717 MEtED-HORKRR

A typing system for a calculus of objects*

Vasco T. Vasconcelos and Mario Tokoro!

Summary. The present paper introduces an implicitly typed
object calculus intended to capture intrinsic aspects of concur-
rent objects communicating via asynchronous message passing,
together with a typing system assigning typings to terms in the
calculus. Types meant to describe the kind of messages an object
may receive are assigned to the free names in a program, result-
ing in a scenario where a program is assigned multiple name-type
pairs, constituting a typing for the process. Programs that com-
ply to the typing discipline are shown not to suffer from runtime
errors. Furthermore the calculus possesses a notion of principal
typings, from which all typings that make a program well-typed
can be extracted. We present an efficient algorithm to extract the
principal typing of a process.

1 Introduction |

Most of the attempts to introduce some type discipline into object-oriented
languages start from lambda-calculus, by extending this with some kind of
records. There are several limitations to this approach, mainly deriving from
the fact that objects are not extensions of functions. In particular, objects
do not necessarily present an input-output behavior; objects usually com-
municate by asynchronous message passing (instead of function application);
objects do maintain a state (in contrast with the stateless nature of functions),
and objects may run concurrently.

Inspired by Milner’s polyadic w-calculus [4], Honda’s v-calculus [3] and
Hewitt’s actor model [1], we present a basic object-calculus where the no-
tions of objects, asynchronous messages and concurrency are primitive, and
introduce a type discipline along the lines of Honda [2] and Vasconcelos and
Honda [7] for the (untyped) calculus, enjoying the properties that programs

* Abridged from the paper with the same name in the Proceedings of the International
Symposium on Object Technologies for Advanced Software (ISOTAS), Springer-Verlag,
LNCS, November 1993.

t Department of Computer Science, Keio University.

211

212 F7 7 VgAY Ea—F4 2793

that verify the discipline will never run into errors of the kind “message not
understood”, and that there is an effectively computable notion of principal
typings from which all typings that make a process well-typed can be derived.

Terms of the calculus are built from names by means of a few constructors.
Messages of the form a<1l(?) are directed to an (object located at) name a,
select a method labelled with [and carry a sequence of names 9. Terms of
the form a >[Iy(Z,).P, &- - - & 1,(Z,).P,] represent objects located at name a,
and comprising a collection of methods, each of which composed of a label ;,
a sequence of formal parameters Z; and an arbitrary process as the method
body. Processes are put together by means of the usual concurrent compo-
sition. Scope restriction and replication complete the set of constructors the
calculus is built from.

Following {2, 7], types are assigned to names, and not to processes, the
latter being assigned multiple name-type pairs, constituting a typing for the
process. Types are built from variables by means of a single constructor
[l1:@4,...1,:&,), representing a name associated with an object capable of
receiving messages labelled with /; carrying a sequence of names of types &;,
for 1 <7 < n. A typing assignment system assigns a type to each free name
in a term, thus specifying in some sense the interface of the process. It turns
out that the basic typing assignment system possesses no simple notion of
principal typing. To provide for a notion of principal typings and to derive
an efficient algorithm to extract the principal typing of a process, we use
constraints on the substitution of type variables in the form of Ohori’s kinds
as well as kinded unification [5].

The outline of the paper is as follows. The next section introduces the
calculus and section 3 the notion of types and the typing assignment system.
Sections 4 and 5 deal with principal typings and typing inference. The last
section contains some concluding remarks.

2 The Calculus

This section introduces the calculus to the extent needed for typing consid-
erations. Structural congruence caters for equivalence of terms over concrete
syntax and, together with normal forms and message application, makes the
formulation of the transition relation quite concise.

Programs are build from names, by means of six basic constructors: mes-
sages, objects, concurrent composition, scope restriction, replication and in-
action. The set of all terms is P and P, @, ... will denote particular terms.

Messages are directed to a single object and carry a method selector as
well as the message contents itself. Method selectors are just labels {,m,...
taken from a set of labels L. The contents of a message is a sequence of
names; that is, messages carry nothing but names. All basic data a program
often needs (including for example boolean values and natural numbers) will

A typing system for a calculus of objects! 213

be coded in such a way that every piece of data is identified by a single name.
Names a,b... or v,z,y,... are taken from an infinite set of names N. If
T1,...Z, (n > 0) are names in N, we write Z to mean the sequence - - - I,
in N*. A message targeted to an object identified by name a, selecting a
method labelled with I, and carrying a sequence of names %, is written as,

a<l(d)

Object methods are parameterized by a sequence of names (intended to
match the contents of an incoming message) followed by a method body.
The body of a method is an arbitrary process. A method with a selector ,
a sequence formal parameters &, and a body P is written as [(Z).P. Intu-
itively, such a method matches a communication /(%) and behaves as P with
occurrences of names in Z replaced by those in 7.

