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ABSTRACT
We present an assembly language targeted at shared mem-
ory multiprocessors, where CPU cores synchronize via locks,
acquired with a traditional test and set lock instruction. We
show programming examples taken from the literature on
Operating Systems, and discuss a typing system that en-
forces a strict protocol on lock usage and that prevents race
conditions.

1. MOTIVATION
The need for fast information processing is one of the driv-
ing forces in the advancement of technology in general, and
of computers in particular. Since the early steps in com-
puting, when the ENIAC performed 300 operations per sec-
ond, a huge strode has been made towards the computing
power of nowadays machines. Nevertheless, the computing
challenges have increased even faster, and the demands, for
instance, from the astronomical community trying to probe
the universe or from the biological community trying to un-
derstand the human genome, constantly take current com-
puting power to the limit. What directions may we follow
to increase this computing power? Olukotun and Hammond
write:

With the exhaustion of essentially all performance
gains that can be achieved for “free” with tech-
nologies such as superscalar dispatch and pipelin-
ing, we are now entering an era where program-
mers must switch to more parallel programming
models in order to exploit multiprocessors ef-
fectively, if they desire improved single-program
performance. [17].

Continuing, we read “Previously it was necessary to min-
imize communication between independent threads to an
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extremely low level [..] Within any CMP (chip multiproces-
sors) with a shared on-chip cache memory, however, each
communication event typically takes just a handful of pro-
cessor cycles [..] Programmers must still divide their work
into parallel threads, but do not need to worry nearly as
much about ensuring that these threads are highly indepen-
dent, since communication is relatively cheap. This is not a
complete panacea, however, because programmers must still
structure their inter-thread synchronization correctly, or the
program may generate incorrect results or deadlock.”

This work is about language support to help correctly struc-
turing inter-thread synchronization in CMPs. We design
a simple abstract CMP and present its programming lan-
guage: a conventional typed assembly language [16] extended
with a notion of locks [6], and a fork primitive. A type sys-
tem enforces a policy of lock usage, making sure that, within
a thread, locks are created, locked, the shared memory ac-
cessed, and unlocked.

Our type system closely follows the tradition of typed as-
sembly languages [14, 15, 16], extended with support for
threads and locks, following Flanagan and Abadi [6]. With
respect to [6], however, our work is positioned at a much
lower abstraction level, and faces different challenges inher-
ent to non-lexical scoped languages.

Lock primitives have been discussed in the context of con-
current object calculi [5], JVM [7, 8, 11, 12], C- - [19], but
not in that of typed assembly languages. In a typed set-
ting, were programs are guaranteed not to suffer from race
conditions, we

• syntactically decouple of the lock and unlock opera-
tions on what one usually finds unified in a single syn-
tactic construct in high-level languages: Birrel’s lock-
do-end construct [2], used under different names (sync,
synchronized-in, lock-in) in a number of other works,
including the Java programming language [6, 5, 7, 8,
4, 3, 9];

• allow for the lock acquisition/release in schemes other
than the nested discipline imposed by the lock-do-end
construct;

• allow to fork threads holding locks.

We describe the architecture of our CMP and its lock dis-
cipline (enforced by the type system) in Section 2. After,
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Figure 1: The architecture of the multiprocessor

we present the syntax and the operational semantics of MIL
(Section 3) and sketch the programming model (Section 4),
by discussing well-known examples from the literature on
Operating Systems, namely the enforcement of mutual ex-
clusion with locks. Section 5 presents a type discipline to
enforce the absence of race conditions in our language. Type
safety is discussed in Section 6. Some extensions to MIL and
its type system are discussed in Section 7. The closing sec-
tion discusses the related work, summarizes the conclusions,
and points future directions to extend our research.

2. THE ARCHITECTURE OF THE MUL-
TIPROCESSOR AND ITS LOCK USAGE
POLICY

The architecture of the machine is described in Figure 1.
It comprises a series of processor cores and a main mem-
ory. Each processor core owns a number of registers and
an instruction cache. The main memory is divided into two
parts: a conventional heap storing data and code, and a run
pool storing suspended threads.

Threads run in processor cores. When the number of threads
is larger than the number of available processor cores, part
of the threads is placed in the run pool. For each suspended
thread, the run pool stores a pair comprising (a) a pointer to
the heap, where the thread’s code fragment resides, and (b)
a register file (a mapping from registers to values) containing
the initial state of the processor.

New threads are placed in the run pool via a dedicated fork
instruction. Running threads relinquish the processor by
explicitly executing a yield instruction; there is no otherwise
machine-wide thread suspension mechanism—our machine
fits in the cooperative thread model, according to Tanenbaum
terminology [21] (we are working at an abstraction level be-
low that of the operating system, where one usually finds
preemptive models). Freed processors look for work in the
run pool. A pair is selected and removed from the pool;
registers are loaded from the pair’s second component (a
register file), and control is transferred to the code pointed
by the pair’s first component (a label).

To provide for inter-thread synchronization the machine pro-

α, r1 := newLock 0
r2 := malloc 〈int〉ˆα

α, r1 := newLock 1
r2 := malloc 〈int〉ˆα

r3 := testSetLock r1
if r3 = 0 jump critical

r2[0] := 7
r4 := r2[0]

unlock r1 yield

(1)

α!∈Λ

(1)

α∈Λ

α∈Λ

(3)

α∈Λ

(4) (5)

α!∈Λ
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Figure 2: The Lock discipline.

