and DB2 concurrently. When one of them replies, Translator immediately stops the
other search. This is done by executing the kill activity kill(k), that forces termination
of all unprotected parallel terms inside the enclosing [k] , that stops the killing effect.
Then, Translator forwards the response to the customer and terminates. Kill activities

1The pattern-matching mechanism permits correlating messages logically forming a same interaction
‘session’ by means of their same contents.

3

PLACES'08 60

Figure 1: LTS and symbolic LTS for the translation service (high-level specification)

are executed eagerly with respect to the other parallel activities but critical code can be
protected from the effect of a forced termination by using the protection operator {| |};
this is indeed the case of the response x • resp!x1 in our example. Services DB1 and
DB2 use the choice operator + to offer alternative behaviours: one of them can be
selected by executing an invoke matching the receive leading the behaviour. In case
the word to be translated is unknown, DB1 does not reply, while DB2 returns the string
“unknown word”. Indeed, the semantics of parallel composition avoids that DB2 re-
turns “unknown word” in case of known words. This is done by assigning the receive
t • reqDB2?z less priority than the other receive activities, so that it is only executed
when none of the other receives matches the word to be translated.

3 A symbolic operational semantics for COWS
In this section, we discuss verification problems and present the major intuitions un-
derlying the symbolic operational semantics for COWS. A more detailed presentation
of the symbolic semantics can be found in [13].

Verification problems. When the considered specification language is a value-passing
process algebra and the value-space is infinite, using standard Labelled Transition Sys-
tems (LTSs) for the semantics can lead to infinite representations. For example, the
operational behaviour of service (1) can be represented by the infinite LTS in the left-
hand side of Figure 1. Notably, for the sake of presentation, the LTSs shown in the
figures rely on an operational semantics in early style, where substitutions are applied
when receive actions are inferred. However, the problem of infinite representations
remains also in case of late semantics, due to the fact that the continuation of a receive
action with argument variables x̄ has to be considered under all substitutions for x̄.

The symbolic approach. To tackle the problems above, in [7] Hennessy and Lin have
introduced the so-called symbolic LTSs and used them to define finite semantical rep-
resentations of terms of the value-passing CCS. For example, the symbolic LTSs cor-
responding to the COWS service (1) is shown in the right-hand side of Figure 1. The
symbolic actions t • req?x and t • word?y denote reception of generic values x and y
along endpoints t • req and t •word, respectively; the condition-guarded symbolic action
(z = trans(y) , x • resp!z) denotes sending of a generic value z such that z = trans(y).
Of course, for the same reasons, also the LTS representing the behaviour of service
(2) is infinite, while the corresponding symbolic LTS is finite. Indeed, if for the sake
of presentation we assume that database DB1 contains only the association for word
“a” and database DB2 contains only the associations for “a” and “abate”, the symbolic
LTS representing (2) is that shown in Figure 2.

4

PLACES'08 61

Figure 2: Symbolic LTS for the (simplified) translation service (low-level specification)

Applying the symbolic approach to COWS. We are currently defining a symbolic op-
erational semantics for COWS. To achieve this goal, the main issue is to give receive
activities a proper semantics, because variables in their arguments are placeholders
for something to be received. For example, let us consider the service p • o?x.s. If

p • o?x.s
p •o?x−−−−−−→ s then the behaviour of the continuation service s must be considered

under all substitutions of the form {x 7→ v} (i.e. the semantics of s can intuitively be
thought of as a function λx s from values to services). In case of standard semantics for
π-calculus [11], for example, this problem is not tackled at the operational semantics
level, but it is postponed to the observational semantics level. In fact, in the defini-

tion of late bisimulation for π-calculus, whenever P is bisimilar to Q, if P
a(x)−−−−→ P′

then there is Q′ such that Q
a(x)−−−−→ Q′ and P′{u/x} is bisimilar to Q′{u/x} for every

u. Thus, continuations P′ and Q′ are considered under all substitutions for x. Instead,
here we aim at defining an operational semantics for COWS that properly handles input
transitions, while allowing finite state LTSs to be associated to COWS terms.

