Monitoring Java Code Using ConGu

Vasco T. Vasconcelos
Faculty of Sciences
University of Lisbon

Portugal
vv@di.fc.ul.pt

Isabel Nunes
Faculty of Sciences
University of Lisbon

Portugal

in@di.fc.ul.pt
Luis S. Reis

Faculty of Sciences
University of Lisbon
Portugal

Imsar@di.fc.ul.pt

Anténia Lopes
Faculty of Sciences
University of Lisbon

Portugal

mal@di.fc.ul.pt

ABSTRACT

The main goal of the ConGu project is the development of a
framework to create property-driven algebraic specifications
and test Java implementations against them. In this paper
we present a brief overview of the framework’s fundamental
components — specifications, modules, refinements — and de-
scribe the ConGu tool both from the user’s and from the
architect’s point of view. The tool allows users to test Java
classes — no source code needed, just bytecode — against a
module of specifications, and to discover runtime axiom vi-
olations. The tool generates intermediate classes equipped
with contracts and wraps the original classes in classes that
allow contract monitoring in a way that is transparent to the
clients of the original classes. The tool generates JML asser-
tions, but it could as well generate contracts in other asser-
tion languages — the ConGu modules that generate classes
for monitoring are independent from those that generate
contracts. We also report on the use of the ConGu tool in
the context of an undergraduate programming course.

Keywords
Algebraic specification, implementation checking, design by
contract

1. INTRODUCTION

The formal specification of software components is a desir-
able activity within the task of software development, inso-
far as formal specifications are useful, on the one hand, to
understand and reuse software and, on the other hand, to
test implementations for correctness.

Design by Contract (DBC) [14] is widely used for the spec-
ification of object-oriented software. There are a number of
languages and tools (e.g., [4, |5l 12} |13]) that allow equip-

ping classes and methods with invariants, pre and post-
conditions, which can be monitored for violations at run-
time. In the DBC approach, specifications are class inter-
faces (Java interfaces, Eiffel abstract classes, etc) annotated
with contracts expressed in a particular assertion language.

To build contracts one must observe the following: (i) con-
tracts are built from boolean assertions on values, thus any
method invoked within an assertion must return a value; (iz)
contracts should refer only to the public features of the class
because client classes must be able not only to understand
contracts, but also to invoke operations that are referred to
in them — e.g., clients must be able to test pre-conditions;
(i4i) to be monitorable, a contract cannot have side effects,
thus it cannot invoke methods that modify the state.

These restrictions bring severe limitations to the kind of
properties we can express directly through contracts. Un-
less we define a number of, otherwise dispensable, additional
methods, we are left with very poor specifications.

As an example, let us analyze the support given by DBC to
the specification of a set of persons, through the integration
of assertions in the class PersonSet outlined in Figure[l} In
the next paragraphs we discuss how this could be achieved
following Meyer |14], and using Java and JML [13| rather
than Eiffel.

We want to say that a newly created set contains no el-
ements; we thus add the following post-condition to the
PersonSet constructor.

ensures isEmpty();

On what concerns method add (e), we would like to say that,
after adding element e to the set, it is not empty:

ensures !isEmpty();
We also want to say that sets contain no duplicated ele-
ments, in other words, that inserting equals e and f in a row
yields the same set as when inserting e alone. The inclusion
of a post-condition in method add (e) with flavor (ignoring
for now the details about the origin of f)

equals(\old(clone ().add(f))) <== e.equals(f);
would not work because method add is veid. As already
referred to, void methods cannot be used in assertions.

This example shows that, whenever a specification is im-
plemented by a mutable type, unless we have methods that
allow to inspect the whole structure of the elements in a data
structure without modifying it, we are not capable of writing
complete post-conditions for our methods. These inspection
methods are, in general, artificial, and even against the na-
ture of the type itself and, hence, they are not a solution to
the problem.

Model-based approaches to DBC, like those proposed for
Z |16], Larch [9], JML [13], and AsmL |[3|, overcome this
limitation by specifying the behavior of a class, not via the
methods available in the class, but else through very ab-
stract implementations based on basic elements available in
the adopted specification language. Rather than a model
based approach, we instead adopted a property based alge-
braic approach to specifications, described in reference [15].

We continue the specification of other methods of class PersonSet,

showing that there are also inherent difficulties and hidden
pitfalls in contract definition. Two examples follow.

We want to state the meaning of the isEmpty method by say-
ing that it is true whenever there are no persons in the set,
and that it is false whenever there is at least one person in
the set. We do this by adding the following post-condition:

ensures (\ forall Person e;someSet.has(e);! isIn (e))<==\result;

ensures (\ exists Person e;someSet.has(e); isln (e))<==!\result);

requiring that we maintain someSet of persons for the sole
purpose of monitoring class PersonSet (the same approach
would have to be applied to the above contract for method
add, in order to define values for f).