Objects have a single identifier — a name again — and a collection of
methods each labelled with a different label in L. An object with a collection
of methods [;(%,).Py,...1,(£,).P, and a name a, is written as,

a D[ll(il)Pl &-- & ln(in).P,,,]

The remaining constructors in the language are fairly standard in process-
calculi. Concurrent composition puts together arbitrary processes. If P and
Q) are two processes, then P, denotes the process composed of P and Q
running concurrently. Scope restriction allows for local name creation avoid-
ing unwanted communications with the exterior. If = is a name and P is
a process, then (vz)P denotes the restriction of z to the scope defined by
P. Multiple name restrictions on a process (vz)--- (vz,)P will be written
(vz)P.

Replication accounts for unbounded computation power, and in partic-
ular for recursive definition of objects. A replicated object of the form
lab[li(%).PL & & In(Zy).P,] represents an unbounded number of copies
of the object a >[l;(£,).P, &-- - & 1,(%,).P.). Inaction is the last constructor
of the calculus. Denoted by 0, it represents the process which does noth-
ing, and could have been defined as (vz)z I>[]. The length of the sequence of
names Z is denoted by len(z), and the set of names occurring in # by {z}.
The syntax of the calculus is summarized below.

Definition 2.1 (Syntax) Let N be an infinite set of names and N* the set
of (finite) sequences over N. Let L be a set of labels. The set of terms P is
given by the following grammar.
P = a<ll('t7) I a D[ll(il)Pl & & ln(in).Pn] l P,Q l
(VIL')P I la D[ll(ii‘l)Pl & & ln(in)-Rz] l 0
where a,b,... and v, z,y,... range over N; 9,3, 4, ... range over N*; I, m, . ..

range over L and P,Q,... range over P. Labels l,...l, and names in Z;,
1=1,...n, are assumed to be pairwise distinct.

214 F7V e MERa Y Ea—F 4 7793

For succinctness we will often write !P instead of the more verbose form
Vab[ly(%).P & --& 1,(Z,).P,], but one should keep in mind that we only
allow replication over objects.

Objects and scope restriction are the binding operators of the calculus,
which justifies the following definition.

Definition 2.2 (Free names) The set of free names in P, denoted FN(P),
1s inductively defined by:

FN(0) =0
FN (a<i(@)) = {a} U {3}
FN(ab[l(&:)-Pr & & L(2,).P]) = U(FN(P) \ {2:}) U {a}

FN(P,Q) =]t-'/\/'(P) UFN(Q)
FN((wz)P) = FN'(P) \ {=}
FN(IP) = FN(P)

A notion of substitution of free occurrences of z by z in P, denoted P[z/z],
is defined in the usual way, and so is a-conversion. Also, whenever len(z) =
len(Z) and the names in Z are all distinct, P{Z/%} denotes the result of the
stmultaneous replacement of free occurrences of Z by z in P (with change of
bound names where necessary, as usual.)

Definition 2.3 (Structural congruence) = is the smallest congruence re-
lation over processes defined by the following rules.

1. P = Q whenever P is a-convertible to Q

2. (P, 0) forms a commutative monoid with equality =

3. ab[l(z).P & m(3).Q] = ab>[m(7).Q & I(Z).P]

4. (vz)P,Q = (vz)(P, Q) whenever z € FN(Q)

5. '\P=P/IP

There is a normal form into which every process can be transformed. Let
us call base-terms to messages and objects, replicated or not.

Proposition 2.4 (Normal form) For any process P in P there is an equiva-
lent process P’ of the form,

wa)(Py, -+, Pm)

where where Py, ... P, denote base terms, for some m > 1. P' (usually not
unique) is called a normal form of P.

Message application constitutes the basic communication mechanism of
the calculus, and represents the reception of a message by an object, followed
by the selection of the appropriate method, the substitution of the message
contents by the method’s formal parameters, and the execution of the method
body.