The below code block actively tries to acquire lock α (supplied in register r1);
on success it transfers control to a critical region. The code block expects the
(address of the) tuple in register r0. The tuple plays no rôle in the code block;
it is only intended to be passed to the critical region.1

en t e rSp inLockReg i on (r0 : Tuple , r1 : 〈 l ock (α) 〉 ˆα ; ) {
r2 := testSetLock r1 −− t r y to a c q u i r e l o c k α
i f r2 = 0 jump c r i t i c a l R e g i o n −− i f so , e n t e r c r i t i c a l r e g i o n
jump en t e rSp inLockReg i on −− a c t i v e l y wa i t f o r the l o c k

}

A critical region stores a value in the tuple, releases the lock, and terminates.
Notice that the type for the critical region expects the current thread to hold
lock α, as indicated by α after the semicolon in the signature of the code block.
After updating the tuple, lock α is released, marking the end of the critical
region. Also, since the thread terminates (instruction yield), the type system
enforces the release of all held locks.

c r i t i c a l R e g i o n (r0 : Tuple , r1 : 〈 l ock (α) 〉 ˆα ; α) {
r0 [ 0 ] := 10 −− change the t u p l e
unlock r1 −− r e l e a s e the l o c k
y i e l d −− r e t u r n c o n t r o l to s c h e d u l e r

}

Finally, a main code block creates a new (unlocked) lock, allocates a tuple in
the heap, and tries to acquire lock α by transferring control to enterSpinLockRegion.

main ( ; ) {
α , r1 := newLock 0 −− c r e a t e mutex l o c k

1In order to make code blocks reusable in different contexts, we need to abstract the type
of the tuple. For the sake of simplicity and clarity, in this paper we do not make use of
existential types. The interested reader may refer to [8] for examples illustrating continuation
passing style using existential types.
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Figure 2: The Lock discipline.

registers r ::= r1 | . . . | rR

integer values n ::= . . . | -1 | 0 | 1 | . . .

lock values b ::= 0 | 1

values v ::= r | n | b | l | ?τ
instructions ι ::=

control flow r := v | r := r + v |
if r = v jump v |

memory r := malloc [~τ ] guarded by α |
r := v[n] | r[n] := v |

lock α, r := newLock b |
r := testSetLock v | unlock v |

fork fork v

inst. sequences I ::= ι; I | jump v | yield

Figure 3: Instructions

vides locks to protect tuples in the heap. A standard “test
and set lock” instruction is used to obtain a lock, thus al-
lowing entering a critical region. Running threads read and
write from the shared heap via conventional load and store
instructions. The policy for the usage of locks (enforced by
the type system) by a given processor is depicted in Fig-
ure 2, where α denotes a lock singleton type and Λ the set
of locks held by the processor (the processor’ permission).

3. SYNTAX AND OPERATIONAL SEMAN-
TICS

The syntax of our language is described by the grammar in
Figures 3, 4, and 9. We defer the treatment of types until
Section 5. We rely on a set of heap labels ranged over by
l, and a disjoint set of type variables ranged over by α, β.
Our machine is parameterized by two values: the number
of processors N in the machine, and the number of registers
per processor R.

Instructions, Figure 3. Most of the proposed instruc-
tions are standard in assembly languages. Instructions are
organized as basic blocks, that is sequences of instructions
ending with a jump or a yield. The yield instruction releases
the processor, allowing it to fetch another thread from the
run pool.



lock sets Λ ::= α1, . . . , αn

register files R ::= {r1 : v1, . . . , rR : vR}
processor p ::= 〈R; Λ; I〉
processors array P ::= {1: p1, . . . , N : pN}
thread pool T ::= {〈l1, R1〉, . . . , 〈ln, Rn〉}
heap values h ::= 〈v1 . . . vn〉α | τ {I}
heaps H ::= {l1 : h1, . . . , ln : hn}
states S ::= 〈H; T ; P 〉 | halt

Figure 4: Abstract machine

∀i.P (i) = 〈 ; ; yield〉
〈 ; ∅; P 〉 → halt

(R-halt)

P (i) = 〈 ; ; yield〉 H(l) = requires Λ {I}
〈H; T ] {〈l, R〉}; P 〉 → 〈H; T ; P{i : 〈R; Λ; I〉}〉

(R-schedule)

P (i) = 〈R; Λ ] Λ′; (fork v; I)〉
R̂(v) = l H(l) = requires Λ { }

〈H; T ; P 〉 → 〈H; T ∪ {〈l, R〉}; P{i : 〈R; Λ′; I〉}〉 (R-fork)

Figure 5: Operational semantics (thread pool)

Machines, Figure 4. Machines can be in two states:
halted or running. In the latter case, they comprise a heap,
a thread pool, and a processor array. Heaps are maps from
heap labels into heap values that can be either tuples or
code blocks. Tuples are vectors of values protected by some
lock α (locks play no role at runtime; they are needed only
for Subject Reduction and Type Safety). Code blocks com-
prise a signature and a body: the signature, which the type
system makes sure is of the form Γ requires Λ, describes the
types of each register and the locks held by the processor
when jumping to the block code; the body is a sequence of
instructions.