For method largest we must add a pre-condition of the form
requires !isEmpty();

We would also like to say that, when inserting an element e

in a set s, the element becomes the largest in the new set,

when it is greater than the largest element in s. We write

this as a post-condition to method add:

ensures largest (). equals(e) <== \old(e.greaterThan(largest()));

The problem with this assertion is that \old(largest ()) may
not be defined, due to the pre-condition to method largest
above. We must then take into consideration the definedness
condition 15|, and revise the contract to:
ensures \old (!isEmpty()) ==> (

largest (). equals(e) <== \old(e.greaterThan(largest())));

The difficulties and pitfalls the last two examples illustrate,
motivated the development of an approach supported by a
tool that generates contracts from abstract specifications.

In this paper we present ConGu (Contract Guided System
Development), a project whose aim is the development of
a framework to create property-driven algebraic specifica-
tions and fully test Java implementations against them. We
find it important to equip property-driven approaches with
tools similar to the ones currently available for model-driven
approaches. Support for checking implementations against
algebraic specifications is, as far as we know, restricted to
a few approaches (cf |2, |11]), which have limitations as de-

public class PersonSet implements Cloneable {

public PersonSet () { ... }

public void add (Person e) { ... }
public boolean isEmpty() { ... }
public boolean isln (Person e) { ... }

public Person largest () { ... }

Figure 1: A class describing a set of persons.

scribed in Section

The key idea of the ConGu approach is to reduce the
problem of testing implementations against algebraic spec-
ifications to the run-time monitoring of contract annotated
classes, supported today by several run-time assertion- check-
ing tools. The ConGu tool reads algebraic specifications
and a mapping relating specification and Java entities, and
generates a number of classes that are used to test the orig-
inal implementation against the given specifications. All
specification properties are checked against implementations
— monitorable contracts are generated that cover them all.
The technique used by ConGu surpasses the above referred
limitations in what contracts are concerned. The tool has
been in use since 2005, with truly positive results, in the
context of an undergraduate course on algorithms and data
structures.

The next section presents an overview of the ConGu ap-
proach, describing the framework’s main components and
requirements. Then, Section [3| explains how to use the tool
in the context of testing Java implementations against al-
gebraic specifications. A description of the ConGu archi-
tecture follows in Section @, where the various individual
components are addressed. In Section [f] we report on the
use of the tool in the context of an undergraduate program-
ming course. In Section [§] we compare ConGu with essen-
tially two other tools that also allow testing implementa-
tions against algebraic specifications. Finally, in Section m
we address future work and then conclude.

2. OVERVIEW OF THE METHODOLOGY

The ConGu framework aims at simplifying the task of check-
ing whether Java implementations conform to algebraic spec-
ifications. The key idea of the approach is to reduce this
problem to the runtime monitoring of contracts that are au-
tomatically generated from specifications.

The ConGu framework’s main components are specifica-
tions, modules, and refinements. The specifications we use
in this context are algebraic, property-driven insofar as they
define sorts and operations on those sorts, determining classes
of algebras (models) which can be regarded as possible im-
plementations of the specified data types. In general terms,
ConGu supports partial specifications — whose operations
can be interpreted by partial functions — with conditional
axioms. Operations are defined through their signature, re-
strictions on their domain, and axioms defining their prop-
erties. Each specification defines a single sort but it may
use other sorts while defining, for example, parameters or
results of operations. All entities (sorts, operations) that
are referred to in a specification, but that are not defined in

specification
sorts
Orderable
observers
greaterThan:
end specification

Orderable Orderable;

Figure 2: Specification of an ordered element.

specification
sorts
Set
constructors
empty: —> Set;
insert: Set Orderable —> Set;
observers
isEmpty: Set;
isln: Set Orderable;
largest: Set —>? Orderable;
domains
S: Set;
largest(S) if not isEmpty(S);
axioms
E, F: Orderable;
isEmpty (empty ());
not isEmpty(insert(S, E));
not isln(empty(), E
F

S, T: Set;

)
isln(insert(S,E), F) iff E=F or isIn(S, F);
largest(insert(S, E)) = E if isEmpty(S);
largest(insert(S, E)) = E
when greaterThan(E, largest(S)) else largest(S);
insert(insert(S, E), F) = insert(S, E) if E=F;
insert(insert(S, E), F) = insert(insert(S, F), E);

end specification

Figure 3: Specification of an ordered set.

it, are said to be external references.

Figures [2| and |3| present two examples. The specification in
Figure [2] has no external references, while the specification
in Figure [3| has Orderable as an external reference to sort
Orderable.

Specifications with external references are meaningful only
when they are put together with the specifications that de-
fine all those references. We use the notion of module to de-
note the set of specifications that, together, are self-contained,
in the sense that all external references are defined therein.

Specific features of the language we adopted for writing spec-
ifications, such as the classification of operations in specific
categories, and strong restrictions in the form of the axioms,
not only simplify the task of creating specifications, but are
also effective in driving the automatic identification of con-
tracts for implementing classes.

In order to check the behavior of Java classes against spec-
ifications — violations of an axiom or a domain restriction
— the gap between specifications and Java classes must be
bridged. For this purpose, refinement mappings have to be
defined indicating which sort is implemented by which class,
and which operation is implemented by which method. Be-
cause this activity does not require any knowledge about
the concrete representation, refinement mappings are quite
simple to define.

refinement
Orderable is class Person {
greaterThan: Orderable o:Orderable is
boolean older(Person o);

Set is class PersonSet {
empty: —> Set is PersonSet();
insert:Set e:Orderable—>Set is void add(Person e)
isEmpty: Set is boolean isEmpty ();
isln: Set e:Orderable is boolean isln(Person e);
largest: Set —>? Orderable is Person largest();

end refinement

Figure 4: An example of a refinement mapping.

