
Session Types for Functional Multithreading∗

Vasco Vasconcelos† António Ravara‡ Simon Gay§

October 15, 2004

1 Introduction

Communication in distributed systems is typically structured around protocols,
which specify the sequence and form of messages passing over communication
channels. Correctness of such systems implies that protocols are obeyed.

The theory of session types [6, 10, 11, 20] allows the specification of a protocol
to be expressed as a type; when a communication channel is created, a session
type is associated with it. Such a type specifies not only the data types of
individual messages, but also the state transitions of the protocol and hence
the allowable sequences of messages. By extending the standard methodology
of static typechecking, it becomes possible to verify, at compile-time, that an
agent using the channel does so in accordance with the protocol.

The theory of session types has been developed in the context of the π-
calculus [15, 19], an idealized concurrent programming language which focuses
on inter-process communication. Session types have not yet been incorporated
into a mainstream programmming language, or even studied theoretically in
the context of a standard language paradigm: functional, imperative or object-
oriented. Vallecillo et al. [21] use session types to add behavioural information to
the interfaces of CORBA objects, and use Gay and Hole’s [6] theory of subtyping
to formalize compatibility and substitutability of components, but they have not
attempted to design a complete language.

The Vault [3] and Cyclone [9] languages extend C with facilities for safe
control of stateful resources. In Cyclone, locks must be acquired and released;
Vault goes further by allowing operations on a resource to be statically checked
against an automaton which specifies valid transitions. In contrast, session
types are specialized to communication channels as a particular kind of resource,
but as a result they enable further typechecking in association with each state

∗A revised and extended version of the paper in Concur 2004, volume 3170 of LNCS, pages
497–511, Springer-Verlag, 2004.

†Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016
Lisboa, Portugal.

‡CLC and Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa,
Portugal.

§Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.

1

transition: typechecking verifies the types of individual messages, as well as
verifying that a sequence of messages obeys a given protocol. (These languages
are further discussed in section 7.)

In previous work [5] we have presented a language supporting typed func-
tional programming with inter-process communication channels, but we only
considered individual processes in isolation. Here we address collections of func-
tional threads communicating via channels. This formulation allows us to prove
a runtime safety property: well-typed programs do not misuse channels.

By transferring the concept of session types from the π-calculus to a multi-
threaded functional language with side-effecting input/output operations, we
show that static checking of session types could be added to a language such
as Concurrent ML [18], at least without imperative features. In particular we
have addressed the key differences between a conventional programming style
and the programming notation of the π-calculus:

• The operations on channels are independent terms, rather than prefixes of
processes, so we have introduced a new form of typing judgement which
describes the effect of a term on channel environment.

• We have separated creation and naming of channels, and because this
introduces the possibility of aliasing, we represent the types of channels by
indirection from the main type environment to the channel environment.

The structure of the paper is as follows. In Section 2 we explain session types
in connection with a progressively more sophisticated example. Sections 3, 4
and 5 define the syntax, operational semantics and type system of our language.
In Section 6 we present the runtime safety result. In Sections 7 and 8 we discuss
related and future work.

2 Session Types and the Maths Server

Input, Output and Sequencing Types. First consider a server which pro-
vides a single operation: addition of integers. A suitable protocol can be defined
as follows.

The client sends two integers. The server sends an integer which is
their sum, then closes the connection.

The corresponding session type, from the server’s point of view, is

S =?Int.?Int.!Int.End

in which ? means receive, ! means send, dot (.) is sequencing, and End indicates
the end of the session. The type does not correspond precisely to the specifica-
tion, because it does not state that the server calculates the sum. However, the
type captures the parts of the specification which we can reasonably expect to
verify statically. The server communicates with a client on a channel called u;

2

we think of the client engaging in a session with the server, using the channel
u for communication. In our language, the server looks like this:

server u = let x = receive u in

let y = receive u in

send x + y on u

or more concisely: send (receive u) + (receive u) on u.
Interchanging ? and ! yields the type describing the client side of the protocol:

S =!Int.!Int.?Int.End

and a client implementation uses the server to add two particular integers; the
code may use x but cannot use the channel u except for closing it.

client u = send 2 on u

send 3 on u

let x = receive u in code

Branching Types. Now let us modify the protocol and add a negation oper-
ation to the server.

The client selects one of two commands: add or neg . In the case
of add the client then sends two integers and the server replies with
an integer which is their sum. In the case of neg the client then
sends an integer and the server replies with an integer which is its
negation. In either case, the server then closes the connection.

The corresponding session type, for the server side, uses the constructor &
(branch) to indicate that a choice is offered.

S = &〈add : ?Int.?Int.!Int.End,neg : ?Int.!Int.End〉

Both services must be implemented. We introduce a case construct:

server u = case u of {
add ⇒ send (receive u) + (receive u) on u

neg ⇒ send −(receive u) on u }

The type of the client side uses the dual constructor ⊕ (choice) to indicate
that a choice is made.

S = ⊕〈add : !Int.!Int.?Int.End,neg : !Int.?Int.End〉

A client implementation makes a particular choice, for example:

addClient u = select add on u negClient u = select neg on u

send 2 on u send 7 on u

send 3 on u let x = receive u in code
let x = receive u in code

3

Note that the type of the subsequent interaction depends on the label which is
selected. In order for typechecking to be decidable, it is essential that the label
add or neg appears as a literal name in the program; labels cannot result from
computations.

If we add a square root operation, sqrt , then as well as specifying that the
argument and result have type Real, we must allow for the possibility of an error
(resulting in the end of the session) if the client asks for the square root of a
negative number. This is done by using the ⊕ constructor on the server side,
with options ok and error . The complete English description of the protocol is
starting to become lengthy, so we will omit it and simply show the type of the
server side.

S = &〈add : ?Int.?Int.!Int.End,

neg : ?Int.!Int.End,

sqrt : ?Real .⊕〈ok : !Real.End, error : End〉〉

This example shows that session types allow the description of protocols that
cannot be easily accommodated with objects, that is, with sequences of the
form: select a method; send the arguments; receive the result.
Recursive Types. A more realistic server would allow a session to consist of a
sequence of commands and responses. The corresponding type must be defined
recursively, and it is useful to include a quit command. Here is the type of the
server side:

S = &〈add : ?Int.?Int.!Int.S,

neg : ?Int.!Int.S,

sqrt : ?Real.⊕〈ok : !Real.S, error : S〉,
quit : End〉

The server is now implemented by a recursive function, in which the positions
of the recursive calls correspond to the recursive occurrences of S in the type
definition. To simplify the theory we decided not to include recursive types in
this paper; the interested reader may refer to report [5].
Function Types. We have not mentioned the type of the server itself. Clearly,
it accepts a channel (in state &〈add : . . .,neg : . . .〉), and returns nothing (de-
scribed by the Unit type). The body of the function “consumes” the channel,
leaving it in a state ready to be closed (described by type End). We write all this
as follows, where c is the (runtime) channel denoted by the (program) variable
u.

server :: c : &〈add : . . .,neg : . . .〉;Chan c → Unit; c : End

server u = case u of {add ⇒ . . . ,neg ⇒ . . . }

Note how the function type describes, not only the type of the parameter and
that of the result, but also, its effect on channel c. It can also be useful to send

4

functions on channels. For example we could add the component1

eval : ?(Int → Bool).?Int.!Bool.End

to the branch type of the server, with corresponding server code, to be placed
within the server’s case above.

eval ⇒ send (receive u)(receive u) on u

A client which requires a primality test service (perhaps the server has fast
hardware) can be written as follows.

primeClient :: c : ⊕ 〈add : . . .,neg : . . ., eval : . . .〉;Chan c → Unit; c : End

primeClient u = select eval on u

send isPrime on u

send bigNumber on u

let x = receive u in code

Establishing a Connection. How do the client and the server reach a state in
which they both know about channel c? We follow Takeuchi, Kubo and Honda
[20], and propose a pair of constructs: request v for use by clients, and accept v
for use by servers. In use, request and accept occur in separate threads, and
interact with each other to create a new channel. The value v in both request
and accept, denotes the common knowledge of the two threads: a shared name
used solely for the creation of new channels. We may then write:

server :: [&〈add : . . .,neg : . . ., eval : . . .〉] → Unit

server x = let u = accept x in (case u of . . .; close u)
negClient :: [&〈add : . . .,neg : . . ., eval : . . .〉] → Unit

negClient x = let u = request x in (select neg on u . . . ; close u)

Note that the same type for the shared name x is used both for the server
and for the client; it is the accept/request construct that distinguishes one from
the other. This is also where we introduce the operation to close a channel:
accept/request creates a channel; close destroys it.
Sharing Names. In order for a name to become known by a client and a
server, it must be created somewhere and distributed to both. To create a new,
potentially shared, name, we write new. To distribute it to a second thread, we
fork a new thread, in whose code the name occurs.2 Our complete system creates
a name x and launches three threads (a server and two clients), all sharing the
newly created name.

system :: Unit

system = let x = new in

fork negClient x; fork addClient x; fork server x

1We often omit the empty channel environment on each side of the arrow.
2Alternatively, we may send x on an existing channel.