A thread pool is a multiset of pairs, each of which contains
a pointer to a code block and a register file. A processor
array contains N processors (recall that N is a parameter
to the machine). Each processor is composed of a register
file (of fixed length R, the other parameter to the machine),
a set of locks (the locks held by the thread running in the
processor), and a sequence of instructions.

The operational semantics is defined via a reduction relation
on machine states, as described in Figures 5 to 8.

Thread pool instructions, Figure 5. Rule R-halt stops
the machine when it finds an empty thread pool and all
processors idle. Otherwise, if there is an idle processor and
a pair in the thread pool, then rule R-schedule assigns a
new thread to the processor. A pair label-registers is taken
from the pool; the instructions for, and the locks held by,
the new thread are read from the code block addressed by
the label; the initial value of the registers are read from the
pair. Rule R-fork places a new thread in the thread pool.
Notice that part of the held locks go with the forked thread,

P (i) = 〈R; Λ; (α, r := newLock 0; I)〉 l 6∈ dom(H), β fresh

〈H; T ; P 〉 → 〈H{l : 〈0〉β}; T ; P{i : 〈R{r : l}; Λ; I[β/α]〉}〉
(R-newLock 0)

P (i) = 〈R; Λ; (α, r := newLock 1; I)〉 l 6∈ dom(H), β fresh

〈H; T ; P 〉 → 〈H{l : 〈1〉β}; T ; P{i : 〈R{r : l}; Λ ] {β}; I[β/α]〉}〉
(R-newlock 1)

P (i) = 〈R; Λ; (r := testSetLock v; I)〉 R̂(v) = l H(l) = 〈0〉α

〈H; T ; P 〉 → 〈H{l : 〈1〉α}; T ; P{i : 〈R{r : 0}; Λ ] {α}; I〉}〉
(R-tsl 0)

P (i) = 〈R; Λ; (r := testSetLock v; I)〉 H(R̂(v)) = 〈1〉α

〈H; T ; P 〉 → 〈H; T ; P{i : 〈R{r : 1}; Λ; I〉}〉
(R-tsl 1)

P (i) = 〈R; Λ ] {α}; (unlock v; I)〉 R̂(v) = l H(l) = 〈 〉α

〈H; T ; P 〉 → 〈H{l : 〈0〉α}; T ; P{i : 〈R; Λ; I〉}〉
(R-unlock)

Figure 6: Operational semantics (locks)

P (i) = 〈R; Λ; (r := malloc [~τ ] guarded by α; I)〉 l 6∈ dom(H)

〈H; T ; P 〉 → 〈H{l : 〈 ~?τ〉α}; T ; P{i : 〈R{r : l}; Λ; I〉}〉
(R-malloc)

P (i) = 〈R; Λ; (r := v[n]; I)〉 H(R̂(v)) = 〈v1..vn..vn+m〉α

〈H; T ; P 〉 → 〈H; T ; P{i : 〈R{r : vn}; Λ; I〉}〉
(R-load)

P (i) = 〈R; Λ; (r[n] := v; I)〉
R(r) = l H(l) = 〈v1..vn..vn+m〉α

〈H; T ; P 〉 → 〈H{l : 〈v1..R̂(v)..vn+m〉α}; T ; P{i : 〈R; Λ; I〉}〉
(R-store)

Figure 7: Operational semantics (memory)

while the rest remains in the thread.

Lock instructions, Figure 6. The newLock instructions
create new locks, in a locked or unlocked state. The scope
of α is the rest of the code block. A tuple—〈0〉β in the for-
mer case; 〈1〉β in the latter—is allocated in the heap, and
register r is made to point to it. A fresh type variable β re-
places the variable α chosen by the programmer. When the
lock is created in the locked state, the new lock variable β
is added to the set of the locks held by the processor. Locks
apart, an instruction α, r := newLock b behaves as the pair
of instructions r := malloc 〈lock(α)〉α; r[0] := b. Instruc-
tion r := testSetLock v is the Test and Set Lock present in
many machines designed with multiple processes in mind.
It reads the contents of the memory word v into register r
and then stores 1 at the memory address v. When a locked
lock is found at the memory address, its lock variable α is
added to the permissions of the processor. As usual, the
two operations (load and store) are indivisible—no other
processor can access the memory word until the instruction
is finished; our operational semantics enforces this behavior.
Locks apart, an instruction unlock v behaves as r[0] := 0.
Rule R-unlock, however, makes sure the processor holds
the lock.



P (i) = 〈R; Λ; jump v〉 H(R̂(v)) = {I}
〈H; T ; P 〉 → 〈H; T ; P{i : 〈R; Λ; I〉}〉 (R-jump)

P (i) = 〈R; Λ; (r := v; I)〉
〈H; T ; P 〉 → 〈H; T ; P{i : 〈R{r : R̂(v)}; Λ; I〉}〉

(R-move)

P (i) = 〈R; Λ; (r := r′ + v; I)〉
〈H; T ; P 〉 → 〈H; T ; P{i : 〈R{r : R(r′) + R̂(v)}; Λ; I〉}〉

(R-arith)

P (i) = 〈R; Λ; (if r = v jump v′; )〉
R(r) = v H(R̂(v′)) = {I}

〈H; T ; P 〉 → 〈H; T ; P{i : 〈R; Λ; I〉}〉 (R-branchT)

P (i) = 〈R; Λ; (if r = v jump ; I)〉 R(r) 6= v

〈H; T ; P 〉 → 〈H; T ; {i : 〈R; Λ; I〉}〉
(R-branchF)

Figure 8: Operational semantics (control flow)

Memory instructions, Figure 7. The rule for malloc
allocates a new tuple in the heap, protected by a given lock,
and makes register r point to it. The size of the tuple is that
of sequence of types [~τ ], its values are uninitialized values.
The rules for loading and storing are standard [14].