Figure [illustrates a refinement mapping that maps the
module containing the two specifications of Figures [2| and
into the Java classes Person and PersonSet, respectively.

The languages used to build specifications and refinements,
as well as semantic restrictions on signatures, domains and
axioms of specifications, are described elsewhere [1].

Given a specification module and a refinement mapping,
ConGu generates JML monitorable contracts for every ax-
iom and domain restriction of every specification in the in-
put module. These contracts rely on the existence of proper
equals and clone methods in the target classes. Two observa-
tions contribute to this need. On the one hand, as mentioned
in the previous section, if contracts are to be monitored,
they cannot contain side-effects. In order to generate moni-
torable contracts for testing all specification properties, the
ConGu approach is such that methods invoked within con-
tracts are always invoked on clones of the original objects.
On the other hand, due to the fact that axioms are defined
through term equality, ConGu contracts need to test for
Java object equality.

In specifications we adopted a semantics of strong equality
for the equality symbol used in axioms, that is, either both
sides are defined and are equal, or both sides are undefined.
In addition to the contracts that are generated from axioms,
our tool also automatically generates contracts that are con-
sistent with the adopted notion of equality.

The implementations of the equals and clone methods should
meet the following criteria: (i) clone method is required not
to have any effect whatsoever on this; (i) the implementa-
tion of clone is required to go deep enough in the structure
of the object so that any shared reference with the cloned
object cannot get modified through the invocation of any
of the methods that implement the specification operations.
For example, an array based implementation of some collec-
tion, in which one of its methods changes the state of any
of its elements, requires the elements of the collection to be
cloned as well as the array itself; (i77) method equals returns
true whenever it compares a clone with the original object.

The kind of relationship the main components — specifi-
cation modules, refinements, and Java implementations —
define are such that the task of testing a same class against
several different specifications is easily accomplished — it
suffices to write a different refinement mapping, which is

Specifications
*.spc

A

design time

—

Refinement Mapping
T.rfn

h 4

Java Bytecode
* class

implementation time

aQZz2o0

Java Bytecode
_* Original.class

A

|
|
juses

uses

Java Bytecode
¥ Immutable.class

A

: uses

Java Bytecode
*.class

L L L L DL L L L L EL LD LU L LD CLLLL LS

Figure 5: Overview of the ConGu tool.

quite simple to define. Also, the possibility of having a re-
finement mapping from two different components into the
same type is extremely useful since it promotes the writ-
ing of generic specifications that can be reused in different
situations, as illustrated in reference [15].

3. CONGU AT WORK

The general idea underlying the tool is to automatically gen-
erate contracts from specifications in order to monitor the
execution of classes that implement the specifications. To-
wards this end, ConGu replaces the original program by
another program equipped with contracts that can be mon-
itored for axiom and domain conditions violations.

Figure [5| shows that the input of ConGu consists of a spec-
ification module (a directory containing a self-contained col-
lection of .spc, cf. Section 7 Java bytecode, and a refine-
ment (a .rfn file, as in Figure |4) mapping the specification
into Java. The tool renames each C.class bytecode file
mentioned in the refinement into _C_Original.class, and
creates an immutable class, _-C_Immutable.java, equipped
with contracts regarding specifications axioms and domain
conditions. It further generates classes that wrap and sub-
stitute the original C classes, allowing to monitor their exe-
cution. Section [4] explains the roles of each of these classes
and the relations among them.

Given a specification module (*.spc), a refinement map-
ping (T.rfn), and Java bytecode (*.class), ConGu gen-
erates and compiles Java classes that replace the original
bytecode. The new program must be executed using the
jmlrac command rather than java, in order to monitor the
contracts that the tool generates. The process is described
in Figure [6} the workflow is described below.

One first compiles the Java program, for ConGu works with
bytecode, not source code. ConGu proper is then called
with a command of the form

java congu.Congu <module-directory>

where <module-directory> indicates the directory where

the module + refinement is. If absent, the current directory
is used. The jar file for ConGu and the byte code are both
expected to be in the class path. The tool generates a new
output directory to hold the generated classes. We are then
in a position to monitor our program, using a command of
the form

jmlrac -Xbootclasspath/p:output/:. Test

Running the original program under JML scrutiny may pro-
duce pre-condition exceptions due to domain condition vi-
olations, or to post-condition exceptions related to axiom
violations. The output produced by JML then guides the
developer into the the violated domain condition or axiom,
from where she can start looking for the defect. For exam-
ple, an output of the from

Exception in thread "main" java.lang.Error:
/* not isEmpty (insert (S , E)) ; */
at PersonSet.add(PersonSet.java:100)
at SmallBang.main(Test.java:11)
Caused by:
org.jmlspecs. jmlrac.runtime.
JMLInternalNormalPostconditionError: by method
_PersonSet_Immutable.add regarding specifications at

File "_PersonSet_Immutable.java", line 52, character 62 when

’\result’ is {}

indicates an error in monitoring axiom not isEmpty(insert (S, E)),

which in turn, may indicate a problem in method isEmpty or
insert .Once the bug is spotted, the process commences once
again with the compilation of the source code, if the error
was in Java code, or with the run of ConGu if the glitch
was in the specification+refinement.