A typing system for a calculus of objects® 215

Definition 2.5 (Message application) Let I(7) be the communication of
some message, and let [I;(Z,).P, &- - -& 1,(Z,,).P,] be a collection of methods.
Message application is defined by,

[ll(il).Pl & . & ln(jn)-ljn] L] l(ﬁ) bl Pk{'l_}/i'k}
whenever I =1, € {l,...1,} and the lengths of 7 and & match.

Reduction models the computing mechanism of the calculus. By using
structural congruence, normal forms and message application, it can be con-
cisely defined.

Definition 2.6 (Reduction) One-step reduction, denoted by —, is the
smallest relation generated by the following rules.

P=P P-Q Q=¢
Pl__>QI

Me(C —P
(vZ)(8,adC,a bM,d) — (vZ)(0, P,)

where 0 and 0' represent concurrent composition of base-terms, C is a com-
munication of the form I(v) and M is a collection of methods of the form
(1(21).PL & - - & 1,(%,,).P).

The reduction relation — is the reflezive and transitive closure of one-step
reduction.

STRUCT

COMM

Objects are recursive in nature, yet we have no explicit way of provid-
ing recursion. Since recursion can be eliminated in favor of replication (see,
e.g. [4]), we will freely write,

X@ <P ({2} =mN(P)
and let X occur in P, to mean the process,
(ve)(cdrecur(Z), e >recur(Z). P') (c fresh)

where P’ is obtained from P by replacing occurrences of X (&) for c<recur(&).?
The replicated process can be proved to behave (weakly) similarly to its
recursive counterpart. In this way we have an unbounded number of copies
of P', each one capable of being activated trough recur with a particular
instance of P’s “local variables”.

Example 2.7 One of the simplest stateful objects is a buffer cell. Such an
object has two methods, read and write, intended to read and write a value in
the cell. Together with a read request comes a name intended to receive the
value the buffer is holding. Here is a possible definition.

Cell(sv) & s >[read(r). r< value(v), Cell(sv) & write(u). Cell(su))

2 Label recur is, of course, arbitrary.

216 A7 VMRV Ea—T4 27793

3 Types and Typing Assignment

This section introduces a notion of types for names and a basic typing system
to assign types to the free names in terms. We then state some important
properties of the typing system.

Types are intended to describe some property of the entity they are asso-
ciated with. In our calculus names identify objects and hence types should
represent a property of objects. Objects in P do not possess an input-output
behavior and thus a function space construct makes no sense. Instead, ob-
jects receive messages, messages of a certain form, and that is the property
types will describe.

Definition 3.1 (Types) Let V be an infinite set of type-variables. The set
of types T is defined by the following grammar.

ax= t | [l1:a1,...l.:a)

for n > 0, where labels Iy, ... l, € L are pairwise distinct; t,t'... range over
V;a,B... over T, and &,(... over T".

Informally, an expression of the form [l;: &, ... l,: &,] is intended to denote
some collection of names identifying objects containing n methods labelled
with [, ...1, and whose arguments of method [/; belong to type &;.

Type assignment formulas are expressions z:a, for z anamein N and a a
type in T, where z is called the formula’s subject and « its predicate. Typings
are sets of formulas of the form {z;:q,...%,:a,}, where no two formulas
have the same name as subject. ', A, ... will denote typings.

Definition 3.2 (Typing compatibility) Typings ' and A are compatible,
denoted T' < A, if and only if,

z:a €T and z:0 € A implies a =

The following notation simplifies the treatment of the typing assignment
system. Let £ = z;,---z, be a sequence of names, @ = a;--- a, a sequence
of types and I' a typing. Then, {Z:&} denotes the typing {z1:c,...Tn a0 };
I'- %:a& denotes typing I' U {Z: &}, provided names in & do not occur in T}
and I'/Z denotes the typing I' with formulas with subjects in & removed.

Typing assignment statements are expressions P > T for all processes P
and typings I'. We will write F P > T if the statement P > I is provable
using the axioms and the rules of TA below. Whenever + P > I’ for some
typing ', we say P is typable, and call I' a well-typing for P.

Definition 3.3 (Typing assignment system TA) TA is defined by the
following rules.