The basic idea is to allow receive activities to evolve by performing a communi-
cation with the ‘external world’ (i.e. a COWS context), this way they do not need to
synchronise with invoke activities within the considered term. To avoid infinite branch-
ing (as in the case of early operational semantics), we replace variables with generic
values rather than with specific values. We denote by x the generic value for the vari-
able x. This way, the term [x] (p • o?x. q • o′!x) can evolve as follows:

[x] (p • o?x. q • o′!x)
p •o ?[x]−−−−−−−→ q • o′!x

q •o′!x−−−−−−→ 0

Also receive activities having a value as argument (e.g. p • o?v) and invoke activities
(e.g. p • o!v) can evolve by communicating with the external world. Of course, these
kinds of communication do not produce substitutions.

When an external communication takes place, the behaviour of the continuation
service depends on the admittable values for the generic value. To take care of the
real values that the generic values can assume, we define a symbolic semantics for
COWS, where the label on each transition has two components: the condition that
must hold for the transition to be enabled and, as usual, the action of the transition.
Moreover, to store the conditions that must hold to reach a state and the names exported
along the path, we define the semantics over configurations of the form Φ,∆ ` s,
called constrained services, where the condition Φ and the set of names ∆ are used
to determine the actions that s can perform. Thus, the symbolic transitions are of the

5

PLACES'08 62

form Φ,∆ ` s1 � Φ′, α−−−−→ Φ′,∆′ ` s2, meaning “if the conditions Φ′ (such that Φ is a
subterm of Φ′) holds then s1 can perform the action α leading to s2 by extending the
set of exported private names ∆ to the set ∆′”.

All in all, a symbolic LTS associated to a COWS term conveys in a distilled form all
the semantics information of the term’s behaviour. More specifically, besides receive
transitions, symbolic representations take into account generation and exportation of
fresh names, pattern-matching, expressions evaluation, and priorities among conflict-
ing receives. Dealing at once with all the above features at operational semantics level
makes the development of a symbolic semantics for COWS more complex than for
more standard calculi, such as value-passing CCS or π-calculus.

Work in progress. The symbolic operational semantics for COWS can pave the way
for the development of efficient equivalence and model checkers. In fact, the model
checking approach for COWS specifications presented in [5] does not support a fully
compositional verification methodology. It permits to analyse systems of services ‘as
a whole’, i.e. we cannot analyse isolated services (e.g. a provider service without
a proper client). This is somewhat related to the original semantics of COWS that,
although based on an LTS, follows a reduction style. Symbolic operational semantics
should permit to overcome this limitation. We are also defining a notion of bisimilarity
to characterise COWS terms that have the same behaviour, and intend to develop an
efficient symbolic characterisation. The behavioural equivalence above could be also
exploited to improve performance of model checking analyses, by reducing the size of
large LTSs while preserving the intended behaviour.

References
[1] M. Boreale et al. SCC: a Service Centered Calculus. In WS-FM, LNCS 4184, pp. 38–57. Springer,

2006.

[2] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration confor-
mance for system design. In COORDINATION, LNCS 4038, pp. 63–81. Springer, 2006.

[3] M.J. Butler, C.A.R. Hoare, and C. Ferreira. A trace semantics for long-running transactions. In 25
Years Communicating Sequential Processes, LNCS 3525, pp. 133–150. Springer, 2005.

[4] M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming for web
services. In ESOP, LNCS 4421, pp. 2–17. Springer, 2007.

[5] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, and F. Tiezzi. A model checking approach
for verifying COWS specifications. In FASE, LNCS 4961, pp. 230–245. Springer, 2008.

[6] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: a calculus for service oriented
computing. In ICSOC, LNCS 4294, pp. 327–338. Springer, 2006.