4. THE TOOL

ConGu is organized into several logical components each
responsible for one of the tasks that together make up the
ConGu functionality (see Figure. Components Specifica-
tion Module Analyzer and Refinement Binding Analyzer make
up the front-end of ConGu. Together, these two compo-
nents are responsible for dealing with the input files and
translating the information they contain into an internal

.class

.spc
i

Figure 6: Traditional workflow versus working with ConGu.

representation. The back-end, formed by various genera-
tors and the Class Renamer, uses that internal information
to produce the output of ConGu. The implementation of
ConGu maps this logical structure. Below we focus on the
individual role each of these components plays, while high-
lighting their most interesting features.

ConGu takes as input a set of specification files and one re-
finement file (cf. Figure . In order to simplify the parsing
phase (both of specifications and refinements), the SableCC
parser generator is used [7]. SableCC takes as input a
.grammar file that specifies the lexicon and the production
rules of a language, and outputs a set of Java classes that
allow:

e The parsing of a text file against that grammar, includ-
ing the creation of an abstract syntax tree representing
the syntactic structure of the contents of the file.

e Visiting the nodes of the tree, while executing cer-
tain actions. These actions are specified by extending
classes generated by SableCC: the tree-walkers.

4.1 The Analyzers

The Specification Analyzer Module (SMA) takes as input a
specification module in the form of a list of .spc files, parses
each file, checks the static semantics, reports errors if they
exist and outputs a spec.semant.SpecQuerier object through
which all the other modules of ConGu can obtain informa-
tion about the specification.

In addition to the standard semantic analysis, the under-
lying methodology of ConGu imposes restrictions on the
specification language which must also be ensured by the
SMA. As an example, signatures are such that the first pa-
rameter of an observer operation signature must have the
sort under specification (the main sort); the result of any
constructor operation must have the main sort. There are
also strong restrictions on the form of the axioms that de-
pend on the properties of the operations or predicates [1].

The Refinement Binding Analyzer (RBA) takes as input
a refinement mapping in the form of a .rfn file, and a
SpecQuerier object that represents the specification module.
RBA parses the .rfn file, verifies its semantics against the
specification and the class system, reports errors if they exist
and outputs a refine .semant.RefinementQuerier object through
which the other modules can obtain information about the
refinement. In terms of implementation, RBA has the gen-
eral structure of the Specification Module Analyzer.

While the specification module and the refinement binding
are provided to ConGu as text files to be parsed, the Java
code is presented as bytecode, whose characteristics are ob-
tained by ConGu via Reflection [6]. When the refinement
analysis encounters a class name it tries to find the class in
the classpath. If the class is not found an error is issued;
otherwise all information regarding the class (methods, for
example) is collected. By using Java Reflection ConGu re-
quires bytecode only as input (accessible through the class-
path), rather than the original .java source code. This
strategy has two advantages:

e It allows users to test implementations for which source
code is unavailable.

e It simplifies the implementation of ConGu by avoid-
ing the need to parse and analyze Java source code.
This effort is put upon the Java compiler and the Java
Reflection mechanism.

The first point above allows to check large programs incor-
porating both trusted parts (such as the Java API), and
parts which we do not completely trust, yet would like to
make sure its behavior conforms to the expected (to a given
specification).

4.2 The Generators

The back-end of ConGu is composed of several components
(see Figure [7]) whose purpose is to generate Java code from
the data synthesized by the front-end. This code comes in
the form of bytecode adapted from the input, and of new
Java classes that are then compiled within the tool itself.
Next we describe the relevant features of the components in
the back-end.

The File Generator component acts as the ConGu back-
end maestro, insofar as it takes the information generated by
the front-end, orchestrates the remaining components, and
compiles their output. The classes generated (and compiled)
by the tool fall into four categories.

Immutable static classes that contain a version of every
method in the original classes, and that are equipped
with contracts reflecting the axioms and the domain
conditions in the specification;

Wrapper classes that contain instances of the original classes,
and that force contract monitoring in every call to the
methods in the original classes;

‘ Javadass'

brecoke Baked ___________
- d : Specification + Refinement + Implementation data i
ont-el >
[TTTTTTTTTTTTT Ty ! Contract Generator ‘ |
Spedification Mode | — i ! Assertions + ForallTypes 1
i Specification Module Pl 1
| Analyzer : \ Refinement + Implementation data }
i b Wrapper Generator 1
| ! ! 5 | Javacass !
| bl e 1
| L | et
i Speciicaion cia N (% | Class Renamer }
: R l
| Refinement data. | ! is) |
Refinement | A : | Refinement + Implementation cbta+A§emm+ForallTypa‘
Brdg | Refinement Binding ; : Immutable Generator | |
: Analyzer ! : . Java class i
i Implementation data) ! |
| I ——» . |
et i | Pair Generator ‘ !
|
| |
| T
! I
[}

Figure 7: The architecture of ConGu. Each box represents a component.