A typing system for a calculus of objects* 217

N FO>90
Msec Fadl(®) = {9:4,a:[I:a,...]} ({9:&} < {a:[I:4,...]})
({a:{li:éy,.. . 4,:6,]} < Ty, Ty < I;,1<4,j<n)

OBJ FP>-T %4
ab(li(%1).P & - & 1,(Z,).P] > {a:[li:@1,y .- Lpi@,) JUTLU--- T,

| FP>T FP-T FQ»=A _
SCOP TPy Tz Cone Fro>-Ttua (Ix4)
FP>T FP>T
REPL T9p>T WEAK TPh>T sa

Example 3.4 Consider the buffer cell in example 2.7. Since method write
expects a name of any type t (the type of the value the cell holds), and method
read expects a name capable of receiving a message of type value:t, a typing
for Cell(sv) is given by,

{s:[read:[value:t], write:¢], v:t}

Notice that this is not the only possible well-typing for Cell(sv). In fact, apart
from substitutions on variable t, we have that, e.g.

{s:[read:|value:¢, print: u], write:t], v:t}

is also a well-typing for the process. However, the typing,
{s:[read:[value:t], write:t, think:u], v:t}

is not acceptable since it would allow us to compose Cell(sv) with s<{think(z),

which would surely run into a type error.

Whenever a process P is typable, there exists a TA derivation which pro-
duces a typing containing only assignments on the free names of P. If ' is a
typing, let I'[P be the restriction of T' to the free names in P. We shall call
typings of this form P-typings.

Lemma 3.5 If - P >~ T, then all free names of P occurinT and + P » T'|P.

The following lemma ensures that structural congruent processes have the
same typings.

Lemma 3.6 If F P>T and P=Q, then +Q > T.

The following fundamental property of the typing assignment system TA
ensures that the typing of a process does not change as it is reduced and is
closely related with the lack of runtime errors.

218 F7Yx7 MERla Y Ea—TF4 7793

Theorem 3.7 (Subject Reduction) If - P >~ T and P —» Q, then F Q >
I.

Notice that the converse of subject reduction does not hold, since non
typable terms can be reduced to typable ones (e.g. a<l(a),a>l(z).0 — 0),
and also because free-names may be lost in the course of reduction (e.g.
F 0 > 0 and a<ti(v),abl(z).0 —» 0 but f a<i(v),at>l(z).0 » 0). Also
due to the loss of free names during reduction, if + P > ', P — @, and
F Q> A, then A]Q CT[P.

A consequence of the subject-reduction property is that typable pro-
grams will not run into type errors during execution. We say P contains
a possible runtime error, and write P € ERR, if there exists a term Q
such that P —» Q = (vii)(8,a<l(?),a>[l1(E1).P1 &+ - & 1.(Z4)- P}, 8') and
(%) P& & 1.(%,).P.] ¢ () is not defined; that is, either 1g{l,...l.}
orelse I = I € {ls,...1,} but len(D) # len(Zy).

Corollary 3.8 If P is typable, then P ¢ ERR.

4 Principal typings

We have seen in example 3.4 that the system TA as presented in section 3
possesses no simple notion of principal typings, solely based on substitution
of types for type variables, and on the number and nature of labels present in
a type. In this section we introduce an alternative presentation of the system,
compatible with TA, by using constraints on the substitution of type variables
in the style of Ohori [5], which allows to talk about principal typings.

Kinds describe constraints on the substitution of type variables, and are
defined as follows.

Definition 4.1 (Kinds) The set of kinds K is given by all expressions of
the form

(ly:64,. .. L Gw)
where 11, .. .1, are distinct labels in L and &, . .. &, are sequences of types in
T*, forn > 0. k, k', ... will range over K.

Intuitively, a kind of the form (l; : &i,.. .l : &,) denotes the subset of
types containing (at least) the components Lyt ... Ly éy.

Kind assignments are expressions t:k, for ¢ a type variable and %k a kind.
Kindings are acyclic sets of kind assignments® where no two assignments have
the same type variable as subject. K, K',... will range over kindings. We
say a type o has a kind k under a kinding K, denoted by K F a:k, if and
only if,

K F [11:541, e .ln:&", .] : (llidl, o .lnldn>
K- t:(li:81,... lu:éy,...) F t i@y, .y ay)
5 A cycle in a set of kind assignments is a sequence of eclements t1:ky,. .. ty, : kn such that

ti41 occurs in k; and t; occurs in ky, forn > 1.

A typing system for a calculus of objects® 219

Kinded typing assignments are expressions of the form K + P > I', where
all type variables in typing I" occur in kinding K.

We will write K F; P > I if the statement P > I is provable from
kinding K, using the rules and axioms of TA,, below.