Control flow instructions, Figure 8. These transition
rules are mostly straightforward [14]. They rely on the eval
function that works on operands (that is, registers or values),
by looking for values in registers.

R̂(v) =

(
R(v) if v is a register

v otherwise

4. INTERPROCESSOR COMMUNICATION
This section presents the main concepts of our language,
based on classical examples taken from the literature on Op-
erating Systems [21]. The following examples illustrate the
usage of threads and the discipline of locks.

4.1 Mutual exclusion using busy waiting
We start with a code block that actively tries to acquire a
lock. This technique, called spin lock, is used when there is
a reasonable expectation that the lock will be available in a
short period of time.

Let Tuple stands for type 〈 int 〉ˆα, the type of tuples with one
integer component, protected by lock α. In order to read or
to write values in a heap location of type Tuple, the thread
must hold lock α. In this example, we allocate a tuple,
acquire the lock, and store a value in the tuple (within a
critical region where we hold the lock).

The below code block actively tries to acquire lock α (sup-
plied in register r2); on success it transfers control to a criti-
cal region. The code block expects the (address of the) tuple
in register r1. The tuple plays no rôle in the code block; it

is only intended to be passed to the critical region.1

en t e rSp i nLockReg i on (r1 : Tuple , r2 : 〈 l o ck (α) 〉 ˆα) {
r3 := te s tSetLock r2 −− t r y to a c q u i r e l o c k α
i f r3 = 0 jump c r i t i c a l R e g i o n −− i f so . . .
jump en t e rSp i nLockReg i on −− e l s e wa i t

}

A critical region stores a value in the tuple, releases the lock,
and terminates. Notice that the type for the critical region
expects the current thread to hold lock α, as indicated by α
after the semicolon in the signature of the code block. After
updating the tuple, lock α is released, marking the end of
the critical region.

c r i t i c a l R e g i o n (r1 : Tuple , r2 : 〈 l o ck (α) 〉 ˆα)
r e q u i r e s α {

r1 [ 0 ] := 10 −− update the t u p l e
un lock r2 −− r e l e a s e the l o c k
jump c o n t i n u a t i o n −− con t i nu e

}

Finally, the main code block creates a new (unlocked) lock,
allocates a tuple in the heap, and tries to acquire lock α by
transferring control to enterSpinLockRegion.

main ( ) {
α , r2 := newLock 0 −− c r e a t e µ t e x l o c k
r0 := mal loc [ i n t ] ˆα −− a l l o c a t e t u p l e
jump en t e rSp i nLockReg i on −− t r y a c q u i r e l o c k

}

4.2 Mutual exclusion using threads
We now discuss a distinct, yet classical, approach to lock ac-
quisition. The idea is to avoid actively waiting for the lock,
by launching a thread that tries to acquire the lock. If it
succeeds, control is transferred to the critical region. Oth-
erwise, the thread forks another thread that tries to gather
the lock later, thus avoiding a busy wait.

The code and type the for criticalRegion is that of the previ-
ous example. The code for main is identical, apart from the
last instruction that is replaced by jump enterSleepLockRegion.
We discuss how to acquire lock α by forking a new thread.

To fork a thread we use instruction fork and specify the
label of the code block that should be run when a processor
is available. Upon thread starting, registers are loaded with
the values they had when the fork action happened. In the
present case, register r1 should contain the address of the
tuple and register r2 the lock to be acquired.

When enterSleepLockRegion fails to acquire the lock, it creates
a new thread (that will try to obtain the lock later) and ter-
minates the current one, rather than jumping to the begin-
ning of the code block, as it happens with enterSpinLockRegion.

en t e rS l e epLockReg i on (r1 : Tuple , r2 : 〈 l o ck (α) 〉 ˆα) {
r3 := te s tSetLock r2 −− t r y to a c q u i r e l o c k
i f r3 = 0 jump c r i t i c a l R e g i o n −− i f so , . . .

1In order to make code blocks reusable in different contexts,
we need to abstract the type of the tuple. For the sake of
simplicity and clarity, in this paper we do not make use of
existential types. The interested reader may refer to [13] for
examples illustrating continuation passing style using exis-
tential types.



types τ ::= int | 〈~σ〉α | Γ requires Λ |
lock(α)

init types σ ::= τ | ?τ
register file types Γ ::= r1 : τ1, . . . , rn : τn

typing environment Ψ ::= ∅ | Ψ, l : τ | Ψ, α : : Lock

Figure 9: Types

` 〈σ1, . . . , τn, . . . , σn+m〉α <: 〈σ1, . . . , ?τn, . . . , σn+m〉α
(S-uninit)

` σ <: σ
` σ <: σ′ ` σ′ <: σ′′

` σ <: σ′′ (S-ref, S-trans)