Pair classes to hold state-result pairs for non-void methods
in the original classes;

Range class to be used in forall expressions in contracts.

Only the Immutable classes are compiled with jmlc, since all
JML assertions are gathered at these classes. The remaining
generated classes are compiled with javac.

The Class Renamer component prepares a newly assembled
Java bytecode, _C_Original.class from an original byte-
code C.class, for each class C mentioned in the refinement.
Towards this end, the component loads the bytecode, up-
dates all explicit and implicit attribute references within
the bytecode (including SourceClass, ThisClass, constant-pool

NameAndType, constant-pool FieldsInfo , constant-pool Methodslnfo,

access to attributes in inner classes access$100) and, recur-
sively, for nested classes. It then writes to disk the thus
created bytecode under name _C_Original.class.

The Wrapper Generator component creates a wrapper
class for each class mentioned in the refinement: the wrapper
for class C has the same set of public methods (including con-
structors) and declares an instance of the original C class (in
the meantime renamed to _C_Original) as its only attribute.
The wrapper class is called C, thus effectively replacing the
original class meant to be monitored. In order to force mon-
itoring the methods in the original class, the corresponding
wrapper methods make an indirection in every call, invok-
ing instead a method in the corresponding Immutable class.
Such a method, in turn, calls the corresponding method in
the _C_Original class.

The Pair Generator component generates a series of classes
defining new types used in the representation of state-value
pairs. State-value pairs are required for non-veid methods
that change the state of the object; the typical example
being the pop method included in some stack implementa-

tions (including the one in the Java API) that removes and
returns the element at the top of the stack. The methods in
the immutable class return a pair representing the effect of
their execution both on the object state and on the value,
as witnessed in the code snippet in Figure [§

The Contract Generator generates JML assertions (pre and
post-conditions) that translate the specification domain re-
strictions and axioms, respectively. Each operation domain
restriction (if it exists) is translated to a pre-condition to
be attached to the method that refines that operation. In
what concerns axioms, the assignment of post-conditions to
methods depends on the kind of axiom: (i) any axiom that
defines values of an observer operation over a constructor
operation — e.g., isln (insert (S, E),F) iff E = F or isIn (S,F)
— gives rise to a post-condition to be attached with the
method that refines the constructor operation (in this case,
the add method); () any axiom that defines the behavior
of some operation over a general variable of the main sort,
gives rise to a post-condition to be attached to the method
that refines that operation. Full details, including the rules
for contract generation are described elsewhere |1} [15]. The
JML assertions generated by the Contract Generator are then
associated with the corresponding method in the relevant
Immutable class.

Although ConGu generates JML contracts meant to be
monitored with the JML run-time assertion checker, its ar-
chitecture is general enough to encompass other assertion
languages and checkers. The ConGu modules that gen-
erate classes are independent from the contract generation
module, in the sense that the latter asks the former for con-
tracts to add to methods in the Immutable classes.

The Immutable Generator component creates one class
for each class mentioned in the refinement. Given a class
C, a static class named _C_Immutable is created, contain-
ing one method for each public method in C. Each method

/+@
@ /xlargest(S) if not isEmpty(S);*/ requires
e ...

Qx/
static /+x@pure@x/ public _Person_Pair_PersonSet
largest(-PersonSet_Original s) {
_PersonSet_Original c=(-PersonSet_Original)clone(s);
return new _Person_Pair_PersonSet(c.largest(), c);

/+@
@ /xisln(insert(S, E),F) iff E=F or isIln(S,F);x/
@ ensures
e ...
Qx/

static /+x@pure@x/ public _PersonSet_Original add(

_PersonSet_Original s, Person p) {

_PersonSet_Original c=(_-PersonSet_Original) clone(s)
c.add(p);
return c;

Figure 8: Excerpt of _PersonSet_Immutable class gener-
ated by ConGu.

of _C_Immutable has for parameters those of the original
method, plus one extra: an instance of _C_Original. It then
invokes the method over a clone of this object and returns
the result and/or the object itself, depending on the return
type of the original method.

This component reads the contracts generated by the Con-
tract Generator component and associates them to the corre-
sponding method in the immutable class. An excerpt of the
composed result of the output produced by components Im-
mutable Generator and Contract Generator for two methods
in class PersonSet_Immutable is in Figure

4.3 Further Issues

Range class. The translation of certain forms of axioms
require forall expressions in contracts. One such example is
axiom

isln(insert(S, E),F) iff E=F or isln(S,F);

in Figure [3| that becomes a post-condition to method add
in Figure [§] (cf. Section 2). In order to iterate over all
Orderable F, an attribute range of class _Range equips the im-
mutable class. _Range is a class (independent of any sort)
that implements a bounded collection, allowing to generate
JML forall code.

(\ forall Person f; range.contains(f); ...)

All Person objects, parameters to the methods of the im-
mutable class (hence to the methods of the original class
PersonSet) or returned by these, are placed in the range ob-
ject, via a call to method boolean put(Person f) (that always
returns true) from within the contracts. The maximum size
of this collection clearly affects the runtime of the monitor-
ing process; see reference |15] for benchmarks.