5

Given the above implementation of server , one of the clients will be forever
requesting x. Fortunately, it is easy to extend the server to accept more than
one connection in its life time.

server :: [&〈add : . . .,neg : . . ., eval : . . .〉] → Unit

server x = let u = accept x in fork (case u of . . .; close u)
server x

Sending Channels on Channels. Imagine two clients that need to coop-
erate in their interaction with the server: one client establishes a connection,
selects the neg operation, and sends the argument; the second client receives
the result. After selecting neg, the first client must provide the second with the
channel to the server. In order to do so, both clients must share a name of
type ?(?Int.End).End (call this type S) and establish a connection for the sole
purpose of transmitting the server channel.

askNeg :: [〈add : . . .〉] → [S] → Unit getNeg :: [S] → Unit

askNeg x y = let u = request x in getNeg y = let w = accept y in

select neg on u; send 7 on u let u = receive w in

let w = request y in let i = receive u in

send u on w; close w close u; close w; code

It is instructive to follow the evolution of the state (the type) of channels
c and d, connected to variables u and w, respectively. After the execution of
the first line of getNeg, d has type S =?(?Int.End).End; after the second line,
d is reduced to End, but c shows up with type ?Int.End; after the third line
both channels are of type End, that is, ready to be closed. By the end of the
fourth line, we gather no more information on channels c and d, for they are
now closed. That is the sort of analysis our type system performs.

After sending a channel, no further interaction on the channel is possible.
Note that askNeg cannot close u, for otherwise the channel’s client side would
be closed twice (in askNeg and in getNeg). On the other hand, channel w must
be closed at both its ends, by askNeg and by getNeg.
Channel Aliasing. As soon as we separate creation and naming of channels,
aliasing becomes an issue. Consider the function below.

sendSend u v = send 1 on u; send 2 on v

Function sendSend can be used in a number of different ways including the
one where u and v become aliases for a single underlying channel.

sendTwice :: c : !Int.!Int.End;Chan c → Unit; c : End

sendTwice w = sendSend w w

Clearly our type system must track aliases in order to be able to correctly
typecheck programs such as this. Our approach is to introduce indirection into

6

type environments. In the body of function sendSend, the types of u and v are
both Chan c. The state of c, initially !Int.!Int.End, is recorded separately.
Free Variables in Functions. If we write

sendFree v = send 1 on u; send 2 on v

then function sendSend becomes λu.sendFree. In order to type sendTwice, thus
effectively aliasing u and v in sendSend, we must have3

sendFree ::c : !Int.!Int.End;Chan c → Unit; c : End

sendSend ::c : !Int.!Int.End;Chan c → Chan c → Unit; c : End

in a typing environment associating the type Chan c to the free variable u of
sendFree. However, if aliasing u and v is not sought, then we must have

sendFree ::c : !Int.End, d : !Int.End;Chan c → Unit; c : End, d : End

sendSend ::c : !Int.End, d : !Int.End;Chan c → Chan d → Unit; c : End, d : End

in a typing environment containing u : Chan d. Note how this type for sendFree
captures channel changes, parameters to the function or not.
Polymorphism. We have seen that sendFree admits at least two different
types. In order to allow for code reuse we work with a type-free syntax, and
type our functions as many times as needed, potentially with different types.
The paragraph above showed a share/not-share kind of polymorphism. Other
forms include channel polymorphism and session polymorphism. For the former
consider

sendTwiceSendTwice :: c : S, d : S;Chan c → Chan d → Unit; c : End, d : End

sendTwiceSendTwice x y = sendTwice x; sendTwice y

where S is !Int.!Int.End. Here sendTwice must be typed once with channel c,
and another with channel d. For the latter we have:

sendQuad :: c : !Int.!Int.!Int.!Int.End;Chan c → Unit; c : End

sendQuad x = sendTwice x; sendTwice x

where sendTwice must be typed once with c : !Int.!Int.!Int.!Int.End, and a second
time with c : !Int.!Int.End.

3 Syntax

Most of the syntax of our language has been illustrated in the previous section;
here we define it formally by the grammar in Figure 1 (cf. [14]).

We use channel identifiers c, . . ., name identifiers n, . . . , term variables x, . . .,
and labels l, . . ., and define values v, expressions e, threads t, and configurations
C. To simplify some definitions, we use (νa) to stand for either (νc) or (νn).

3We abbreviate Σ; T → (Σ; U → V ; Σ′); Σ′ to Σ; T → U → V ; Σ′.

7

v ::= c | n | x | λx.e | rec x.v | true | false | unit

e ::= t | vv | if v then e else e | new | accept v | request v |
send v on v | receive v | case v of {li ⇒ ei}i∈I | select l on v | close v

t ::= v | let x = e in t | fork t; t
C ::= 〈t〉 | (C | C) | (νn)C | (νc)C

Figure 1: Syntax of values, expressions, threads and configurations

(C, |, 〈unit〉) is a commutative monoid (S-Monoid)
(νn)C1 | C2 ≡ (νn)(C1 | C2) if n not free in C2 (S-ScopeN)
(νc)C1 | C2 ≡ (νc)(C1 | C2) if c not free in C2 (S-ScopeC)

Figure 2: Structural congruence

Channel identifiers and name identifiers are not available in the top-level
syntax of threads; they arise only during reduction, in a request/accept synchro-
nization, and in a new operation, respectively, as described in section 4.

In section 2 we used several derived constructors. An expression e; t
(sometimes implied in our examples by the indentation) is an abbreviation
for let y = e in t, provided y does not occur free in t. Idioms like
send (receive c)(receive c) on c need appropriate de-sugaring into consecutive
lets, making the evaluation order explicit. We sometimes “terminate” threads
with an expression rather than a value: a thread e is short for let x = e in x.
Recursive function definitions must be made explicit with rec.

4 Operational Semantics

The binding occurrences are x in λx.e, rec x.e, let x = e in t, n in (νn)C and
c in (νc)C. Free and bound identifiers are defined as usual and we work up to
α-equivalence. Substitution, of values for variables, is defined as expected. We
define a reduction semantics on configurations (figure 3), making use of a simple
structural congruence relation [15] (figure 2), allowing for the rearrangement of
threads in a configuration, so that reduction may happen.4

We now explain the reduction rules. R-Init synchronizes two threads on
a shared name n, creating a new channel c known to both threads. Rules
R-Com, R-Branch, and R-Close synchronize two threads on a channel c:
R-Com transmits a value v from one thread to the other; R-Branch, rather

4We could easily arrange for structural congruence to garbage collect all threads of the
form 〈v〉, for v closed.