[7] M. Hennessy and H. Lin. Symbolic bisimulations. Theor. Comput. Sci., 138(2):353–389, 1995.

[8] C. Laneve and G. Zavattaro. Foundations of web transactions. In FoSSaCS, LNCS 3441, pp. 282–298.
Springer, 2005.

[9] A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services (full version).
Technical report, Università degli Studi di Firenze, 2006. http://rap.dsi.unifi.it/cows.

[10] A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services. In ESOP,
LNCS 4421, pp. 33–47. Springer, 2007.

[11] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Inf. Comput., 100(1):1–40, 41–77,
1992.

[12] OASIS WSBPEL TC. Web Services Business Process Execution Language Version 2.0. Technical
report, OASIS, April 2007.

[13] R. Pugliese, F. Tiezzi, and N. Yoshida. Towards a symbolic semantics for service-oriented applications
(full version). Technical report, Università degli Studi di Firenze and Imperial College London, 2008.
http://rap.dsi.unifi.it/cows.

6

PLACES'08 63

Seamlessly Distributed & Mobile Workflow

or: The right processes at the right places∗
Position Paper

Mikkel Bundgaard Thomas Hildebrandt
Espen Højsgaard

IT University of Copenhagen, Denmark
{mikkelbu, hilde, espen}@itu.dk

Abstract

We briefly outline some of the paths being explored within two recently
initiated research projects on Computer Supported Mobile Adaptive Busi-
ness Processes (CosmoBiz) and Trustworthy Pervasive Healthcare Services
(TrustCare) to provide flexible process languages and models that allow
seamless, trustworthy distribution and mobility of workflows and business
process. In particular, we consider higher-order mobile embedded busi-
ness processes, declarative versus imperative process specifications, and
communication-centric architectures versus distributed shared storage.

1 Introduction

Concurrent and distributed processes are becoming increasingly present, taking
many different forms: as machine code deployed on multi-core processors, as
parallel algorithms executed on grid computing networks, as service orchestra-
tions, or even as computer supported workflows and global business processes.
A common challenge is that the level of concurrency and distribution is not
statically fixed or a priori known. It typically depends on the availability of
resources and capabilities of different processors, servers or localities.

Below we briefly outline some of the paths being explored within two recently
initiated research projects on Computer Supported Mobile Adaptive Business
Processes (CosmoBiz) and Trustworthy Pervasive Healthcare Services (Trust-
Care) respectively, in addressing the challenge to provide process languages and
models that allow for seamless distribution and re-distribution of workflows
and business process. In particular, we consider higher-order mobile embed-
ded business processes, declarative versus imperative process specifications, and
communication-centric architectures versus distributed shared storage.

∗This work was funded in part by the Danish Research Agency (grant no.: 2106-07-0019,
no.: 274-06-0415 and no.: 2059-03-0031) and the IT University of Copenhagen (the TrustCare,
CosmoBiz and BPL projects).

1

PLACES'08 64

2 Higher-order Mobile Embedded BPEL

Services implemented and orchestrated by processes written in languages such
as WS-BPEL are being put forward as a means to achieve loosely coupled and
highly flexible computer supported business and work processes.

In the current architectures, the service topology is flat, i.e. no service is
a priori administrated by other services. In many applications however, an
instance of a service will be acting as a sub-instance of another service, which
e.g. should be reflected in the situation when one of the services terminates
abnormally. Another limitation of current architectures is that services are
deployed and managed by meta-level tools, i.e. one cannot write a business
process that automate deployment and management of processes.

In the paper [1] we propose and formalize a higher-order WS-BPEL-like
language called Higher-order mobile embedded BPEL (HomeBPEL), where pro-
cesses are values that can be stored in variables and dynamically instantiated as
embedded sub-instances. A sub-instance is similar to a WS-BPEL scope, except
that it can be dynamically frozen during a session and stored as a process in a
variable. When frozen in a variable, the process instance can be sent to remote
services as any other content of variables and dynamically re-instantiated as a
local sub-instance continuing its execution. This conceptually relatively simple
idea results in a very powerful higher-order business process language allowing
to express a nested hierarchy of processes and business process management
processes.