Wrap and unwrap. Class C under test coexists with the
surrogate class prepared by ConGu. After running the tool
the former is called _C_Original, while the latter C. There are
occasions when conversion is required: contracts deal with
_C_Original objects; client code expects C objects. Axiom

largest(insert(S,E)) = E if greaterThan(E,largest(S));

generates a post-condition for method add that calls method
older in class _Person_Immutable. Such a method accepts an
object of class _Person_Original , hence the contract code must
unwrap the argument.

ensures .. _Person_Immutable.older (Person._unwrap(e),..)..

In the other direction, objects must be delivered to clients
as they expect them, as PersonSet for example. Suppose our
example includes an operation to obtain the subset with the
elements smaller than a given element. In this case, the gen-
erated class PersonSet would include the following method.
public PersonSet lowerSet(Person p) {
_PersonSet_Pair_PersonSet _pair =
_PersonSet_Immutable.lowerSet(_-wrappedObject, p);

_wrappedObject = _pair.state;
return _wrap(.-pair.value);

Obtaining a _C_Original from a C object is easy since the
latter holds the corresponding _C_Original as attribute. For
the reverse direction, each wrapper class maintains a (static)
hash table that collects mappings (_.C_Original, C). Such a
scheme guarantees the correct behavior of == in client code,
for objects of classes under monitoring. The hash table that
maps _C_Original objects into C objects can become quite
large. The usage of the WeakHashMap class allows garbage
collection of the held references.

Clone and equals. As discussed in Section [2] there is a
close relationship between method clone and equals. ConGu
checks that classes either both declare a clone method and
implement Cloneable, or do neither. In the latter case it alerts
to the fact that objects will not be cloned, which should hap-
pen only for immutable classes. ConGu prepares contracts
for clone and equals in class _C_Immutable. For the former,
the following code is generated, where we have abbreviated
PersonSet to PS.
/=@

@ /+x Clone */ ensures equals(t, \result).value;

*

st?t{c /#@pure@x/ public Object clone(_PS_Original t) {

return t.clone();

For the latter, we take the view that any two terms that
are regarded as equal must produce equal values for every
observer operation and predicate. In order to check the con-
sistency of an implementation in what respects these proper-
ties, we generate post-conditions for the equals method that
test the results returned by all methods that implement ob-
server operations and predicates [15], as illustrated below.

/+@

@ /+ Observer operation (isEmpty: Set) =/

@ ensures \result.value =—>

© o instanceof _PS_Original &&

(¢ (-PS_Immutable.isEmpty(t).value <=>

(] _PS_Immutable.isEmpty ((-PS_-Original) o).value);

Qx/

static /+«@pure@x/ public _boolean_Pair_PS
equals(_PS_Original t, Object o) {

if (t = null)

return new _boolean_Pair_.PS(t = o, t);

_PS_Original ¢ = (-PS_Original)clone(t);
return new _boolean_Pair_.PS(c.equals(o), c);

}

Strong equality. Section[I]introduces the definedness con-
dition whereby the meaning of an equality t1 = t2 in the ax-
ioms of a specification is that the two terms are either both
defined and have the same value, or they are both undefined.
Then, definedness condition of an operation invocation is the
conjunction of the definedness conditions of its arguments
and the domain condition of the operation itself [15]. An
excerpt of the post-condition produced for method add (cf.
Figure[§) is as follows.

ensures
! _PS_Immutable.isEmpty(t).value &&
_Person_Immutable.older(_unwrap(e),
_unwrap (-PS_Immutable. largest (t).value)).value

Applicability and Limitations.

e Partial class specification is supported, for the wrap-
per class produced contains a method for each public
method in the original class, irrespective of the method
being mentioned in the refinement. In the example in
this paper, it is conceivable that class Person has a lot
more methods than those appearing in the refinement
in Figure [

e Constructor operations can be refined into the null ex-
pression. This is particularly useful for methods that
return null on particular cases. One such example is
the get method of a map that returns null if the key is
not in the table.

e Refinement into java.lang classes is supported as long
as all operations are refined into null, the reason being
that JVM internally uses objects of these classes, mak-
ing it difficult to monitor their execution. Refinement
into any other class in the Java API is fully supported.

e Refinement into Java 5 generic classes is supported as
long as the erased type of type parameters is Object.
This allows for example to refine the specification of a
map into, say HashMap<Key, Value>. Further, when all
operations of a given sort are refined into null, bounded
polymorphism is accepted. For example, a set (with-
out the larger operation) can be refined into class
class PersonSet <E extends Comparable<E>>.

e Refinement into Java interfaces is not yet supported,
nor is inheritance, that is to say, we have no way to de-
fine a specification T’ as an extension of another spec-
ification T, and control their refinement into classes
that are related through inheritance.

e The contracts, as generated by the tool, are not meant
to be read by humans. They are usually quite long and
intricate, particularly because of the definedness con-
ditions for formulee of the specification language [15].

