
Monitoring Java Code Using ConGu

Vasco T. Vasconcelos, Isabel Nunes, and Antónia Lopes

Faculty of Sciences of the University of Lisbon, Campo Grande, 1749–016 Lisboa, Portugal,
{vv,in,mal}@di.fc.ul.pt

The formal specification of software components is an important activity within the
task of software development, insofar as formal specifications are useful, on the one
hand, to understand and reuse software and, on the other hand, to test implementations
for correctness.

Design by Contract (DBC) [10] is widely used for the specification of object-
oriented software. There are a number of languages and tools (e.g., [3,4,8,9]) that allow
equipping classes and methods with invariants, pre and post-conditions, which can be
monitored for violations at runtime. In the DBC approach, specifications are class inter-
faces (Java interfaces, Eiffel abstract classes, etc) annotated with contracts expressed in
a particular assertion language, which is usually an extension of the language of boolean
expressions of the OO language.

To build contracts using these languages one must observe the following: (i) con-
tracts are built from boolean assertions, thus procedures (methods that do not return
values) cannot be used; (ii) contracts should refer only to the public features of the class
because client classes must be able not only to understand contracts, but also to invoke
operations that are referred to in them—e.g., clients must be able to test pre-conditions;
(iii) to be monitorable, a contract cannot have side effects, thus it cannot invoke methods
that modify the state. These restrictions bring severe limitations to the kind of proper-
ties we can express directly through contracts. Unless we define a number of, otherwise
dispensable, additional methods, we are left with very poor specifications.

Model-based approaches to DBC, like those proposed for Z [12], Larch [6], JML [9],
and AsmL [2], overcome these limitations by specifying the behavior of a class, not via
the methods available in the class, but else through very abstract implementations based
on basic elements available in the adopted specification language. Rather than a model
based approach, we instead adopted a property based algebraic approach to specifica-
tions, motivated and described in reference [11].

ConGu (Contract Guided System Development [5]) is a project whose aim is the
development of a framework to create property-driven algebraic specifications and to
fully test Java implementations against them. We find it important to equip property-
driven approaches with tools similar to the ones currently available for model-driven
approaches. Support for checking implementations against algebraic specifications is,
as far as we know, restricted to a few approaches (cf [1,7]), which have limitations our
approach overcomes.

The key idea of the ConGu approach is to reduce the problem of testing implemen-
tations against algebraic specifications to the runtime monitoring of contract annotated
classes, which are automatically generated. Runtime contract monitoring is supported
today by several runtime assertion-checking tools.



The ConGu main components are specifications, modules, and refinements. The
specifications we use in this context are algebraic, property-driven insofar as they de-
fine sorts and operations on those sorts. In general terms, ConGu supports partial
specifications—whose operations can be interpreted by partial functions—with con-
ditional axioms. Each specification defines a single sort but it may use other sorts while
defining, for example, parameters or results of operations. Specifications with external
references to other sorts or operations are meaningful only when they are put together
with the specifications that define all those references. We use the notion of module to
denote the set of specifications that, together, are self-contained.

In order to check the behavior of Java classes against specifications—violations
of an axiom or a domain restriction—the gap between specifications and Java classes
must be bridged. For this purpose, refinement mappings have to be defined indicating
which sort is implemented by which class, and which operation is implemented by
which method. Because this activity does not require any knowledge about the concrete
representation, refinement mappings are quite simple to define.

In this presentation we put forward an overview of the ConGu framework and
demonstrate the ConGu tool, implemented as a plugin for the Eclipse IDE. The tool
allows users to test Java classes—no source code needed, just bytecode—against a
module of specifications, and to discover runtime axiom violations. It reads algebraic
specifications and a mapping relating specifications and Java entities, and generates a
number of classes that are used to test the original implementation against the given
specifications, in a way that is transparent to the user. The technique used by ConGu
surpasses the above referred limitations in what contracts are concerned: all specifi-
cation properties are checked against implementations because monitorable contracts
are generated that cover them all. We also report on the use of the ConGu tool in the
context of an undergraduate programming course.

References

1. S. Antoy and R. Hamlet. Automatically checking an implementation against its formal spec-
ification. IEEE Transactions on Software Engineering, 26(1):55–69, 2000.

2. M. Barnett and W. Schulte. Spying on components: A runtime verification technique. In
Workshop on Specification and Verification of Component-Based Systems, 2001. Published
as Iowa State Technical Report 01-09a.

3. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,
volume 3362 of LNCS, pages 49–69. Springer, 2004.

4. D. Bartetzko, C. Fisher, M. Möller, and H. Wehrheim. Jass, Java with assertions. In Pro-
ceedings of the First Workshop on Runtime Verification, volume 55(2) of ENTCS. Elsevier,
2001.

5. Congu: Monitoring Java code against algebraic specifications. http://gloss.di.fc.
ul.pt/congu/.

6. John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal Specification.
Springer, 1993.

7. Johannes Henkel and Amer Diwan. A tool for writing and debugging algebraic specifica-
tions. In ICSE ’04: Proceedings of the 26th International Conference on Software Engineer-
ing, pages 449–458. IEEE Computer Society, 2004.

http://gloss.di.fc.ul.pt/congu/
http://gloss.di.fc.ul.pt/congu/


8. Rachel Henne-Wu, William Mitchell, and Cui Zhang. Support for design by contract in the
C# programming language. Journal of Object Technology, 4(7):65–82, 2004.

9. JML: Java Modelling Language. http://www.jmlspecs.org/.
10. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd edition, 1997.
11. Isabel Nunes, Antónia Lopes, Vasco T. Vasconcelos, João Abreu, and Luı́s S. Reis. Checking

the conformance of Java classes against algebraic specifications. In Proceedings of the In-
ternational Conference Formal Methods and Software Engineering, volume 4260 of LNCS,
pages 494–513. Springer, 2006.

12. J. M. Spivey. The Z notation: a reference manual. Prentice Hall, 1992.

http://www.jmlspecs.org/

	Monitoring Java Code Using ConGu