We exemplify the use of HomeBPEL by an example of pervasive healthcare,
where instances of treatment workflows are moved between and executed locally
on mobile devices belonging to either the doctor or the patient, depending on
whether the treatment workflow requires actions by the doctor or it prescribes
actions carried out as self-treatment by the patient.

The investigation is part of the Computer Supported Mobile Adaptive Busi-
ness Processes (CosmoBiz) project [10], which aims to provide a fully formalized
runtime engine for a business process language extended to allow for flexible mo-
bile and disconnected operation of Enterprise Resource Planning (ERP) systems
as developed by Microsoft Development Center Copenhagen [12].

A key concern is to limit the gap between the source language, its formal-
ization, and the implementation. To this end we currently work within the
model of bigraphical reactive systems on proving operational correspondence
between the concrete bigraphical semantics of WS-BPEL (which is close to the
concrete WS-BPEL syntax) and a more abstract semantics given by a second
bigraphical reactive system closer to process calculi. Another key concern is to
use the formalizations as basis for the development of type systems that can be
used to statically guarantee safe and reliable behavior. To this end we plan to
examine the approaches done for Boxed Ambients [6] and for the higher-order
π-calculus [13] on the safe integration of higher-order mobility and sessions.

Another interesting path for future research will be to examine different
primitives for management and manipulation of processes, such as sub-process
reflection and general manipulation, e.g. editing or joining of frozen sub-processes.
This relates to the work on Higher-Order (Petri) Nets and applications to work-
flow studied in [11].

2

PLACES'08 65

3 Trustworthy Pervasive Healthcare Services

The Trustworthy Pervasive Healthcare Services (TrustCare) project [8] is a
strategic interdisciplinary research collaboration between IT University of Copen-
hagen, Department of Computer Science, Copenhagen University and Result-
maker1, a Copenhagen based software company developing workflow manage-
ment systems for e.g. the public sector. The project combines experiences in
developing workflow management systems with research in programming lan-
guages technology, concurrency theory, logical frameworks, pervasive computing
and human computer interaction. The aim of the project is to contribute to the
foundations of IT-systems able to support trustworthy pervasive workflows and
services within the healthcare sector. This is an extremely challenging appli-
cation domain, since by nature, healthcare services involve coordination of a
heterogeneous set of professionals and patients, across different locations, orga-
nizations, and sectors. Moreover, healthcare services are highly safety critical;
deal with sensitive medical data; and must be able to support dynamic changes
to adapt to inevitable evolution of treatment processes and unforeseen events.

One path being explored in the project is the use of declarative process
descriptions and shared storage architectures as opposed to imperative process
descriptions and message passing/communication-centric architectures such as
WS-BPEL. The current process model employed in the Resultmaker Online
Consultant workflow management system is indeed based on a patented declar-
ative process model based on the specification of dynamically evaluated condi-
tions for inclusion of activities in workflows (e.g. different kinds of predecessor
constraints between activities) and a shared storage architecture.

This is in line with a recent proposal by Van der Aalst and Pesic in [15]
to use LTL as the foundation for flexible declarative process languages. Van
der Aalst and Pesic argue that the use of imperative process languages often
leads to over-specification, which imposes too many constraints on the flows
and consequently amplifies the need for changes to the specified process. Based
on this, the authors propose a paradigm shift replacing the imperative process
languages with declarative process languages, in which one specifies only the
required constraints between work activities rather than a receipt for how the
constraints are resolved. (This is in fact a rebirth of 20 year old proposal by
Gabbay described in [5].)