S. OUR EXPERIENCE WITH CONGU

We have experimented the tool with a group of 3rd and 4th
grade students, which helped us finding relevant limitations
of ConGu within a learning context. In a first phase of the
experience, students were given a specification module and
a refinement mapping, and were asked to implement (and
manually test) two Java classes according to the material
given. In a second phase, students were asked to use the
tool to monitor the code they had written in the first phase,
and to produce a report containing all violations detected
(pre and post-condition exceptions) and how each problem
was solved.

This gave us a precious input which we used to ameliorate
the tool: for example, we found that the feedback given
to the user whenever a specification violation occurred was
truly insufficient. Although we still aim at a much better
feedback — it is our intention to equip classes with human-
readable contracts — we have improved the output so that
exceptions thrown by pre and post-condition violations now
explicitly mention the domain condition or the axiom in the
original specification, as described in Section [3] Also, the
tool now compiles the Java code produced, as opposed to
have the user decide when to use javac and jmlc to compile
the output.

ConGu is in use since 2005, in the context of a first year,
second semester, undergraduate course on algorithms and
data structures at the University of Lisbon. In this course
students are introduced to new data types through their
algebraic specifications, which they must understand and
implement.

During a first semester programming course students are in-
troduced to Design by Contract [14], where they learn how
to write simple pre and post-conditions for their methods.
Afterward, in the second semester, and before the advent of
ConGu, they would manually translate algebraic specifi-
cations domain restrictions into pre-conditions, and axioms
into post-conditions. During the process they would under-
stand that there were a number of axioms that could not be
translated into contracts (either because these implied oper-
ations refined into void methods, or because of the machinery
required for forall contracts). These limitations were rather
frustrating and, in some cases, made students disbelieve the
design by contract methodology.

Since 2005, students taking this course routinely use ConGu
to monitor their implementations against specifications pro-
vided by the teaching staff. They now have a means to fully
test their classes since ConGu generates contracts for each
and every axiom and domain restriction in the specification.
The teaching staff, on the other hand, write specifications
for all the data structures addressed in the course, and test
their code with ConGu, before offering it to students. Two
years of intense use have made the tool quite robust, and
have helped to find many defects in the implementation.

6. RELATED WORK

There is a vast amount of work in the field of specifica-
tion and verification of algebraic specifications and software
components in general; the interested reader may refer to
previous publications [8, |[10] for a survey. Here we focus

forall |:LinkedList forall o:Object forall i:int
removelast (add(l, o).state).retval = o

if i > 0 get(addFirst(l, o).state,
intAdd (i, |).retval).retval = get(l,i).retval
axioms
I: List; o: Element, i: int;
removelast(add(l, o)) = o;
get(addFirst(l, o), i) = get (I, i—1) if i > 0;

Figure 9: An example of the specification of two
properties of linked lists as they are presented by
Henkel and Diwan and as they would be specified in
our approach.

on attempts to check OO implementations for conformance
against property-driven algebraic specifications.

Henkel and Diwan developed a tool [11] that allows to check
the behavioral equivalence between a Java class and its spec-
ification, during a particular run of a client application. This
is achieved through the automatic generation of a prototype
implementation for the specification which relies on term
rewriting. The specification language adopted is, as in our
approach, algebraic with equational axioms. The main dif-
ference is that their language is tailored to the specification
of properties of OO implementations whereas our language
supports more abstract descriptions that are not specific to
a particular programming paradigm. Being more abstract,
we believe that our specifications are easier to write and
understand.

Figure |§| presents an example. The axioms define that op-
eration removelast returns the last element that was added
to the list and define the semantics of the get operation:
get(l, i) is the ¢-th element in the list I. The symbols retval
and state are primitive constructs of the language adopted
by Henkel and Diwan [11] to talk about the return value of
an operation and the state of the current object after the
operation, respectively (cf. our pair classes in Section .

When compared with our approach, another difference is
that their language does not support the description of prop-
erties of operations that modify other objects, reachable
from instance variables. In contrast, our approach supports
the monitoring of this kind of operation.

Another approach whose goal is similar to ours is Antoy
and Hamlet’s [2]. They propose an approach for checking
the execution of an OO implementation against its alge-
braic specification, whose axioms are provided as executable
rewrite rules. The user supplies the specification, an im-
plementation class, and an explicit mapping from concrete
data structures of the implementation to abstract values of
the specification. A self-checking implementation is built
that is the union of the implementation given by the im-
plementer and an automatically generated direct implemen-
tation, together with some additional code to check their
agreement. The abstraction mapping must be programmed
by the user in the same language as the implementation
class, and asks user knowledge about internal representa-
tion details. Here lies a difference between the two ap-

proaches: our refinement mapping needs only the interface
information of implementing classes, and it is written in a
very abstract language. Moreover, there are some axioms
that are not accepted by their approach, due to the fact
that they are used as rewrite rules; for example, equations
like insert (insert (S, E), F) = insert(insert (S, F), E) (cf. Fig-
ure [3]) cannot be accepted as rewrite rules because they can
be applied infinitely often.

We further believe that the rich structure that our speci-
fications present, together with the possibility to, through
refinement mappings, map a same module into many differ-
ent packages all implementing the same specification, is a
positive point in our approach that we cannot devise in the
above referred approaches.

