HEADREST: A Specification Language for
RESTful APIs*

Vasco T. \/asconcelosl[hi&tps://m"cid.org/OOOO—0002—9539—8861]7 Francisco
Martins2[#ttps://orcid.org/0000—0002—2379—7257]

Lopesl [https:/ /orcid.org/0000—0002—2379—7257]

Burnay

, Antonia

, and Nuno
1[https://orcid.org/0000—0001—6613—5192]

! LASIGE and Faculdade de Ciéncias, Universidade de Lisboa
2 LASIGE and Universidade dos Acores

Abstract. Representational State Transfer (REST), an architectural
style providing an abstract model of the web, is by far the most pop-
ular platform to build web applications. Developing such applications
require well-documented interfaces. However, and despite important ini-
tiatives such as the Open API Specification, the support for interface
description is currently quite limited, focusing essentially on simple syn-
tactic aspects. In this paper we present HeadREST, a dependently-typed
language that allows describing semantic aspects of interfaces in a style
reminiscent of Hoare triples.

Keywords: REST - Web services - Description language

1 Introduction

Software services are not just a mechanism to compose software functionalities,
but, in the present case, it was also the motto to bring together once again two
groups of researchers, notably De Nicolas’s and Vasconcelos’ teams.

It all restarted in 2005, under the auspices of Sensoria, Software Engineering
for Service-oriented Overlay Computers [15], a project revolving around the idea
of service as a basis for service-oriented computing. In 2006 we authored together
“SCC: A Service Centered Calculus” [3], a paper that laid down the foundations
for describing the dynamic behaviour of services in terms of a process calculus.
SCC introduces the notions of service definition, which provides for service be-
haviours, and of service invocation, which consumes instances of services. The
communication between both ends of a service interaction happens in the con-
text of a session. Inside this, processes send and receive messages isolated from
other ongoing service interactions. A system is the parallel composition of service
definitions, invocations, and ongoing sessions.

Following to this work, we concentrated on the problems of composing and
orchestrating services, introducing SSCC [11]. This new calculus puts forward

* An early version of this paper was presented at the 24th International Conference
on Types for Proofs and Programs, in June 2018.



a stream construct to play the role of a service orchestrator. In the following
year, De Nicola and his team proposed CaSPiS that also features intra- and
inter-session communication by using streams and pipelines [4]. CaSPiS further
allows for reasoning about session cancellation and termination, scenarios in
which processes may abandon or terminate their current sessions.

The explosive growth of the Web, and the adoption of services as one of the
pillars for building distributed applications over the Web, continued to draw
our attention to service-oriented computing. This time we decided to focus on
RESTful web services. Confident is a research project on the formal description
of RESTful web services using type technology [5].

Following the original spirit of REST [7], and in stark contrast to the philos-
ophy of SOAP [9], state of the art service description systems use mainly natural
language. While these descriptions may occasionally suit programmers, they are
not adequate for machine consumption. Machine checkable service descriptions
lie at the basis of static verification of RESTful-based applications, help in enforc-
ing service fidelity, and in the construction and evolution of complex distributed
applications.

2 Context and related work

Representation State Transfer (REST) is an architectural style proposed as an
abstract model of the web architecture. At its core lies the concept of resource [7].
According to Fielding and Taylor, a resource is a temporally varying membership
function Mg(t), mapping time ¢ to a set of entities which are deemed equiva-
lent [8]. The entities in the set Mg(t) are resource representations and resource
identifiers. REST uses a resource identifier to identify the particular resource
involved in an interaction between components. Representations of resources are
transferred between components in REST interactions; components perform ac-
tions on a resource by using a representation to capture the current or intended
state of that resource.

In our running example—a simple contact management system—contacts
are resources that admit (among others) a representation defined in terms of
a nickname, a name, an email address, and a postal address. Figure 2 shows
an example of two contacts. One of the contacts bears two different identifiers:
me and owner (the owner of all contacts). Both contacts have JSON and XML
representations that also differ in the amount of information included.

Systems that conform to the constraints of the REST architecture are called
RESTful. A RESTful system can be seen as a set of resources together with the
actions that can be performed on these. A RESTful API can be abstracted as
a set of resource identifiers together with the actions that can be performed on
each resource via that identifier.