8

〈let x = request n in t1〉 | 〈let y = accept n in t2〉 →
(νc)(〈let x = c in t1〉 | 〈let y = c in t2〉) (R-Init)

〈let x = receive c in t1〉 | 〈let y =send v on c in t2〉 →
〈let x =v in t1〉 | 〈let y =unit in t2〉 (R-Com)

〈let x = case c of {li ⇒ ei}i∈I in t1〉 | 〈let y = select lj on c in t2〉 →
〈let x = ej in t1〉 | 〈let y = unit in t2〉 (R-Branch)
〈let x = close c in t1〉 | 〈let y = close c in t2〉 →

〈let x = unit in t1〉 | 〈let y = unit in t2〉 (R-Close)
〈let x = new in t〉 → (νn)〈let x = n in t〉 (R-New)

〈fork t1; t2〉 → 〈t1〉 | 〈t2〉 (R-Fork)
〈let x = if true then e else e′ in t〉 → 〈let x = e in t〉 (R-IfT)
〈let x = if false then e else e′ in t〉 → 〈let x = e′ in t〉 (R-IfF)

〈let x = (λy.e)v in t〉 → 〈let x = e{v/y} in t〉 (R-App)
〈let x = (rec y.v)u in t〉 → 〈let x = (v{rec y.v/y})u in t〉 (R-Rec)

〈let x = (let y = e in t′) in t〉 → 〈let y = e in (let x = t′ in t)〉 (R-Let)
〈let x = v in t〉 → 〈t{v/x}〉 (R-Beta)

C → C ′

(νa)C → (νa)C ′
C → C ′

C | C ′′ → C ′ | C ′′
C ≡ → ≡ C ′

C → C ′ (R-Conf)

In R-Init, c is not free in t1, t2; in R-New, n is not free in t.

Figure 3: Reduction rules

than transmitting a value, chooses one of the branches in the case thread; and
R-Close closes a channel in both threads simultaneously. R-New creates a
new name n, and records the fact that the name is potentially shared, by means
of a (νn) in the resulting configuration. The last four rules allow reduction to
happen underneath restriction, parallel composition, and structural congruence.

Unlike other thread models, the value a thread reduces to is not communi-
cated back to its parent thread (the one that forked the terminating thread).
Such behaviour would have to be programmed by arranging for both threads to
share a channel and explicitly sending the result back to the parent.

5 Typing

The syntax of types is described in figure 4. We define session types S, channel
environments Σ, data types D, and term types T . The type Chan c represents the
type of the channel with identity c; the session type associated with c is recorded
separately in a channel environment Σ. Channel type bottom, ⊥, denotes a
channel that is already in use by two threads, hence that cannot be used further.

9

S ::= ?D.S | !D.S | ?S.S | !S.S | &〈li : Si〉i∈I | ⊕ 〈li : Si〉i∈I | End | ⊥
D ::= Bool | Unit | Σ; T → T ; Σ | [S]
Σ ::= ∅ | Σ, c : S (c : S not in Σ)
T ::= D | Chan c

Figure 4: Syntax of types

Γ ` true : Bool Γ ` false : Bool Γ ` unit : Unit (T-Const)

Γ ` c : Chan c Γ, n : [S] ` n : [S] Γ, x : T ` x : T
(T-Chan,T-Name,T-Var)

Γ, x : T ` Σ . e : U / Σ′

Γ ` λx.e : (Σ; T → U ; Σ′)
Γ, x : T ` v : T T = (Σ;U → U ′; Σ′)

Γ ` rec x.v : T
(T-Abs,T-Rec)

Figure 5: Typing rules for values

Similarly to channel and name identifiers, ⊥ is not available at the top level
syntax, arising only via the channel environment composition operator, Σ1 •Σ2,
defined below. Among datatypes we have channel-state annotated functional
types Σ;T → T ; Σ, and types for names [S] capable of establishing sessions of
type S.

The type system is presented in figures 5 to 9. Typing judgements for con-
stants are of the form Γ ` v : T , where Γ is a map from names and variables
to types. Value judgements do not mention channel environments, for values,
having no behaviour, do not change channels. Judgements for expressions are
of the form Γ ` Σ . e : T / Σ′, where Σ is a channel environment (a map from
channels into sorts, as in figure 4). The difference between Σ and Σ′ reflects the
effect of an expression on the types of channels, for example

x : Chan c ` c : ?Int.End . receive x : Int / c : End.

Finally, typing judgements for configurations are of the form ∆ ` Σ . C
where ∆ is a map from names to datatypes of the form [S].
Typing Values (figure 5). T-Chan says that a channel named c has type
Chan c. The actual type (or state) of channel c is to be found in a channel
environment Σ, in the rules for expressions. In T-Abs, the initial and final
channel environments of the function body are recorded in the function type.
Typing Expressions (figures 6, 7). There are two rules for receive and two
rules for send, for these constructors are overloaded: they allow transmission of
data as well as channels. In T-ReceiveD, the prefix ?D., of the type for channel
c, is consumed, provided that we are receiving on a value aliased to channel c

10

Γ ` v : Chan c

Γ ` Σ, c : ?D.S . receive v : D / Σ, c : S
(T-ReceiveD)

Γ ` v : Chan c d fresh
Γ ` Σ, c : ?S′.S . receive v : Chan d / Σ, d : S′, c : S

(T-ReceiveS)

Γ ` v : D Γ ` v′ : Chan c

Γ ` Σ, c : !D.S . send v on v′ : Unit / Σ, c : S
(T-SendD)

Γ ` v : Chan d Γ ` v′ : Chan c

Γ ` Σ, c : !S′.S, d : S′ . send v on v′ : Unit / Σ, c : S
(T-SendS)

Γ ` v : Chan c j ∈ I

Γ ` Σ, c : ⊕〈li : Si〉i∈I . select lj on v : Unit / Σ, c : Sj
(T-Select)

Γ ` v : Chan c Γ ` Σ, c : Sj . ej : T / Σ′ ∀j ∈ I

Γ ` Σ, c : &〈li : Si〉i∈I . case v of {li ⇒ ei}i∈I : T / Σ′ (T-Case)

Γ ` v : Chan c

Γ ` Σ, c : End . close v : Unit / Σ
(T-Close)

Γ ` v : [S] c fresh
Γ ` Σ . request v : Chan c / Σ, c : S

Γ ` v : [S] c fresh
Γ ` Σ . accept v : Chan c / Σ, c : S

(T-Request,T-Accept)

Figure 6: Typing rules for expressions I: Channel operations

(of type Chan c). In T-ReceiveS, we receive a channel, that we decided to call
d; the type of the expression is Chan d, and we add a new entry to the final
channel environment, where we record the type for d. The particular form of
the final channel environment allows the continuation to hold both ends of the
channel. The rules T-SendD and T-SendS, for sending values and channels,
are similar. In T-Select, the type for c in the final channel environment is that
of branch li in the type for c in the source channel environment. In T-Case,
all branches must produce the same final channel environment. This enables
us to know the environment for any code following the case, independently of
which branch is chosen at runtime. The same applies to the two branches of the
conditional in T-If. Rule T-Close requires that the channel must be ready to
be closed (of type End). We remove the closed channel from the environment.

Rules T-Request and T-Accept both introduce a new channel c in the
channel environment, of dual polarities [6, 10, 11, 20, 21]. The dual of a session
type S, denoted S, is defined for all session types except ⊥, and is obtained
by interchanging output ! and input ?, and by interchanging branching & and
selection ⊕, and leaving S otherwise unchanged. The inductive definition of
duality is in Figure 8.

In T-App, the initial and final channel environments in the type of the func-
tion are released into the typing for the application. T-Val says that constants
do not affect the state of channels. Expression new has any type of the form

11

Γ ` Σ1 . t1 : T1 / ~c : ⊥ Γ ` Σ2 . t2 : T2 / ~d : ⊥
Γ ` Σ1 • Σ2 . fork t1; t2 : T2 / ~c : ⊥, ~d : ⊥

(T-Fork)

Γ ` Σ . new : [S] / Σ
Γ ` v : (Σ; T → U ; Σ′) Γ ` v′ : T

Γ ` Σ . vv′ : U / Σ′

(T-New,T-App)

Γ ` v : T

Γ ` Σ . v : T / Σ
Γ ` v : Bool Γ ` Σ . e : T / Σ′ Γ ` Σ . e′ : T / Σ′

Γ ` Σ . if v then e else e′ : T / Σ′

(T-Val,T-If)

Γ ` Σ . e : T / Σ′′ Γ, x : T ` Σ′′ . t : U / Σ′

Γ ` Σ . let x = e in t : U / Σ′
Γ ` Σ . t{v/x} : T / Σ′

Γ ` Σ . let x = v in t : T / Σ′

(T-Let,T-PolyLet)

Figure 7: Typing rules for expressions II: Other rules

End = End ?D.S =!D.S ?S′.S =!S′.S !D.S =?D.S !S′.S =?S′.S

&〈li : Si〉i∈I = ⊕〈li : Si〉i∈I ⊕〈li : Si〉i∈I = &〈li : Si〉i∈I

Figure 8: Duality on session types

[S], denoting a name that, when shared by two threads, is able to produce (via
accept/request) new channels of type S.