` τ ′ <: τ

Ψ, l : τ ′ ` l : τ
Ψ ` n : int Ψ ` b : lock(α) Ψ `?τ : ?τ

(T-int,T-label,T-lock,T-uninit)

Ψ; Γ ` r : Γ(r)
Ψ ` v : τ

Ψ;Γ ` v : τ
(T-reg,T-val)

Figure 10: Typing rules for values Ψ ` v : τ and for

operands Ψ;Γ ` v : τ

f o r k en t e rS l e epLockReg i on −− e l s e , t r y l a t e r
y i e l d −− f r e e the p r o c e s s o r

}

Conventional pthread mutex implementations maintain a
queue of waiting threads, rather than repeatedly forking
threads. Section 7.3 sketches such an implementation.

5. TYPE DISCIPLINE
The syntax of types is described in Figure 9. A type of the
form 〈~σ〉α describes a tuple in the heap protected by lock α.
Each type in ~σ is either initialized (τ) or uninitialized (?τ).
A type of the form Γ requires Λ describes a code block; a
thread jumping into such a block must hold a register file
type Γ as well as the locks in Λ. The type lock(α) describes
a singleton lock type.

The type system is defined in Figures 10 to 13.

Typing values, Figure 10. Heap values are distinguished
from operands (that include registers as well) by the form of
the sequent. Notice that lock values—0,1—have any lock
type. Also, an uninitialized value ?τ has a type ?τ ; we use
the same syntax for a uninitialized value (at the left of the
colon) and its type (at the right of the colon). A formula
σ <: σ′ allows to “forget” initializations.

Typing fork and lock instructions, Figure 11. Instruc-
tions are checked against a typing environment Ψ (mapping
labels to types, and type variables to the kind Lock: the
kind of singleton lock types), a register file type Γ holding
the current types of the registers, and a set Λ of lock vari-
ables (the permission of the code block).

Rule T-yield requires an empty permission meaning that

Ψ; Γ; ∅ ` yield (T-yield)

Ψ; Γ ` v : Γ requires Λ Ψ;Γ;Λ′ ` I

Ψ;Γ;Λ ] Λ′ ` fork v; I
(T-fork)

Ψ, α : : Lock; Γ{r : 〈lock(α)〉α}; Λ ` I α 6∈ Ψ, Γ, Λ

Ψ;Γ;Λ ` α, r := newLock 0; I
(T-newLock 0)

Ψ, α : : Lock; Γ{r : 〈lock(α)〉α}; Λ ] {α} ` I α 6∈ Ψ, Γ, Λ

Ψ;Γ;Λ ` α, r := newLock 1; I
(T-newlock 1)

Ψ; Γ ` v : 〈lock(α)〉α Ψ;Γ{r : lock(α)}; Λ ` I α 6∈ Λ

Ψ;Γ;Λ ` r := testSetLock v; I
(T-tsl)

Ψ; Γ ` v : 〈lock(α)〉α Ψ;Γ;Λ ` I

Ψ;Γ;Λ ] {α} ` unlock v; I
(T-unlock)

Ψ; Γ ` r : lock(α) Ψ; Γ ` v : Γ requires (Λ ] {α}) Ψ; Γ; Λ ` I

Ψ;Γ;Λ ` if r = 0 jump v; I
(T-critical)

Figure 11: Typing rules for instructions (thread pool

and locks) Ψ;Γ;Λ ` I

all locks must have been released prior to ending the thread.
Only the thread that acquired a lock may release it (see rule
T-unlock below); as such, allowing acquired locks to “die”
with the thread, may lead to deadlock situations (cf. [11]).

Rule T-fork splits the permission into two sets, Λ and Λ′:
one goes with the forked thread, the other remains with the
current thread. Such a scheme is crucial in the implementa-
tion of Hoare’s monitors [10], as described in Section 7.3.

The two rules for newLock assign a lock type to the register.
When the lock is created in the locked state, the singleton
type is added to the permission of the thread. Rule T-tsl
requires that the value under test holds a lock; disallowing
testing a lock already held by the thread. Rule T-unlock
makes sure that only held locks are unlocked. Finally, the
jump-to-critical-region rule ensures that the current thread
holds the exact number of locks required by the target code
block. The rule also adds the lock under test to the per-
mission of the thread. A thread is guaranteed to hold the
lock only after (conditionally) jumping to a critical region.
A previous test and set lock instruction may have obtained
the lock, but as far as the type system goes, the thread holds
the lock after a jump-to-critical-region instruction.

Typing memory and control instructions, Figure 12.
These rules are standard [14], except on what concerns the
locks. The rule for malloc makes sure the lock α is in scope,
meaning that it must be preceded by a α, r := newLock b in-
struction, in the same code block; Section 7.2 shows how to
overcome this limitation. The rules for load and store make
sure that lock α is in the permission Λ of the thread. The
conditions regarding lock type lock( ) in rules T-malloc,
T-load, and T-store ensure that locks are only created
using a newLock instruction, and manipulated with test and
set lock.