REST systems typically communicate over HT'TP and interface with exter-
nal systems as web resources identified by URIs. The actions in this case include
GET, POST, PUT, DELETE. In systems that communicate over HTTP, addi-
tional information can be sent in the request for the execution of the action. This



<Contact>
<id> Ann Smith </id>

<Contact> <email> ansmith@foo.com </email>
<id> John Smith </id> </Contact>
<email> jsmith@foo.com </email>
</Contact> {
“nickname”: “mum”,
{ "name": “Ann Smith“,
“nick e wm “email”: “ansmith@foo.com”,
o LT <l “address”: “Main Street 1 FrameWorld“
name": “John Smith“, }
“email”: “jsmith@foo.com”,
“address”: “High Street 12 RestWorld“
} /contacts/mum/
/contacts/owner/ —————::::_;<::)\\\:k
/contacts/me/ Contact
Key

—= resourceid of XYZ resource type

representation of O resource

—> type of

Fig. 1. Two resources in a contact management REST service.

comes in the form of parameters embedded in the URL, headers, and body. Re-
sults always include a response. The table below shows four actions in the contact
management system, together with their URIs and a textual description.

‘ POST /contacts add new contact to the list

/contacts update an existing contact

GET /contacts/{nickname} get contact by nickname

‘m/contacts/{nickname} delete contact

Different interface description languages (IDLs) have been purposely de-
signed to support the formal description of REST APIs. The most representative
ones are probably Open API Specification [12] (originally called Swagger), the
RESTful API Modeling Language [13] (RAML), and API Blueprint [1]. These
IDLs allow a detailed description of the syntactic aspects of the data transferred
in REST interactions and are associated to a large number of tools, in particular
for documentation generation, client code generation in different programming




languages, and for test generation. Focused on the structure of the data ex-
changed, they ignore important semantic aspects, such as the ability to relate
different parts of the same data, to relate the input against the state of the ser-
vice, and to relate the output against the input. For instance, in the case of the
contact management system, none of IDLs discussed here allow expressing facts
such as that, in the creation of a new contact, the nickname must be shorter
than the full name or that the name should be unique across all names known
to the system. Similarly, these languages do not allow expressing that the type
of representation transmitted in the response to a GET action depends on the
value of a given query parameter.

3 HEeaDREST

Our approach to the description of RESTful APIs relies on two key ideas:

— Types to express properties of server states and of data exchanged in client-
server interactions and

— Pre- and post-conditions to express the relationship between data sent in
requests and that obtained in responses, as well as the resulting state changes
in servers.

These ideas are embodied in HEADREST, a language built on the two fun-
damental concepts of DMinor [2]:

— Refinement types, x:T where e, consisting of values x of type T that satisfy
property e and

— A predicate, e in T, which returns true or false depending on whether the
value of expression e is or is not of type T.

HEADREST allows to describe properties of data and to observe state changes
in server through a collection of assertions. Assertions take the form of Hoare
triples [10] and are of the form

{#} (a t) {4}

where a is an action (GET, POST, PUT, or DELETE), ¢ is an URI template (e.g.,
/contacts/{i}), and ¢ and v are boolean expressions. Formula ¢, called the
precondition, addresses the state in which the action is performed as well as the
data transmitted in the request, whereas v, the postcondition, addresses the state
resulting from the execution of the action together with the values transmitted
in the response. The assertion reads

If a request for the execution of action a over an expansion of URI
template ¢ carries data satisfying formula ¢ and the action is performed
in a state satisfying ¢, then the data transmitted in the response satisfies
formula ¢ and so does the state resulting from the execution of the
action.



A simple contact management system includes different (abstract) resources,
which HEADREST captures as new types. Resources are introduced as follows.

resource Contact

Each resource may be associated to zero or more representations, each of
which is given a particular type. The type system of HEADREST is struc-
tural, yet the language provides for type abbreviations in order to ease the
writing of complex API descriptions. The syntax below introduces an identi-
fier (NameAndEmail) for an object type, intended to represent resource Contact.
NameAndEmail is an object composed of a name (a string of 3—-15 lower and upper-
case letter) and an email (a string containing the symbol ).

type NameAndEmail = {
name: (x: string where matches(x, ~[a-zA-Z1{3,15}$)),
email: (x: string where contains(x, "Q"))

Equipped with the declaration of a new resource (Contact) and a name for
one of the representations of the resource (NameAndEmail), one can write a few
assertions describing the behaviour of the API. One that describes a successful
contact creation could be written as

{request in {body: NameAndEmaill} &&
Vc:Contact. Vr:NameAndEmail.
r repof ¢ = request.body.name # r.name

}
POST /contacts
{response.code == 200 &&
response in {body: NameAndEmail, header: {Location: URI}} &&
request.body == response.body &&
Jc:Contact. response.body repof c &&
response.header.Location uriof c

}

where request and response are builtin identifiers, and predicates repof and
uriof describe values associated to resources as described in Section 2 (cf., Fig-
ure 2).