Rule T-Fork composes the initial channel environments of two configura-
tions, by checking that the types of the channels occurring in both environments
are dual. As for the final environment, the rule requires, via the ~c : ⊥ and ~d : ⊥
in the antecedent, that each thread involved either consumes their channels
(that is sends or closes), or uses them in dual mode.

The composition of two channel environments, Σ1 •Σ2, is defined only when
Σ1(c) = Σ2(c), for all c ∈ dom Σ1 ∩ dom Σ2. In this case dom(Σ1 • Σ2) =
dom Σ1∪dom Σ2, and (Σ1 •Σ2)(c) is ⊥ when c ∈ dom Σ1∩domΣ2, and is Σi(c)
when c ∈ domΣi \ domΣ3−i, for i = 1, 2.

Rule T-PolyLet types the various forms of polymorphism identified in
section 2, by separately typing different copies of the polymorphic value [16,
Chapter 22].
Typing Configurations (figure 9). Rule T-Thread requires that threads
either consume their channels or use them in dual mode, similarly to T-Fork.
The ∆ in the antecedent of rule T-Thread ensures that threads are closed for
variables, for the domain of ∆ does not include variables. Rule T-Par is similar
to T-Fork. T-NewN discards information on the bound name. There are two
rules for channel creation. Rule T-NewB says that a newly created channel
must be used with dual modes by exactly two threads, since the type ⊥ usually

12

∆ ` Σ . t : / ~c : ⊥
∆ ` Σ . 〈t〉

∆ ` Σ1 . C1 ∆ ` Σ2 . C2

∆ ` Σ1 • Σ2 . C1 | C2

∆, n : [] ` Σ . C

∆ ` Σ . (νn)C
(T-Thread,T-Par,T-NewN)

∆ ` Σ, c : ⊥ . C c not in ∆,Σ
∆ ` Σ . (νc)C

∆ ` Σ . C c not in ∆,Σ
∆ ` Σ . (νc)C

(T-NewB,T-NewC)

Figure 9: Typing rules for configurations

arises from the • operator in rules T-Par or T-Fork. Rule T-NewC allows
to garbage collect unused channels.

The formulation of Subject Reduction is standard; the proof is in appendix A,
page 18.

Theorem 1 (Subject Reduction). If ∆ ` Σ.C and C → C ′, then ∆ ` Σ.C ′.

6 Type Safety

In our language of functional communicating threads different sorts of problems
may occur at runtime, ranging from the traditional error of testing, in a con-
ditional expression, a value that is not true or false; through applying close to
a value that is not a channel; to the most relevant to our work: having one
thread trying to send on a given channel, and another trying to select on the
same channel, or having three or more threads trying to synchronize on the
same channel.

In order to define what we mean by a faulty configuration, we start by calling
a c-thread any thread ready to perform an operation on channel c, that is a
thread of the form 〈let x = receive c in t〉, and similarly for send, case, select, and
close. A c-redex is the parallel composition of two threads ready to communicate
on channel c, that is 〈let x = send v on c in t1〉 | 〈let y = receive c in t2〉, and
similarly for case/select, close/close. A configuration C is faulty when C ≡
(ν~a)(C1 | C2) and C1 is

1. the thread 〈let x = e in t〉, where e is i) if v then else with v 6= true, false,
or is ii) v with v 6= λy.e′ and v 6= rec y.e′; or is

2. the thread 〈let x = accept/request v in t〉, where v is not a name; or is

3. the thread 〈let x = e in t〉, where e is i) receive/close v, or ii) send on v,
or iii) case v of , or iv) select on v, with v not a channel; or is

4. the parallel composition of two c-threads that do not form a c-redex; or is

5. the parallel composition of three or more c-threads.

13

The main property of this section says that typable configurations are not
faulty; the proof is in appendix B, page 29.

Theorem 2 (Type Safety). Typable configurations are not faulty.

7 Related Work

Cyclone [9] is a C-like type-safe polymorphic imperative language. It features
region-based memory management, and more recently threads and locks [8], via
a sophisticated type system. The multithreaded version requires “a lock name
for every pointer and lock type, and an effect for every function”. Our locks
are channels; but more than mutual exclusion, channels also allow a precise de-
scription of the protocol “between” acquiring and releasing the lock. In Cyclone
a thread acquires a lock for a resource, uses the resource in whichever way it
needs, and then releases the lock. Using our language a thread acquires the lock
via a request operation, and then follows the protocol for the resource, before
closing the channel obtained with request.

In the Vault system [3] annotations are added to C programs, in order to
describe protocols that a compiler can statically enforce. Similarly to our ap-
proach, individual runtime objects are tracked by associating keys (channels,
in our terminology) with resources, and function types describe the effect of
the function on the keys. Although incorporating a form of selection (⊕), the
type system describes protocols in less detail than we can achieve with session
types. “Adoption and Focus” [4], by the same authors, is a type system able to
track changes in the state of objects; the system handles aliasing, and includes
a form of polymorphism in functions. In contrast, our system checks the types
of individual messages, as well as tracking the state of the channel. Our sys-
tem is more specialized, but the specialization allows more type checking in the
situation that we handle.

Igarashi and Kobayashi have developed a generic framework in which a range
of π-calculus type systems can be defined [13]. Although able to express se-
quencing of input and output types similarly to session types, it cannot express
branching types.

A somewhat related line of research addresses resource access. Walker,
Crary, and Morrisett [22] present a language to describe region-based mem-
ory management together with a provably safe type system. Igarashi and
Kobayashi [12] present a general framework comprising a language with primi-
tives for creating and accessing resources, and a type inference algorithm that
checks whether programs access resources in a disciplined manner. Although
types for resources in this latter work are similar in spirit to session types, we
work in a much simpler setting.

Type and effect systems can be used to prove properties of protocols. Gordon
and Jeffrey [7] use one such system to prove progress properties of communi-
cation protocols written in π-calculus. Rajamani et al.’s Behave [2, 17] uses
CCS to describe properties of π-calculus programs, verified via a combination

14

of type and model checking. Since our system is purely type checking (not model
checking) we expect verification to be more efficient and easier to implement.

8 Future Work

We outline some of the issues involved in extending our language to include a
wider range of standard features.
Recursive Session Types. We have introduced recursive session types in
a previous work [5]. We feel its incorporation in the present setting would
not present major difficulties, although care must be taken in the definition of
duality [21].
Principal Typings. For practical type inference, for separate compilation
and modularity, one needs a notion of principal typings for the language. Par-
ticularly challenging is the share/not-share kind of polymorphism identified in
section 2.
Type Inference. We are working on a constraint-based type inference algo-
rithm for (the monomorphic fragment of) the language.
ML-style references and assignment. This would introduce further issues
of aliasing. We do not yet know whether our present infrastructure for type-
checking in the presence of aliasing would be sufficient for this extension.

Acknowledgements. This work was partially supported by the EU IST proac-
tive initiative FET-Global Computing (projects Mikado, IST–2001–32222, and
Profundis, IST–2001–33100), Fundação para a Ciência e a Tecnologia (via CLC,
CITI, and the project MIMO, POSI/CHS/39789/2001), and a Treaty of Wind-
sor grant from the British Council in Portugal and the Portuguese Council of
University Rectors.

References

[1] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, Amsterdam, 1984.

[2] S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: model checking
message-passing programs. In POPL, pages 45–57. ACM Press, 2002.