So far, we have described in [14] how to formalize the key primitives of
the Online Consultant process model as Linear time Temporal Logic (LTL)
formulas. A workflow process is then described as the conjunction of temporal
constraints, e.g. specifying that an activity A must happen before another
activity B or that some activity B must be re-executed every time the activity
A has been executed. A concrete example of the latter is when B is the activity
of signing a contract and activity A is the activity of changing the content of
the contract.

Van der Aalst and Pesic [15] and our work in [14] focus on the temporal
constraints. However, we would like to stress that this approach could equally
well be applied to the spatial aspects, that is, the specification of distribution
and uses of resources. Part of our future work will thus be to investigate the
use of declarative models, e.g. adding spatial [4] and so-called independence (or

1See 〈http://www.resultmaker.com〉

3

PLACES'08 66

true concurrency) modalities [7] to the specification logics, to describe flexible
distributed workflow processes that may be seamlessly dynamically distributed,
changed or re-distributed.

Related to this we are investigating the development and use of (timed) con-
current constraint programming for workflow and business process management,
which to our surprise is as yet almost unexplored.

As a possible architecture for a distributed declarative process engine we will
investigate distributed shared storages. A key point here is that the interaction
happens through a (possibly transparently) distributed storage and not as ex-
plicit communications between localities. However, at some level one has to
consider the communication between different localities. This raises the natural
question of how to map from a global description to a distributed end-point de-
scription, in particular to specify and implement reliable and secure interfaces
between end-points. In addressing the former question we plan to investigate
the research on communication-centric computation and translations between
global descriptions to local end-point descriptions in [2, 3] and in general the
use of behavioral types.

A related question is how to support reliable and trustworthy interfaces be-
tween services and human actors/end-points. We plan to address this question
by investigating extensions of pervasive user interfaces based on the paradigm of
activity-based computing, e.g. to include dynamically generated user interface
components based on behavioral types and end-point projections.

An interesting challenge to the existing methods is to be able to deal with
dynamic changes in behavioral interfaces, i.e. by dynamic end-point projections,
which may be needed to cope with the fact that workflow processes may need to
be dynamically changed. We intend to investigate the use of proof carrying code
techniques and (concurrent) logical frameworks as a foundation for trustworthy
dynamic changes of interfaces.

4 Conclusions

To summarize, the two projects CosmoBiz and TrustCare outlined above both
address the challenge to provide flexible process languages and models that
allow seamless, trustworthy distribution and mobility of workflows and business
process. But so far from two different sides. The former project so far considers
imperative process languages extended with primitives for higher order mobile
embedded processes and formalized as bigraphical reactive systems. This has
resulted in a proposal and formalization of HomeBPEL, forming the foundation
for further studies of type systems for higher order processes. On the other
hand, the latter project focus on declarative process languages formalized in
temporal logics and implemented using logical frameworks. While declarative
process languages has been proposed as a means to achieve more flexible process
descriptions with respect to the logical ordering of actions, we point out that it
may well also be used to achieve more flexible process descriptions with respect
to the spatial distribution and truly concurrent execution of actions. The two
projects will of course not run in isolation — in particular, we intend to study
the use of (declarative) higher order primitives in the latter and the use of
declarative languages and distributed shared storage in the former. (Research
on the use of bigraphical reactive systems as the foundation for an XML-centric

4

PLACES'08 67

distributed shared storage coordination middleware has in fact already been
initiated in [9].)

Finally, we expect to contribute to the study of projections from global de-
scriptions to local end-points and interfaces, in particular in researching how to
support changes to processes, dynamic generation and verification of interfaces,
and the generation of human user interfaces.

References

[1] M. Bundgaard, A. J. Glenstrup, T. Hildebrandt, E. Højsgaard, and H. Niss.
Formalizing higher-order mobile embedded business processes with bind-
ing bigraphs. In Proceedings of COORDINATION 08, Lecture Notes in
Computer Science. Springer Verlag, 2008.