Definition 4.2 (Kinded typing assignment system TA;) TA; is defined
by the rules in TA with sequents of the form + P > T replaced by K + P -~ T
and by replacing rule MsG for rule MsG;, below.

MsGe K}-af<{ll(|_z7)ﬁ>:<{lzifc)i,a:,8} ({9:a} < {a:5})

We can easily prove that TA is correct with respect to TA. In fact, deduc-
tions in TA are valid in TA;, if we start from a kinding assigning an arbitrary
kind to every variable appearing in the deduction.

Theorem 4.3 If - P > I' then K + P > T, for any kinding K assigning
every variable occurring in the deduction of - P » T

Conversely we can prove that, deductions in TA,; can be mapped into
deductions in TA, by replacing kinded type variables by types constrained to
the kinding.

Theorem 4.4 If K F; P > T then + P = I, where I is a typing obtained
from I by recursively replacing type variables t for record types of the form
[l1:@4,...ly: @y whenever K +t:(ly:6q,...01,:6,,).

A substitution on types is a mapping s : V — T from type variables
to types. Such a substitution can be easily extended to types, typings and
kinds. A kinded substitution is a pair (K, s) composed of a kinding K and a
substitution s.

We say a kinded substitution (K, s) respects a kinding K if and only if
K' b st:sk whenever t:k € K. A kinded substitution (K, s) is more general
than (K',r) if there is a substitution u such that r = us and (K’, u) respects
K.

A kinded set of equations is a pair (K, E) composed of a kinding K and a
set of equations of the form a = (3, for a and 3 types in T. We say a kinded
substitution (K, s) is a unifier of (K', E) if and only if (K, s) respects K’ and
sa=sfforalla=0€E.

Theorem 4.5 (Kinded unification [5]) There is an algorithm which, given
any kinded set of equations, computes a most general unifier if it exists, and
reports failure otherwise.

A kinded typing is a pair (K,T') composed of a kinding K and a typing I'.
We say that a kinded typing (K’, A) is an instance of (K, I') (or alternatively
that (K, T) is more general than (K', A)) if there is a substitution s such that,

(K', s) respects K and s CA

220 F7 7 MR v a—F4 293

One important fact about instances is that every instance of a well-typing
is also a well-typing.

Lemma 4.6 If K +, P > I and (K',A) is an instance of (K,T'), then
K' kP > A.

All possible typings for a given process are instances of its principal kinded
typing.
Definition 4.7 (Principal kinded typing) A kinded typing (K,T) is prin-
cipal for a process P if and only if,

1. K by P>T, and

2. if K' b, P> A, then (K', A) is an instance of (K,T').

It should be obvious that the principal typing of a process, when it exists,
is unique up to renaming of type variables, and that it contains exactly the
free names in the process.

Example 4.8 Recall the buffer cell object of example 2.7, and let t be the
type of the value of the cell. By assigning a type variable u (subject to the
constraint that it must be assigned a record type having at least a component
value : t) to the object intended to receive the reply to a read request, the
principal kinded typing of Cell(sv) is given by

({t:(),u:(value:t)}, {s:[read :u, write:t], v:t})

Theorem 4.9 (Existence of principal typings) If P is typable then there
exists a principal kinded typing for P. It can be effectively computed.

An algorithm to extract the principal kinded typing of a process is de-
scribed in the next section.

5 Typing Inference

This section introduces an efficient algorithm to extract the principal kinded
typing of a process. The algorithm is based on that of Vasconcelos and
Honda [7] for the polyadic 7-calculus, which in turn is based on Wand’s [8].

The algorithm builds from a process Py with all bound names renamed
to be distinct, a typing and kinded set of equations to be submitted to the
kinded unification procedure. Suppose the algorithm to be described produces
a typing Iy and a kinded set of equations (K, E'), and use kinded unification
on the set of equations. If (K’,s) is a unifier of (K, E'), then sy is a well-
typing for Py under kinding K’. Conversely, if P is typable, then all its
P-typings under kinding K’ are of the form sI'¢[P, for (K’,s) a unifier of
(K, E). If T is a typing, we will write I'a for the type associated with name a
in T, and T'a for the sequence of types associated with the sequence of names
ain T.

A typing system for a calculus of objects’ 221

Input: A term P, with all bound names renamed to be distinct.

Initialization: Set E = 0, G = {P}, Ty to a typing assigning to all
names in Py distinct type-variables, and K to a kinding assigning to all
variables in I’y an empty kind ().