The precondition first establishes that request contains a field named body of
type NameAndEmail, and then asks the new contact name (provided in the body of
the request) to be unique across all contacts and their representations, hence the
double quantification (first on resources and then on their representations). In
such a case, the postcondition signals success (code 200) and states that response

includes a representation (in field body) that is exactly what was sent in the
request. Furthermore, the response includes an URI (in field header.Location)
of the newly created Contact resource c.

A different assertion for the same pair action-URI describes the conflict story:
if the name of the new contact is known to the server, then this signals conflict
(code 409)

{request in {body: NameAndEmaill} &&



dc:Contact. dr:NameAndEmail.

r repof ¢ = request.body.name == r.name
}
POST /contacts
{response.code == 409}

We have used HEADREST to describe different APIs, including a part of
GitLab (800 lines of spec code). We have developed an Eclipse plugin to validate
the good formation of HEADREST specifications [5], a tool to automatically
test REST APIs against specifications [6], and a tool to generate server stubs
and client SDKs from HEADREST specifications [14].

4 Conclusion

In this short abstract we informally present HEADREST, a language designed
to support the entire application lifecycle based on REST APIs. We briefly dis-
cuss the language via a very simple example that illustrates the challenges of
describing REST APIs and the expressiveness of our specification language.

Equipped with such an API description, we build tools that (a) validate
the good formation of HEADREST specifications, (b) generate server stubs and
client SDKs from HEADREST specifications, and (c) that automatically test
REST APIs against specifications.

We intend to explore the specification of security issues in REST context,
in particular, how to use the HEADREST language to ensure compliance with
authentication and confidentiality requirements.

Acknowledgments This work was supported by the Foundation for Science and
Technology (FCT) through project CONFIDENT (PTDC/EEI-CTP /4503/2014)
and the LASIGE research unit (UID/CEC/00408/2019).

References

1. API blueprint. https://apiblueprint.org/. Retrieved 7-Jan-2019.

2. Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, and David E. Langworthy.
Semantic subtyping with an SMT solver. J. Funct. Program., 22(1):31-105, 2012.

3. Michele Boreale, Roberto Bruni, Luis Caires, Rocco De Nicola, Ivan Lanese,
Michele Loreti, Francisco Martins, Ugo Montanari, Antonio Ravara, Davide San-
giorgi, Vasco Thudichum Vasconcelos, and Gianluigi Zavattaro. SCC: A service
centered calculus. In Proceedgins of the Third Internation Conference on Web
Services and Formal Methods (WS-FM), pages 38-57, 2006.

4. Michele Boreale, Roberto Bruni, Rocco De Nicola, and Michele Loreti. Caspis: a
calculus of sessions, pipelines and services. Mathematical Structures in Computer
Science, 25(3):666-709, 2015.

5. Confident, a toolchain for the construction and evolution of REST APIs.
http://rss.di.fc.ul.pt/tools/confident. Retrieved 7-Jan-2019.

6. Fabio Ferreira. Automatic test generation for RESTful APIs. Master’s thesis,
Faculty of Sciences, University of Lisbon, 2017.



10.

11.

12.
13.
14.

15.

Roy T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

Roy T. Fielding and Richard N. Taylor. Principled design of the modern web
architecture. ACM Trans. Internet Techn., 2(2):115-150, 2002.

HTTP Working Group. SOAP: Simple object access protocol.
https://tools.ietf.org/html/draft-box-http-soap-00. Retrieved 31-Jan-2019.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576-580, 1969.

Ivan Lanese, Francisco Martins, Vasco Thudichum Vasconcelos, and Antoénio
Ravara. Disciplining orchestration and conversation in service-oriented computing.
In Proceeedings of the Fifth IEEE International Conference on Software Engineer-
ing and Formal Methods (SEFM 2007), pages 305-314, 2007.

Open API Initiative. https://www.openapis.org. Retrieved 7-Jan-2019.

RESTful API modeling language. https://raml.org. Retrieved 7-Jan-2019.

Telmo Santos. Code generation for RESTful APIs in headREST. Master’s thesis,
Faculty of Sciences, University of Lisbon, 2018.

Sensoria, software engineering for service-oriented overlay computers.
http://sensoria.fast.de/. Retrieved 31-Jan-2019.