7. CONCLUSION AND FURTHER WORK

We contextualized the ConGu tool within the framework
we developed to test Java implementations against property-
driven, algebraic specifications. The idea underlying this
approach, which encompasses automatic generation of con-
tracts, is to combine the possibility of building meaningful
and complete specifications with the capacity of checking
implementations — users are able to monitor all the axioms
and domain restrictions in their specifications.

We described the ConGu tool both from the user’s and
from the architect’s point of view, emphasizing particular
aspects of each of the tool components, and pointing to its
applicability and restrictions.

We think there are still some aspects that need to be ad-
dressed, despite the fact that the tool is now fully opera-
tional and in use.

We intend to investigate the best way to solve the problem
of side-effects in contract monitoring due to changes in the
state of method parameters—our approach does not cover
this problem yet. Cloning all parameters in every call to
a method in the generated immutable class—as we do for
the target object—does not seem a plausible solution. We
think a better solution would allow the user to explicitly
indicate in the refinement mapping whether parameters are
modified within methods (the default being that they are
not modified).

The relation between domain conditions of specifications
and exceptions raised by implementing methods is also a
topic to investigate and develop, insofar as it would widen
the universe of acceptable implementation classes.

A further topic for future work is the generation, from spec-
ifications and refinement mappings, of Java interfaces anno-
tated with human readable contracts. Once one is convinced
that given classes correctly implement a given module, it is
important to make this information available in the form of
human-readable contracts to programmers that want to use
these classes and need to know how to use and what they
can expect from them.

The refinement of sorts into primitive Java types has already
been studied in the context of the ConGu approach but it
has not yet been implemented at the level of the refinement

language that the ConGu tool accepts. At present, the
specification language supports the int primitive type that
is automatically mapped into the int Java primitive type;
the refinement language does not support refinement into
primitive types.

Acknowledgments. Thanks are due to José Luiz Fiadeiro
for insightful discussions, to Jodo Abreu for designing and
initially implementing the tool, and to Alexandre Caldeira
for fruitful input.

8.
9.
1]

[9]

[10]

[13]

ADDITIONAL AUTHORS
REFERENCES

Jodo Abreu, Alexandre Caldeira, Anténia Lopes,
Isabel Nunes, Luis S. Reis, and Vasco T. Vasconcelos.
Congu—checking Java classes against property-driven
algebraic specifications. DI/FCUL TR 07-7,
Department of Informatics, Faculty of Sciences,
University of Lisbon, March 2007.

S. Antoy and R. Hamlet. Automatically checking an
implementation against its formal specification. IEEE
TOSE, 26(1):55-69, 2000.

M. Barnett and W. Schulte. Spying on components: A
runtime verification technique. In Proc. WSVCBS —
OOPSLA 2001, 2001.

Mike Barnett, K. Rustan M. Leino, and Wolfram
Schulte. The spec# programming system: An
overview. In Proc. of CASSIS 2004, number 3362 in
LNCS. Springer, 2004.

D. Bartetzko, C. Fisher, M. Moller, and H. Wehrheim.
Jass - Java with assertions. ENTCS, 55(2), 2001.

Mary Campione, Kathy Walrath, Alison Huml, and
Tutorial Team. The Java Tutorial. Sun Microsystems,
online edition, 2006.
http://java.sun.com/docs/books/tutorial/.

E. Gagnon. SableCC, an object-oriented compiler
framework. Master’s thesis, School of Computer
Science, McGill University, Montreal, March 1998.

J. Gannon, J. Purtilo, and M. Zelkowitz. Software
specification: A comparison of formal methods, 2001.

J. Guttag, J. Horning, S. Garland, K. Jones,
A. Modet, and J. Wing. Larch: Languages and Tools
for Formal Specification. Springer, 1993.

J. Henkel and A. Diwan. Discovering algebraic
specifications from Java classes. In Proceedings of
ECOOP 2003, LNCS, 2003.

J. Henkel and A. Diwan. A tool for writing and
debugging algebraic specifications. In Proc. ICSE
2004, 2004.

Rachel Henne-Wu, William Mitchell, and Cui Zhang.
Support for design by contract in the C#
programming language. Journal of Object Technology,
4(7):65-82, 2004.

Java Modelling Language.
http://www.jmlspecs.org/.

(14]

(15]

(16]

B. Meyer. Object-Oriented Software Construction.
Prentice-Hall PTR, 2nd edition, 1997.

Isabel Nunes, Anténia Lopes, Vasco T. Vasconcelos,
Jodo Abreu, and Luis S. Reis. Checking the
conformance of Java classes against algebraic
specifications. In Proceedings of ICFEM’06, volume
4260 of LNCS, pages 494-513. Springer-Verlag, 2006.

J. Spivey. The Z Notation: A Reference Manual.
ISCS. Prentice-Hall, 1992.

http://www.jmlspecs.org/

	Introduction
	 Overview of the methodology
	ConGu At Work
	The Tool
	The Analyzers
	The Generators
	Further Issues

	Our experience with ConGu
	Related Work
	Conclusion and Further Work
	Additional Authors
	References