[3] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level
software. In PLDI, pages 59–69. ACM Press, 2001.

[4] J. S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive Type Qualifiers. In
PLDI, pages 1–12, Berlin, Germany, June 2002.

[5] S. Gay, V. T. Vasconcelos, and A. Ravara. Session types for inter-process
communication. TR 2003–133, Department of Computing, University of
Glasgow, March 2003.

15

[6] S. J. Gay and M. J. Hole. Types and subtypes for client-server interactions.
volume 1576 of LNCS, pages 74–90. Springer-Verlag, 1999.

[7] A. Gordon and A. Jeffrey. Typing correspondence assertions for communi-
cation protocols. Theoretical Computer Science, 300:379–409, 2003.

[8] D. Grossman. Type-safe multithreading in cyclone. In ACM Workshop on
Types in Language Design and Implementation. ACM Press, 2003.

[9] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in cyclone. In PLDI, pages 282–293.
ACM Press, 2002.

[10] K. Honda. Types for dyadic interaction. In CONCUR’93, volume 715 of
LNCS, pages 509–523. Springer-Verlag, 1993.

[11] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type
discipline for structured communication-based programming. volume 1381
of LNCS, pages 122–138. Springer-Verlag, 1998.

[12] A. Igarashi and N. Kobayashi. Resource usage analysis. In POPL, pages
331–342. ACM Press, 2002.

[13] A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus.
Theoretical Computer Science, 311(1–3):121–163, 2003.

[14] A. Jeffrey and J. Rathke. A fully abstract may testing semantics for con-
current objects. In Proc. Lics2002, 17th Annual Symposium on Logic in
Computer Science, Copenhagen, pages 101–112. IEEE Computer Society
Press, 2002.

[15] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and
II. Information and Computation, 100(1):1–77, September 1992.

[16] B. Pierce. Types and Programming Languages. The MIT Press, 2002.

[17] S. K. Rajamani and J. Rehof. A behavioral module system for the pi-
calculus. volume 2126 of LNCS, pages 375–394. Springer-Verlag, 2001.

[18] J. Reppy. CML: a higher order concurrent language. In PLDI, pages 293–
305. ACM Press, 1991.

[19] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[20] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and
its typing system. volume 817 of LNCS. Springer-Verlag, 1994.

[21] A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of
objects and components using session types. In FOCLASA 2002, volume 68
of Electronic Notes in Theoretical Computer Science. Elsevier, August 2002.

16

[22] D. Walker, K. Crary, and G. Morrisett. Typed memory management via
static capabilities. TOPLAS, 22(4):701–771, 2000.

17

A Proof of Theorem 1, Subject Reduction

We start with a few auxiliary results; the proof of Subject Reduction is on
page 23. To simplify the proofs, we make use of the variable convention [1],
allowing, for example, to assume that, in sequent ∆ ` Σ . (νc)C, channel c does
not occur in either ∆ or Σ. Relatedly, when we say that c does not occur in C,
we mean that it does not occur free in C and, by the variable convention, that
it does not occur bound either.

The following easy results allow to grow and shrink the variable environment
of an expression. Weakening is used in Subject Reduction (rule R-Let) and
narrowing in the Substitution Lemma 12.5

Lemma 3 (Variable Weakening). Suppose that x does not occur in e, v.

1. If Γ ` Σ . e : U / Σ′, then Γ, x : T ` Σ . e : U / Σ′.

2. If Γ ` v : U , then Γ, x : T ` v : U .

Proof. The proofs, by mutual induction, are straightforward.

Lemma 4 (Variable Narrowing). Suppose that x does not occur in e, v.

1. If Γ, x : T ` Σ . e : U / Σ′, then Γ ` Σ . e : U / Σ′.

2. If Γ, x : T ` v : U , then Γ ` v : U .

Proof. The proofs, by mutual induction, are straightforward.

The following two unchallenging results allow to grow and shrink, this time,
the name environment of a configuration. They are used in the proofs of Subject
Congruence (rule S-ScopeN) and Subject Reduction (rule R-New).

Lemma 5 (Name Weakening). Suppose that n does not occur in C, e, v.

1. If ∆ ` Σ . C, then ∆, n : [S] ` Σ . C.

2. If Γ ` Σ . e : T / Σ′, then Γ, n : [S] ` Σ . e : T / Σ′.

3. If Γ ` v : T , then Γ, n : [S] ` v : T .

Proof. The proof for configurations is a straightforward induction on the deriva-
tion of the judgement, using the result for expressions when the last rule in the
derivation tree is T-Thread. The proofs for expressions and for values are by
mutual induction.

Lemma 6 (Name Narrowing). Suppose that n is not in C, e, v.

1. If ∆, n : [S] ` Σ . C, then ∆ ` Σ . C.

5In the formulation of the lemma, we have omitted the hypothesis that x is not in the
domain of Γ (for otherwise Γ, x : T would not be defined in the conclusion). We henceforth
follow this convention for all sorts of environments.

18

2. If Γ ` Σ, n : [S] . e : T / Σ′, then Γ ` Σ . e : T / Σ′.

3. If Γ, n : [S] ` v : T , then Γ ` v : T .

Proof. The proof for configurations is a straightforward induction on the deriva-
tion of the judgement, using the result for expressions when the last rule in the
derivation tree is T-Thread. The proofs for expressions and for values are by
mutual induction.

The following two results allow to grow and shrink the channel environment
of a configuration. Weakening is needed in Subject Reduction (rule R-Close);
Narrowing in Subject Congruence (channel extrusion using rule T-NewB).

Lemma 7 (Channel Weakening). Suppose that c does not occur in any of
∆,Γ,Σ,Σ′, C, e, v.

1. If ∆ ` Σ . C, then ∆ ` Σ, c : ⊥ . C.

2. If Γ ` Σ . e : T / Σ′, then Γ ` Σ, c : ⊥ . e : T / Σ′, c : ⊥.

3. If Γ ` v : (Σ; T → U ; Σ′), then Γ ` v : (Σ, c : ⊥;T → U ; Σ′, c : ⊥).

Proof. The proof for configurations is a straightforward induction on the deriva-
tion of the jugdement, using the result for expressions when the last rule in the
derivation tree is T-Thread. The proofs for expressions and for values are by
mutual induction.

Lemma 8 (Channel Narrowing). Suppose that c does not occur in any of
∆,Γ,Σ,Σ′, C, e, v.

1. If ∆ ` Σ, c : S . C, then S =⊥ and ∆ ` Σ . C.

2. If Γ ` Σ, c : S . e : T / Σ′, then Σ′ = Σ′′, c : S and Γ ` Σ . e : T / Σ′′.

3. If Γ ` v : (Σ, c : S;T → U ; Σ′, c : S), then Γ ` v : (Σ; T → U ; Σ′).

Proof. The proofs are by induction on the possible derivation trees for the judge-
ment.

1. Configurations. The only cases worth mentioning are when the last rule
is T-Par or T-Thread; the four remaining cases follow directly by induction.

T-Par. By hypothesis we have a tree of the form:

∆ ` Σ∗
1 . C1 ∆ ` Σ∗

2 . C2
T-Par

∆ ` (Σ1 • Σ2), c : ⊥ . C1 | C2

We analyse the possibilities for splitting the environment (Σ1 • Σ2), c : ⊥.
There are three cases.

1. Σ∗
1 = Σ1, c : S and Σ∗

2 = Σ2

2. Σ∗
1 = Σ1 and Σ∗

2 = Σ2, c : S

19

3. S =⊥, Σ∗
1 = Σ1, c : S1 and Σ∗

2 = Σ2, c : S1

Each case follows easily by induction.
T-Thread. By hypothesis we have a tree of the form:

∆ ` Σ, c : S . t : T / ~d : ⊥

∆ ` Σ, c : S . 〈t〉

and use the clause for expressions in this lemma, to conclude that ~d : ⊥= Σ′, c : S
(therefore S =⊥) and that ∆ ` Σ . t : T / Σ′. The result follows by induction.