Loop: If G =0, then halt and return (KX, E). Otherwise choose a goal P
from G, delete it from G and add to G, E and K, new goals, equations
and kind assignments as specified below.

Case P is 0: Generate nothing.

Case P is a<i(?): Generate the equation I'ya = t and the kind
assignment ¢:(l:T'¢¥), for t a fresh variable.

Case P is ab[li(%,).Pr & - & 1.(Z,).P,]: Generate the equation
Tya = [l;:ToZ1,. .. 1 : ToZ,] and the goals P, ... Py.

Case P is Q,R: Generate the goals @ and R.
Case P is (vz)Q or !Q: Generate the goal Q.

To build the principal kinded typing of a term P;, we use the above al-
gorithm on P, and then the kinded unification algorithm on the resulting
kinded set of equations (K, E). If (K, E) has no solutions, then Py is not
typable. Otherwise let (K',s) be the most general unifier of (K, E). Then,
(K',sTg| P,) is the principal typing of Fy. If follows by Lemma 4.6 that every
instance of (K, sT'o[P) is a well kinded typing for F.

6 Concluding Remarks

We presented a basic calculus aiming to capture some essential notions present
in systems of concurrent objects communicating via asynchronous message
passing, together with a typing system for the calculus. Types are assigned
to names and are intended to describe the kind of messages objects associated
with the name are able to receive. Processes are not assigned types, but else
a collection of name-type pairs. The typing system presented assigns a type
to each free name in a process, thus specifying in some sense the interface of
the process. Programs that conform to the typing discipline were shown not
to run into errors. Furthermore, we presented an algorithm to extract the
principal typing of a program, from which all typings that make the program
well-typed can be extracted.

The approach seems an interesting basis from which explore further as-
pects present in objects, namely the notion of inheritance (by introducing
new or redefining existing methods in objects) and that of subtyping (by in-
troducing new components in a record type) as well the relationship between
these. Also, an extension of the typing system to include recursive types,

222 ATV MERa vy Ea—F 4 v 293

indispensable to type objects denoting basic data such as natural numbers
and lists, can be easily done along the lines of [7). Another related line of
investigation, in the style of [6], encompasses the introduction of variables
over process accompanied by a notion of predicative polymorphism, and a
ML-like let construct. Such a system would allow the declaration of an ob-
Ject of a polymorphic type, which could be used in a program multiple times
with different types, instances of the type of the declared object.

On the pragmatic side, one should study the applicability of the calculus
as a means to describe semantics and types of object-oriented concurrent pro-
gramming languages such as Actor based languages, Concurrent Smalltalk,
ABCL and POOL, as well as a clean incorporation of functions as a particular
discipline of object definition and usage.

Acknowledgements. The authors wish to thank Kohei Honda for long and
fruitful discussions on the nature of concurrency and types for concurrency.

5 3k

(1] Carl Hewitt. Viewing control structures as patterns of passing messages. Arti-
ficial Inteligence, 8(3):323-364, 1977.

[2] Kohei Honda. Types for Dyadic Interaction. In Proceedings of CONCUR’93,
Springer-Verlag, LNCS, August 1993.

[3] Kohei Honda and Mario Tokoro. An Object Calculus for Asynchronous Com-
munication. In 1991 European Conference on Object-Oriented Computing,
pages 141-162, Springer-Verlag, 1991. LNCS 512.

[4] Robin Milner. The Polyadic 7-Calculus: a Tutorial. ECS-LFCS 91-180, Uni-
versity of Edinburgh, October 1991.

[5] Atsushi Ohori. A compilation method for ML-style polymorphic record calculi.

In 19th ACM Symposium on Principles of Programming Languages, pages 154—
165, 1992.

[6] Vasco T. Vasconcelos. A predicative polymorphic type system for the polyadic
w-calculus. May 1993. Keio University.

[7] Vasco T. Vasconcelos and Kohei Honda. Principal typing-schemes in a polyadic
ws—)calculus. In Proceedings of CONCUR’93, Springer-Verlag, LNCS, August
1993.

[8] Mitchell Wand. A simple algorithm and proof for type inference. Fundamenta
Informaticae, X:115-122, 1987. North-Holland.

	typing 0
	typing 1
	typing 2
	typing 3
	typing 4
	typing 5
	typing 6
	typing 7
	typing 8
	typing 9
	typing 10
	typing 11