Ψ, α : : Lock; Γ{r : 〈 ~?τ〉α}; Λ ` I ~τ 6= lock( )

Ψ, α : : Lock; Γ; Λ ` r := malloc [~τ ] guarded by α; I
(T-malloc)

Ψ; Γ ` v : 〈σ1..τn..σn+m〉α Ψ;Γ{r : τn}; Λ ` I
τn 6= lock( ) α ∈ Λ

Ψ;Γ;Λ ` r := v[n]; I
(T-load)

Ψ; Γ ` v : τn Ψ;Γ ` r : 〈σ1..σn..σn+m〉α τn 6= lock( )
Ψ; Γ{r : 〈σ1.. type(σn)..σn+m〉α}; Λ ` I α ∈ Λ

Ψ;Γ;Λ ` r[n] := v; I
(T-store)

Ψ; Γ ` v : τ Ψ;Γ{r : τ}; Λ ` I

Ψ;Γ;Λ ` r := v; I
(T-move)

Ψ; Γ ` r′ : int Ψ;Γ ` v : int Ψ;Γ{r : int}; Λ ` I

Ψ;Γ;Λ ` r := r′ + v; I
(T-arith)

Ψ; Γ ` r : int Ψ;Γ ` v : Γ requires Λ Ψ;Γ;Λ ` I

Ψ;Γ;Λ ` if r = 0 jump v; I
(T-branch)

Ψ; Γ ` v : Γ requires Λ

Ψ;Γ;Λ ` jump v
(T-jump)

where type(τ) = type(?τ) = τ .

Figure 12: Typing rules for instructions (memory

and control flow) Ψ;Γ;Λ ` I

Typing machine states, Figure 13. The rules should be
easy to understand. The only remark goes to heap tuples,
where we make sure that all locks protecting the tuples are
in the domain of the typing environment.

The main result of this section follows.

Theorem 1 (Subject Reduction). If ` S and S →
S′, then ` S′.

6. TYPE SAFETY
We split the results in three categories: the standard “well-
typed machines do not get stuck” (which we omit alto-
gether), the lock discipline, and races. The lock discipline is
embodied in the following Lemma (cf. Figure 2).

Lemma 2 (Lock Discipline). Let ` H : Ψ and Ψ `
〈R; Λ; (ι; )〉.

1. Before lock creation, α is not a known lock. If ι is
α, := newLock , then α 6∈ dom(Ψ).

2. Before test and set lock, the processor does not hold
the lock. If ι is := testSetLock v and H(R̂(v)) =
〈lock(α)〉 , then α 6∈ Λ.

3. Before accessing the heap, the processor holds the lock.
If ι is v[ ] := or := v[ ], and H(R̂(v)) = 〈 〉α, then
α ∈ Λ.

∀i.Ψ ` R(ri) : Γ(ri)

Ψ ` R : Γ
(reg file, Ψ ` R : Γ )

∀i.Ψ ` P (i)

Ψ ` P

Ψ ` R : Γ Ψ; Γ; Λ ` I

Ψ ` 〈R; Λ; I〉
(processors, Ψ ` P )

∀i.Ψ ` li : Γi requires Ψ ` Ri : Γi

Ψ ` {〈l1, R1〉, . . . , 〈ln, Rn〉}
(thread pool, Ψ ` T )

Ψ; Γ; Λ ` I

Ψ ` Γ requires Λ {I} : τ

∀i.Ψ, α : : Lock ` vi : τi

Ψ, α : : Lock ` 〈~v〉α : 〈~σ〉α
(heap value, Ψ ` h : τ )

∀l.Ψ ` H(l) : Ψ(l)

Ψ ` H
(heap, Ψ ` H )

` halt
Ψ ` H Ψ ` T Ψ ` P

` 〈H; T ; P 〉 (state, ` S )

Figure 13: Typing rules for machine states

4. Unlock only in possession of the lock. If ι is unlock v
and H(R̂(v)) = 〈 〉α, then α ∈ Λ.

5. Releasing the processor only without held locks. If ι is
yield, then Λ = ∅.

For races we follow Flanagan and Abadi [6]. We start by
defining the set of permissions of a machine state, by joining
the permissions of the processes with those of the threads in
the run pool, and with the set of unlocked locks in the heap.
Remember that a permission is a set of locks, denoted by Λ.

Definition 1 (State permissions.).

LP ={Λ | P (i) = 〈 ; Λ; 〉}
LT ={Λ | 〈l, 〉 ∈ T and H(l) = requires Λ { }}
LH ={{α | H(l) = 〈0〉α}}

L〈H;T ;P 〉 =LP ∪ LT ∪ LH

Lhalt =22L

State permissions do not shrink with reduction. The proof (a
case analysis on the various reduction rules) shows that state
permissions grow only due to the execution of a newLock
instruction.

Lemma 3. If S → S′, then LS ⊆ LS′ .

We are interested only in mutual exclusive states, that is,
states whose permissions do not “overlap.” Also, we say,
that a state has a race condition if it contains two processors
trying to access the heap at the same location.

Definition 2. Mutual exclusive states. halt is mutual
exclusive; S 6= halt is mutual exclusive when i 6= j im-
plies Λi ∩ Λj = ∅, for all Λi, Λj ∈ LS.



types τ ::= . . . | µX.τ | X

Figure 14: Extending the type system with recursive
types

Accessing the heap. A processor of the form 〈R; ; (ι; )〉
accesses heap H at location l, if ι is of the form v[ ] :=

or of the form := v[ ], and l = H(R̂(v)).