[2] M. Carbone, K. Honda, and N. Yoshida. A calculus of global interaction
based on session types. Electronic Notes in Theoretical Computer Science,
171(3):127–151, 2007.

[3] M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred
programming for web services. In R. De Nicola, editor, Proceedings of the
16th European Symposium on Programming (ESOP 2007), volume 4421 of
Lecture Notes in Computer Science, pages 2–17. Springer Verlag, 2007.

[4] G. Conforti, D. Macedonio, and V. Sassone. Static BiLog: a unifying
language for spatial structures. In W. Penczek and G. Rozenberg, editors,
Half a century of inspirational research, honouring the scientific influence
of Antoni Mazurkiewicz, volume 80 of Fundamenta Informaticae, pages
91–110. IOS Press, 2007.

[5] D. M. Gabbay. The declarative past and imperative future: Executable
temporal logic for interactive systems. In Temporal Logic in Specification,
pages 409–448, London, UK, 1987. Springer-Verlag.

[6] P. Garralda, A. B. Compagnoni, and M. Dezani-Ciancaglini. BASS: Boxed
ambients with safe sessions. In Proceedings of the 8th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Program-
ming (PPDP’06), pages 61–72. ACM Press, 2006.

[7] J. Hayman and G. Winskel. Independence and concurrent separation logic.
In Proceedings of the 21st Annual IEEE Symposium on Logic in Computer
Science (LICS’06), pages 147–156. IEEE Computer Society, 2006.

[8] T. Hildebrandt. Trustworthy pervasive healthcare processes (TrustCare)
research project. Webpage, 2008. 〈http://www.trustcare.dk/〉.

[9] T. Hildebrandt, H. Niss, M. Olsen, and J. W. Winther. Distributed Reac-
tive XML. In Proceedings of the 1st International Workshop on Methods
and Tools for Coordinating Concurrent, Distributed and Mobile Systems
(MTCoord’05), volume 150 of Electronic Notes in Theoretical Computer
Science, pages 61–80, 2006.

[10] T. Hildebrandt, H. Niss, and K. Schmidt. Cosmobiz research project. Web-
page, 2007. 〈http://www.cosmobiz.org/〉.

5

PLACES'08 68

[11] K. Hoffmann and T. Mossakowski. Algebraic higher-order nets: Graphs
and petri nets as tokens. In M. Wirsing, D. Pattinson, and R. Hennicker,
editors, Proceedings of the 16th International Workshop on Recent Trends
in Algebraic Development Techniques (WADT’02), volume 2755 of Lecture
Notes in Computer Science, pages 253–267. Springer Verlag, 2003.

[12] Microsoft. Microsoft dynamics mobile development tools white paper -
extending business solutions to the mobile workforce. Webpage, June 2007.
〈http://dynamicsuser.net/files/folders/94158/download.aspx〉.

[13] D. Mostrous and N. Yoshida. Two session typing systems for higher-order
mobile processes. In Proceedings of the 8th International Conference on
Typed Lambda Calculi and Applications (TLCA’07), volume 4583 of Lecture
Notes in Computer Science, pages 321–335. Springer Verlag, 2007.

[14] M. R. Rao, T. Hildebrandt, K. Nørgaard, and J. B. Tøth. The Resultmaker
Online Consultant: From declarative workflow management in practice to
LTL. Submitted for publication, 2008.

[15] W. M. P. van der Aalst and M. Pesic. A declarative approach for flexible
business processes management. In Proceedings of Workshop on Dynamic
Process Management (DPM’06), volume 4103 of Lecture Notes in Computer
Science, pages 169–180. Springer Verlag, 2006.

6

PLACES'08 69

	TechRepCover
	preface
	paper1
	A Core Calculus for Dynamic Modularity
	A Distributed Implementation
	Future Work

	paper2
	paper3
	paper4
	paper5
	paper6
	paper7
	paper8
	paper9
	paper10