2. Expressions. The cases for all the rules in figure 6 (except T-Case), as
well as T-New and T-Val in figure 7 are direct, for the antecedents (if any) do
not mention channel environments. The case for rule T-App uses the clause for
functional values in this lemma. All other cases, except T-Fork follow directly
by induction.

T-Fork. By hypothesis we have a proof tree of the form:

∆ ` Σ∗
1 . t1 : T1 / ~c : ⊥ ∆ ` Σ∗

2 . t2 : T2 / ~d : ⊥
T-Fork

∆ ` (Σ1 • Σ2), c : S . fork t1; t2 : T2 / ~c : ⊥, ~d : ⊥

We analyse the possibilities for splitting the environment (Σ1 • Σ2), c : S.
There are three cases.

1. Σ∗
1 = Σ1, c : S and Σ∗

2 = Σ2.

2. Σ∗
1 = Σ1 and Σ∗

2 = Σ2, c : S.

3. S =⊥, Σ∗
1 = Σ1, c : S1 and Σ∗

2 = Σ2, c : S1.

The first two cases follow directly by induction. In the third case, the induction
hypothesis implies that S1 =⊥ and S1 =⊥, meaning that Σ∗

1 •Σ∗
2 is not defined.

So the third case cannot arise.
3. Values. Rules T-Const, T-Chan, and T-Name do not apply, for the

types in the axioms are not of the required form. Rule T-Var does not apply,
for c is not in Γ, by hypothesis. Rule T-Rec follows by induction, and rule
T-Abs uses the clause for expressions in this lemma.

The following result accounts for the monoidal structure of configurations;
it is used in the proof of Subject Congruence.

Lemma 9 (Channel environment monoid). Consider the commutative
monoid axioms expressed in terms of (Σ, •, ∅), each in the form LHS = RHS.
For each axiom, LHS is defined if and only if RHS is defined, and then they
are equal.

Proof. Directly from the definition of channel environment composition, on page
12.

Congruent configurations share the same typings. This result is used in the
proof of Subject Reduction, rule R-Conf.

20

Lemma 10 (Subject Congruence). If ∆ ` Σ . C and C ≡ C ′, then ∆ `
Σ . C ′.

Proof. The proof proceeds by induction on the derivation of C ≡ C ′. The
inductive cases (the congruence rules) are straightforward. We now consider
the base cases.

When the last rule applied is the commutative monoid rule, we use Lemma 9.
For the scope extrusion rules S-ScopeN and S-ScopeC we must consider each
rule in both directions; for S-ScopeC we must consider two cases, depending
on whether the typing derivation uses T-NewB or T-NewC.

S-ScopeN. When reading the rule left-to-right we use name weakening
(lemma 5). In the other direction we use name narrowing (lemma 6). In both
cases, we use the hypothesis (in the congruence rule) that n is not in C2.

S-ScopeC, left-to-right, T-NewB. By hypothesis, we have

∆ ` Σ1, c : ⊥ . C1 c not in ∆,Σ1
T-NewB

∆ ` Σ1 . (νc)C1 ∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2 . (νc)C1 | C2

From the assumptions in the above tree, we build the following derivation,
where we crucially use the variable convention to ensure that c is not in Σ2.

∆ ` Σ1, c : ⊥ . C1 ∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2, c : ⊥ . C1 | C2 c not in ∆,Σ1,Σ2
T-NewB

∆ ` Σ1 • Σ2 . (νc)(C1 | C2)

S-ScopeC, left-to-right, T-NewC. Similar to the previous case, again
using the variable convention.

S-ScopeC, right-to-left, T-NewB. By hypothesis, we have a proof tree
of the form:

∆ ` Σ∗
1 . C1 ∆ ` Σ∗

2 . C2
T-Par

∆ ` (Σ1 • Σ2), c : ⊥ . C1 | C2 c not in ∆,Σ1,Σ2
T-NewB

∆ ` (Σ1 • Σ2) . (νc)(C1 | C2)

We analyse the possibilities for splitting environment (Σ1 •Σ2), c : ⊥. There
are three cases.

1. Σ∗
1 = Σ1, c : ⊥ and Σ∗

2 = Σ2.

2. Σ∗
1 = Σ1 and Σ∗

2 = Σ2, c : ⊥.

3. Σ∗
1 = Σ1, c : S and Σ∗

2 = Σ2, c : S.

In case 1 we build the following derivation.

21

∆ ` Σ1, c : ⊥ . C1 c not in ∆,Σ1
T-NewB

∆ ` Σ1 . (νc)C1 ∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2 . (νc)C1 | C2

In case 2 we build the following derivation.

∆ ` Σ1 . C1 c 6∈ ∆,Σ1
T-NewC

∆ ` Σ1 . (νc)C1

∆ ` Σ2, c : ⊥ . C2 c 6∈ ∆,Σ2, C2
Lemma 8

∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2 . (νc)C1 | C2

In case 3 the typing derivation gives us the additional hypothesis that
(Σ1, c : S) • (Σ2, c : S) is defined. As we have ∆ ` Σ2, c : S . C2 and we know
that c is not in C2, Lemma 8 applies and this judgement is ∆ ` Σ2, c : ⊥ . C2,
contradicting the assumption that (Σ1, c : S) • (Σ2, c : S) is defined. Therefore
this case cannot arise.

S-ScopeC, right-to-left, T-NewC. Similar to case 1 of the previous
argument.

The following result allow to replace a given channel for a another one,
throughout a derivation tree. We use it in Subject Reduction, rule R-Init, to
unify the two fresh channels in the hypothesis.

Lemma 11 (Channel replacement). Suppose that neither d nor c occurs in
any of Γ,Σ,Σ′, T, e, v.

1. If Γ ` Σ . e : T / Σ′, then Γ{d/c} ` Σ{d/c} . e : T{d/c} / Σ′{d/c}.

2. If Γ ` v : T , then Γ{d/c} ` v : T{d/c}.

Proof. The proof of the two results, by mutual induction, is straightforward.

The following lemma accounts for all cases in Subject Reduction where sub-
stitution is needed, namely, in rules R-App, R-Rec, and R-Beta.

Lemma 12 (Substitution). Suppose that Γ ` v : T .

1. If Γ, x : T ` Σ . e : U / Σ′ then Γ ` Σ . e{v/x} : U / Σ′.

2. If Γ, x : T ` u : U then Γ ` u{v/x} : U .

Proof. The proof of the two results is by mutual induction on the derivation of
the judgement.

1. Expressions. The result follows easily using the result for values and
induction.

2. Values. The cases of rules T-Const, T-Chan, and T-Name follow
easily, observing that x does not occur in u, and applying lemma 4. The case of
rule T-Var follows trivially, as u = x. The case of rule T-Abs uses the result
for expressions, and that of rule T-Rec follows by induction.

22

We are finally in a position to prove Subject Reduction.

Proof of theorem 1, page 13. The proof proceeds by induction on the derivation
of C → C ′. We analyse each reduction rule in figure 3, page 9, in turn.

R-Init. By hypothesis, we have

〈let x = request n in t1〉 | 〈let y = accept n in t2〉 →
(νc)(〈let x = c in t1〉 | 〈let y = c in t2〉).

and ∆ ` Σ . 〈let x = request n in t1〉 | 〈let y = accept n in t2〉. The only proof
tree for this sequent is of the form

(1) (2)
T-Par

∆ ` Σ1 • Σ2 . 〈let x = request n in t1〉 | 〈let y = accept n in t2〉

where (1) is the tree

∆ ` n : [S] d1 fresh

∆ ` Σ1 . request n : Chan d1 / Σ1, d1 : S ∆, x : Chan d1 ` Σ1, d1 : S . t1 : T / ~c : ⊥

∆ ` Σ1 . let x = request n in t1 : T / ~c : ⊥
T-Thread

∆ ` Σ1 . 〈let x = request n in t1〉

and (2) is the tree

∆ ` n : [S] d2 fresh

∆ ` Σ2 . accept n : Chan d2 / Σ2, d2 : S ∆, y : Chan d2 ` Σ2, d2 : S . t2 : U / ~d : ⊥