Race condition. A state S has a race condition if S =
〈H; ; P 〉 and there exist i and j distinct such that P (i)
and P (j) both access heap H at some location l.

Theorem 4 (Types against races). If ` S and S is
mutual exclusive, then S does not have a race condition.

7. EXTENSIONS
In this section we discuss the extensions to the language
required to implement Hoare’s monitors [10].

7.1 Recursive types
Condition variables in monitors are represented by queues.
Queues are usually represented by lists, where each node
refers to the next node in the list, yielding a recursive data
structure.

Extending the language to include recursive types is
straightforward. Figure 14 summarizes the changes to the
syntax. The µ operator is a binder, giving rise, in the
standard way, to notions of bound and free variables and
alpha-equivalence. We do not distinguish between alpha-
convertible types. Furthermore, we take an equi-recursive
view of types [18], not distinguishing between a type µX.τ
and its unfolding τ [µX.τ/X].2

7.2 Polymorphism over lock types
We would like to protect the queue, and all the nodes in it
with the monitor’s lock. The problem is that scope of a lock
ranges from its creation to the end of the code block where
it was created, disallowing manipulating the condition (for
example with the wait and signal primitives) in distinct code
blocks.

Polymorphism over lock types allows writing code blocks
parametric on the locks they require, an in particular makes
it possible to protect a heap tuple with an abstracted lock.
This is particularly useful for algorithms that prefer to pro-
tect all nodes of a list with the same lock, rather than using
a different lock for each node, as we show in the next sec-
tion. This extension makes it possible to protect new heap
tuples with a lock created in a different code block.

2For recursive code blocks, Morrisett et al. [14] introduced a
mechanism allowing to “forget” register types when entering
a code block. Using this technique and by carefully choosing
the register to hold the continuation address one may avoid
using recursive types for recursive procedures. Recursive
types, however, come into play in the presence of recursive
datatypes.

Extended syntax

values v ::= . . . | v[~α]

types τ ::= . . . | ∀[~α].(Γ requires Λ) | . . .

Additional rules

Ψ;Γ ` v : ∀[~α].(Γ′ requires Λ)

Ψ; Γ ` v[~β] : ∀[].(Γ′[~β/~α] requires Λ[~β/~α])
(T-val-app)

Changed rules

Ψ;Γ ` v : ∀[].(Γ requires Λ)

Ψ; Γ;Λ ` jump v
(T-jump)

Ψ, ~α : : Lock; Γ; Λ ` I

Ψ ` Γ requires Λ {I} : ∀[~α].(Γ requires Λ)
(heap value)

Rules T-fork, T-branch, and T-critical undergo
changes similar to rule T-jump.

Figure 15: Extending the simple type system with
universal types

The extension follows Morrisett et al. [14], and is described
in Figure 15, where we omit the obvious syntactic adjust-
ment to the reduction rules. The interesting facts to notice
is that when forking or jumping to a code block (e.g. rule T-
jump) all lock variables must have been instantiated using
value application v[~α]; and that, when typing a code block
(rule heap value), the abstracted lock types ~α are added to
the typing environment Ψ, and may then be used to protect
heap tuples (cf. rule R-malloc in Figure 12).

7.3 Hoare’s Monitors
We focus on the implementation of conditions, in particu-
lar the primitives for creation of a new condition, wait, and
signal .

A condition is represented as an (initially empty) queue of
closures representing the threads that are currently wait-
ing on the condition. To simplify the example, we use the
code address only, omitting the environment. The queue
is protected by the monitor’s lock, which we call m. Type
Condition is 〈 int , 〈lock(m)〉ˆm, Node, Node〉ˆm, where the first
component is the size of the queue, thereafter is the moni-
tor’s lock, and finally two references for the head and tail of
the queue. Each node is a pair formed by a Code (that we
leave unspecified) and a reference for the next node in the
queue, yielding the type µ x.〈Code, X〉ˆm.

We adopt a Continuation-Passing Style [1], meaning that
code blocks are passed the address of the continuation a
register. The following code block accepts in register r1 the
monitor’s lock, in register r2 the continuation, and requires
that the thread holds lock m. It then creates a new condi-
tion variable and passes it to the continuation in register r3.
Notice that the code block is parametric in lock m, allow-
ing to protect the queue’s descriptor and sentinel node with



lock m.

newCond i t ion ∀ [m] . (r1 : 〈 l o ck (m) 〉 ˆm, r2 : Code )
r e q u i r e s m {

−− a l l o c a t e the s e n t i n e l
r4 := mal loc [ C lo su re , Node ] guarded by m
−− a l l o c a t e the queue heade r
r3 := mal loc [ i n t , 〈 l o ck (m) 〉 ˆm, Node , Node ]

guarded by m
r3 [ 0 ] := 0 ; r3 [ 1 ] := r1 −− s t o r e s i z e and l o c k
r3 [ 2 ] := r4 ; r3 [ 3 ] := r4 −− s t o r e head and t a i l
jump r2 −− jump to c o n t i n u a t i o n

}

The wait operation is issued from inside a monitor (repre-
sented by requiring lock m in the code block type for the op-
eration) and causes the calling program to be delayed until a
signal operation occurs. Waiting on a condition amounts to
enqueue the continuation of the wait operation (represented
by the Code type), needed when the signaling operation oc-
curs. The condition is passed in register r1 and the continu-
ation in register r2. Apart from queue manipulation details,
it is important to notice that the newly created node is pro-
tected by lock m, that the lock is released, allowing other
monitor procedures to execute, and that the current thread
terminates.

wa i t ∀ [m] (r1 : Cond i t i on , r2 : Code ) r e q u i r e s m {
−− a l l o c a t e a new s e n t i n e l
r3 := mal loc [ C lo su re , Node ] guarded by m
−− update the c u r r e n t s e n t i n e l
r4 := r1 [ 3 ] −− get the c u r r e n t s e n t i n e l
r4 [ 0 ] := r2 −− f i l l the c o n t i n u a t i o n
r4 [ 1 ] := r3 −− f i l l the s e n t i n e l
r1 [ 3 ] := r3 −− s t o r e the new s e n t i n e l
−− i n c r ement queue s i z e
r3 := r1 [ 0 ] ; r3 := r3+1; r1 [ 0 ] := r3
−− r e l e a s e mon i to r l o c k and t e rm i na t e th r ead
r3 := r1 [ 2 ] ; un lock r3
y i e l d

}

A signal operation, also issued from inside a monitor, causes
exactly one of the waiting programs to resume immediately.
A signal operation must be followed immediately by resump-
tion of a waiting program, without possibility of an interven-
ing procedure call from yet a third program [10]. The code
block for signal receives the condition in register r1 and the
continuation in register r2. If the queue is empty, the signal

has no effect. Otherwise, queue manipulation details apart,
the key feature to focus our attention is in the fork r3 in-
struction, where we crucially make use of the splitting lock
mechanism when launching a new thread. In this way we
are able to pass the lock to the new thread without unlock-
ing it first. After the fork instruction the current thread no
longer has lock m.

s i g n a l ∀ [m] (r1 : Cond i t i on , r2 : Code ) r e q u i r e s m {
r3 := r3 [ 0 ]
i f r3 = 0 jump unlockAndGo
−− dequeue
r3 := r1 [ 2 ] ; r4 := r3 [ 2 ] ; r1 [ 2 ] := r4
−− decrement queue s i z e
r4 := r1 [ 0 ] ; r4 := r4 − 1 ; r1 [ 0 ] := r4
r3 := r3 [ 0 ] −− r e s t o r e the wa i t i n g th r ead
f o r k r3 −− l aunch a th r ead i n h e r i t i n g m!
jump r2 −− jump c o n t i n u a t i o n ( no l o c k m)

}

unlockAndGo ∀ [m] (r1 : Cond i t i on , r2 : Code )
r e q u i r e s m {

un lock r1 [ 1 ]
jump r2

}

7.4 Existential quantification over lock types
The introduction of universal types over locks allows for the
construction of intricate data structures where part of the
nodes may be protected by different locks, while others may
share locks. However, this extra facility in lock manipula-
tion is useful as long as locks are passed around between
code blocks, when jumping or forking. Unfortunately, the
technique becomes impracticable if we need to propagate
locks through successive code blocks in order to recover them
later, specially if the intermediate code blocks do not use the
locks. An alternative is to store locks in the heap and re-
cover them later, but the language offers no facility to store
and recover singleton types from the heap.

For instance, in the monitors example, storing the singleton
type m in the queue itself allows different code blocks to
retrieve the lock type and enqueue a node. In fact, this code
block does not care which singleton lock type protects the
queue, it just requires that there exists such a lock. This
example motivates the existential quantification over lock
types It is straightforward to incorporate existential types
in our type system, by following Flanagan and Abadi [6].
Actually, we need distinct primitives to deal with existential
lock types and conventional existential types (for instance
to be use with CPS). The reason is that after unpacking a
value, its witness type remains abstracted, so that we can
not discriminate packed lock types from other types, and
hence can not use lock operations on the witness type.

8. CONCLUSION AND FURTHER WORK
We presented a typed assembly language suited for an archi-
tecture where multiple CPU cores share a common memory.
The language primitively includes instructions for handling
locks (create, acquire, and release) and for forking threads.
We provide a type system that verifies the usage of labels,
values, and registers according to the declared types and en-
sures a discipline on lock usage. Further results include a
guarantee that well-typed states do not “get stucked” and
do not incur in race conditions.

A compiler prototype can be found in URL [13], together
with several examples, including extended versions of those
found in this paper. During the course of program devel-
opment with our language, we have faced several difficulties
that should be addressed:

Exclusive-lock and shared-lock. It would be desirable
to have two levels of locking: exclusive locking does
not allow for any readings; shared-locking permit mul-
tiple readers. We think it could be possible to incorpo-
rate this requirements using two set of held locks (held
exclusive and held shared) in the type system, adjust
conveniently rules T-load and T-store in Figure 12,
having two test and set lock primitives (for exclusive
and shared locking), and using three-valued locks in
the operation semantics.



Avoid protecting every tuple in the heap. There are a
number of situations where tuples do not require lock-
ing (for example, closures in the Continuation Passing
Style [1]). A possible approach is to treat closures as
some sort of linear types and try to follow the ideas
expressed in [20]. Another possible direction is owner-
ship types, where owned objects are syntactically dis-
tinguished [7, 3, 4].
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