∆ ` Σ2 . let y = accept n in t2 : U / ~d : ⊥
T-Thread

∆ ` Σ2 . 〈let y = accept n in t2〉

From the assumptions in the above tree we may build the following tree

(1*) (2*)
T-Par

∆ ` Σ1 • Σ2, c : ⊥ . 〈let x = c in t1〉 | 〈let y = c in t2〉
T-NewB

∆ ` Σ1 • Σ2 . (νc)(〈let x = c in t1〉 | 〈let y = c in t2〉)

where (1*) is the tree

T-Chan
∆ ` c : Chan c

∆, x : Chan d1 ` Σ1, d1 : S . t1 : T / ~c : ⊥
Lemma 11

∆, x : Chan c ` Σ1, c : S . t1 : T / ~c : ⊥
T-Let

∆ ` Σ1, c : S . let x = c in t1 : T / ~c : ⊥
T-Thread

∆ ` Σ1, c : S . 〈let x = c in t1〉

23

and (2*) is the tree

T-Chan
∆ ` c : Chan c

∆, y : Chan d2 ` Σ2, d2 : S . t2 : U / ~d : ⊥
Lemma 11

∆, y : Chan c ` Σ2, c : S . t2 : U / ~d : ⊥
T-Let

∆ ` Σ2, c : S . let y = c in t2 : U / ~d : ⊥
T-Thread

∆ ` Σ2, c : S . 〈let y = c in t2〉

Notice that we are in the conditions of lemma 11, since d1 and d2 are fresh in
the assumptions of tree (1) and (2). By the same reason ∆{c/di} = ∆, and
similarly for Σ2 and for U .

R-Com. By hypothesis, we have

〈let x = receive c in t1〉 | 〈let y = send v on c in t2〉 →
〈let x = v in t1〉 | 〈let y = unit in t2〉

There are two possible derivations to consider, depending on the kind of value v
carried by channel c. Let us consider the case where v is a channel (the other
case is similar—and simpler).

(1) (2)
T-Par

∆ ` Σ . 〈let x = receive c in t1〉 | 〈let y = send v on c in t2〉

where Σ is (Σ1 • Σ2), c : ⊥, d : S′, and (1) is the tree

T-Chan
∆ ` c : Chan c d fresh

∆ ` Σ1, c : ?S′.S . receive c : Chan d / Σ′
1 ∆, x : Chan d ` Σ′

1 . t1 : T / ~c : ⊥, c : ⊥

∆ ` Σ1, c : ?S′.S . let x = receive c in t1 : T / ~c : ⊥, c : ⊥
T-Thread

∆ ` Σ1, c : ?S′.S . 〈let x = receive c in t1〉

where Σ′
1 is Σ1, c : S, d : S′. (2) is the tree

∆ ` v : Chan d ∆ ` c : Chan c

∆ ` Σ2, c : !S′.S, d : S′ . send v on c : Unit / Σ′
2 ∆, y : Unit ` Σ′

2 . t2 : U / ~d : ⊥

∆ ` Σ2, c : !S′.S, d : S′ . let y = send v on c in t2 : U / ~d : ⊥
T-Thread

∆ ` Σ2, c : !S′.S, d : S′ . 〈let y = send v on c in t2〉

where Σ′
2 is Σ2, c : S.

From the assumptions in the above tree, one may build

(1*) (2*)
T-Par

∆ ` (Σ1 • Σ2), c : ⊥, d : S′ . 〈let x = v in t1〉 | 〈let y = unit in t2〉

24

where (1*) is the tree

∆ ` v : Chan d ∆, x : Chan d ` Σ1, c : S, d : S′ . t1 : T / ~c : ⊥, c : ⊥
T-Let

∆ ` Σ1, c : S, d : S′ . let x = v in t1 : T / ~c : ⊥, c : ⊥
T-Thread

∆ ` Σ1, c : S, d : S′ . 〈let x = v in t1〉

and (2*) is the tree

T-Unit
∆ ` unit : Unit ∆, y : Unit ` Σ2, c : S . t2 : U / ~d : ⊥

T-Let
∆ ` Σ2, c : S . let y = unit in t2 : U / ~d : ⊥

T-Thread
∆ ` Σ2, c : S . 〈let y = unit in t2〉

Notice that the type environment (Σ1, c : S, d : S′)•(Σ2, c : S) in the conclusion of
rule T-Par above is defined, since (Σ1, c : ?S′.S)• (Σ2, c : !S′.S, d : S′) is defined
(in the tree for the hypothesis) and d is fresh (in tree (1)).

R-Close. By hypothesis, we have

〈let x = close c in t1〉 | 〈let y = close c in t2〉 →
〈let x = unit in t1〉 | 〈let y = unit in t2〉

and

(1) (2)
T-Par

∆ ` (Σ1 • Σ2), c : ⊥ . 〈let x = close c in t1〉 | 〈let y = close c in t2〉

where (1) is the tree

· · · ∆, x : Unit ` Σ1 . t1 : T / ~c : ⊥1
T-Let

∆ ` Σ1, c : End . let x = close c in t1 : T / ~c : ⊥1
T-Thread

∆ ` Σ1, c : End . 〈let x = close c in t1〉

and (2) is the tree below.

· · · ∆, y : Unit ` Σ2 . t2 : U / ~c : ⊥2
T-Let

∆ ` Σ2, c : End . let y = close c in t2 : U / ~c : ⊥2
T-Thread

∆ ` Σ2, c : End . 〈let y = close c in t2〉

From the assumptions in the above tree, one may build

(1*) (2*)
T-Par

∆ ` Σ1 • Σ2 . 〈let x = unit in t1〉 | 〈let y = unit in t2〉
Lemma 7

∆ ` (Σ1 • Σ2), c : ⊥ . 〈let x = unit in t1〉 | 〈let y = unit in t2〉

25

where (1*) is the tree

∆ ` unit : Unit
T-Val

∆ ` Σ1 . unit : Unit / Σ1 ∆, x : Unit ` Σ1 . t1 : T / ~c : ⊥1
T-Let

∆ ` Σ1 . let x = unit in t1 : T / ~c : ⊥1
T-Thread

∆ ` Σ1 . 〈let x = unit in t1〉

and (2*) is a similar tree.
R-New. By hypothesis, we have

〈let x = new in t〉 → (νn)〈let x = n in t〉

and

∆ ` new : [S]
T-Val

∆ ` Σ . new : [S] / Σ ∆, x : [S] ` Σ . t : T / ~c : ⊥
T-Let

∆ ` Σ . let x = new in t : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = new in t〉

From the hypothesis in the above tree, we build a tree to complete the proof.

∆, n : [S] ` n : [S]

∆, x : [S] ` Σ . t : T / ~c : ⊥
Lemma 5

∆, n : [S], x : [S] ` Σ . t : T / ~c : ⊥
T-Let

∆, n : [S] ` Σ . let x = n in t : T / ~c : ⊥
T-Thread

∆, n : [S] ` Σ . 〈let x = n in t〉
T-NewN

∆ ` Σ . (νn)〈let x = n in t〉

R-Fork. By hypothesis, we have

〈fork t1; t2〉 → 〈t1〉 | 〈t2〉

and
∆ ` Σ1 . t : / ~c : ⊥ ∆ ` Σ2 . t′ : / ~d : ⊥

T-Fork
∆ ` Σ1 • Σ2 . fork t; t′ : / ~c : ⊥, ~d : ⊥

T-Thread
∆ ` Σ1 • Σ2 . 〈fork t; t′〉

From the hypotheses in the above tree, we build a tree to complete the proof.

∆ ` Σ1 . t : / ~c : ⊥
T-Thread

∆ ` Σ1 . 〈t〉

∆ ` Σ2 . t′ : / ~d : ⊥
T-Thread

∆ ` Σ2 . 〈t′〉
T-Par

∆ ` Σ1 • Σ2 . 〈t〉 | 〈t′〉

26

R-App. By hypothesis, we have

〈let x = (λy.e)v in t〉 → 〈let x = e{v/y} in t〉

and

∆, y : T ` Σ . e : U / Σ′

T-Abs
∆ ` λy.e : (Σ; T → U ; Σ′) ∆ ` v : T

T-App
∆ ` Σ . (λy.e)v : U / Σ′ ∆, x : U ` Σ′ . t : T / ~c : ⊥

∆ ` Σ . let x = (λy.e)v in t : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (λy.e)v in t〉

Then, one may build the following derivation to complete the proof.

∆ ` v : T ∆, y : T ` Σ . e : U / Σ′

Lemma 12
∆ ` Σ . e{v/y} : U / Σ′ ∆, x : U ` Σ′ . t : T / ~c : ⊥

T-Let
∆ ` Σ . let x = e{v/y} in t : T / ~c : ⊥

T-Thread
∆ ` Σ . 〈let x = e{v/y} in t〉

R-Rec. By hypothesis, we have

〈let x = (rec y.v)u in t〉 → 〈let x = (v{rec y.v/y})u in t〉

and

∆, y : (Σ; T → U ; Σ′) ` v : (Σ; T → U ; Σ′)
T-Rec

∆ ` rec y.v : (Σ; T → U ; Σ′) ∆ ` u : T
T-App

∆ ` Σ . (rec y.v)u : U / Σ′ (1)
T-Let

∆ ` Σ . let x = (rec y.v)u in t : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (rec y.v)u in t〉

where (1) is ∆, x : U ` Σ′ . t : T / ~c : ⊥.
Then, one may build the following derivation to complete the proof.

∆, y : (Σ; T → U ; Σ′) ` v : (Σ; T → U ; Σ′)
T-Rec

∆ ` rec y.v : (Σ; T → U ; Σ′)
Lemma 12

∆ ` v{rec y.v/y} : (Σ; T → U ; Σ′) ∆ ` u : T
T-App

∆ ` Σ . (v{rec y.v/y})u : U / Σ′ (1)
T-Let

∆ ` Σ . let x = (v{rec y.v/y})u in t : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (v{rec y.v/y})u in t〉

R-Beta. By hypothesis, we have

〈let x = v in t〉 → 〈t{v/x}〉.

27

There are two possible derivations for 〈let x = v in t〉; we analyse each in turn.
When the derivation uses rule T-Let, the result follows by lemma 12.

∆ ` v : U
T-Val

∆ ` Σ . v : U / Σ ∆, x : U ` Σ . t : T / ~c : ⊥
T-Let

∆ ` Σ . let x = v in t : / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = v in t〉

When the derivation uses rule T-PolyLet, the result is immediate.

∆ ` Σ . t{v/x} : T / ~c : ⊥
T-PolyLet

∆ ` Σ . 〈let x = v in t〉 : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = v in t〉

R-Let. By hypothesis, we have

〈let x = (let y = e in t′) in t〉 → 〈let y = e in (let x = t′ in t)〉

and

∆ ` Σ . e : T / Σ1 ∆, y : T ` Σ1 . t′ : T1 / Σ′
1

∆ ` Σ . let y = e in t′ : T1 / Σ′
1 ∆, x : T1 ` Σ′

1 . t : U / ~c : ⊥

∆ ` Σ . let x = (let y = e in t′) in t : U / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (let y = e in t′) in t〉

Then, one may build the following derivation to complete the proof.

∆ ` Σ . e : T / Σ1 (1)
T-Let

∆ ` Σ . let y = e in (let x = t′ in t) : U / ~c : ⊥
T-Thread

∆ ` Σ . 〈let y = e in (let x = t′ in t)〉

where (1) is the tree

∆, y : T ` Σ1 . t′ : T1 / Σ′
1

∆, x : T1 ` Σ′
1 . t : U / ~c : ⊥

Lemma 3
∆, y : T, x : T1 ` Σ′

1 . t : U / ~c : ⊥
T-Let

∆, y : T ` Σ1 . let x = t′ in t : U / ~c : ⊥

R-IfT/R-IfF. Follows the pattern in all the above cases.
R-Branch. Follows the pattern in all the above cases.
R-Conf . The three cases follow directly by induction. For the rule that

uses structural congruence, we use lemma 10.

28

B Proof of Theorem 2, Type Safety

We start with a couple of easy results.

Lemma 13. Suppose that ∆ ` Σ . C.

1. If C is a c-thread, then c is in the domain of Σ.

2. If C is a c-redex, then Σ is of the from Σ′, c : ⊥.

Proof. 1. A smple analysis of the conclusions of the last rule applied in
the derivation of the sequent for c-threads, namely T-SendD, T-SendS,
T-ReceiveD, T-ReceiveS, T-Case, T-Select, and T-Close.

2. A simple analysis of the possible derivation trees for the thre possible
c-redex cases.

Proof of theorem 2, page 14. By contradiction, assuming faulty configurations
typable and performing a case analysis on the possible forms of the faulty con-
figurations.

Assume ∆ ` Σ . (ν~a)(C1 | C2). Without loss of generality, assume that
~a = ~n~c~d, where ~d are the channels that do not occur in ∆,Σ. Build the only
possible proof tree for the above sequent, first using rule T-NewN as many
times as there are names in ~n, then proceeding similarly with rules T-NewB
and T-NewC, a finally with rule T-Par, to obtain two subtrees ending with
the sequents (i = 1, 2):

∆, ~n : ~[S] ` Σi . Ci (1)

where Σ,~c : ~⊥ = Σ1 • Σ2. We now analyse each of the five possible cases of
faulty configurations defined in section 6, where we let ∆′ = ∆, ~n : ~[S].

1. The three cases are similar. We analyse the conditional expression. The
only derivation tree for sequent (1) above is of the form below.

∆′ ` v : Bool · · · · · ·
T-If

∆′ ` Σ1 . if v then e1 else e2 : / ~f : ⊥ · · ·
T-Let

∆′ ` Σ1 . let x = if v then e1 else e2 in t : / ~f : ⊥
T-Thread

∆′ ` Σ1 . 〈let x = if v then e1 else e2 in t〉

Analysing the rules for values (figure 5, page 10), one realises that v can
only be true or false, for the T-Var does not apply since variables are not in the
domain of ∆′, and the type in the conclusion of the remaining rules (T-Abs,
T-Rec, T-Chan, T-Name, Unit) is not Bool.

2. As above, analyse the lower part of the only proof tree for, say,

∆′ ` Σ1 . 〈let x = accept v in t〉

to obtain a tree for
∆′ ` v : [S].

29

Once again, among the rules for values, only T-Name applies. Then, v is a
name.

3. As above, analyse the lower part of the only proof tree for, say,

∆′ ` Σ1 . 〈let x = receive v in t〉

to obtain a tree for
∆′ ` v : Chan c.

Once again, among the rules for values, only T-Chan applies. Clearly v can
only be the channel c.

4. There are several cases to check in this point; they are all similar. Pick,
for example, the pair select/close, and expand the lower part of the proof tree,
until obtaining subtrees for the following two sequents,

∆′ ` Θ1 . select l on c : T1 / Θ′
1 ∆′ ` Θ2 . close c : T ′

2 / Θ′
2

where Σ1 = Θ1 • Θ2. Analysing the rule for select, one finds that c : ⊕ 〈l : S〉
must be in Θ1. Similarly, analysing the rule for close one realises that c : End
must be in Θ2. Then, Θ1 •Θ2 is not defined (for ⊕〈l : S〉 is not the dual of End),
hence (ν~a)(C1 | C2) is not typable.

5. We check the case for three c-threads 〈t1〉 | 〈t2〉 | 〈t3〉, the others reduce
to this. We have:

∆′ ` Σ′ . 〈t1〉 | 〈t2〉 ∆′ ` Σ′′ . 〈t3〉
T-Par

∆′ ` Σ1 . 〈t1〉 | 〈t2〉 | 〈t3〉

with Σ1 = Σ′ •Σ′′. If 〈t1〉 | 〈t2〉 is not a c-redex, then we use the previous case.
Otherwise, by Lemma 13, it must be the case that c : ⊥ is part of Σ′. Since
〈t3〉 is a c-thread, by Lemma 13, c is in the domain of Σ′′. But then Σ′ • Σ′′ is
not defined (for ⊥ is dual to no type), and (ν~a)(C1 | C2) is not typable.

30

