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We previously developed a polymorphic type system and a type checker for a multithreaded lock-
based polymorphic typed assembly language (MIL) that ensures that well-typed programs do not
encounter race conditions. This paper extends such work by taking into consideration deadlocks. The
extended type system verifies that locks are acquired in the proper order. Towards this end we require
a language with annotations that specify the locking order. Rather than asking the programmer (or the
compiler’s backend) to specifically annotate each newly introduced lock, we present an algorithm to
infer the annotations. The result is a type checker whose input language is non-decorated as before,
but that further checks that programs are exempt from deadlocks.

1 Introduction

Type systems for lock-based race and deadlock static detection try to contradict the idea put forward by
some authors that “the association between locks and data is established mostly by convention” [15].
Despite all the pathologies usually associated with locks (in the aforementioned article and others), and
specially at system’s level, locks are here to stay [8].

Deadlock detection should be addressed at the appropriate level of abstraction, for, in general, com-
piled code that does not deadlock allows us to conclude nothing of the source code. Nevertheless, the
problem remains valid at the assembly level and fits quite nicely in the philosophy of typed assembly
languages [14]. By capturing a wider set of semantic properties, including the absence of deadlocks, we
improve compiler certification in systems where code must be checked for safety before execution, in
particular those with untrusted or malicious components.

Our language targets a shared-memory machine featuring an array of processors and a thread pool
common to all processors [10, 17]. The thread pool holds threads for which no processor is available,
a scheduler chooses a thread from this pool should a processor become idle. Threads voluntary release
processors—our model fits in the cooperative multi-threading category. For increased flexibility (and
unlike many other models, including [12]) we allow forking threads that hold locks, hence we allow the
suspension of processes while in critical regions. A prototype implementation can be found in .

The code in Figure 1 presents a typical example of a potential deadlock comprising a cycle of threads
where each thread requests a lock hold by the next thread. Imagine the code running on a two-processors
machine: after main completes its execution, each philosopher embarks on a busy-waiting loop, only
that two of them will be running in processors, while the third is (and will indefinitely remain) in the
run-pool. Situations of deadlocks comprising suspended code are known to be difficult to deal with [13].
Our notion of deadlocked state takes into account running and suspended threads.

Another source of difficulties in characterizing deadlock states derives from the low-level nature of
our language that decouples the action of lock acquisition from that of entering a critical section, and

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://gloss.di.fc.ul.pt/mil
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main () {
f1,r3 := newLock; f3,r5 := newLock; f2,r4 := newLock −− 3 forks
r1:= r3; r2:= r4; fork liftLeftFork[f1,f2] −− 1st philosopher
r1:= r4; r2:= r5; fork liftLeftFork[f2,f3] −− 2nd philosopher
r1:= r5; r2:= r3; fork liftLeftFork[f3,f1] −− 3rd philosopher
done

}
liftLeftFork ∀[l,m].(r1:〈l〉l, r2:〈m〉m) {

r3:= testSetLock r1
if r3= 0 jump liftRightFork[l,m]
jump liftLeftFork[l,m]

}
liftRightFork ∀[l,m].(r1:〈l〉l, r2:〈m〉m) requires {l} {

r3:= testSetLock r2
if r3= 0 jump eat[l,m]
jump liftRightFork[l,m]

}
eat ∀[l,m].(r1:〈l〉l, r2:〈m〉m) requires {l,m} {
−− eat
unlock r1−− lay down the left fork
unlock r2−− lay down the right fork
−− think
jump liftLeftFork[l,m]

}

Figure 1: The dining philosophers written in MIL

that features non-blocking instructions only. As such the meaning of “entering a critical section” cannot
be of a syntactic nature.

A characteristic of our machine is the syntactic dissociation of the test-and-set-lock and the jump-
to-critical operations, for which we provide two distinct instructions, as found in conventional instruc-
tion sets. Furthermore, there is no syntactic distinction between a conventional conditional jump and a
(conditional) jump-to-critical instruction, and the test-set-lock and jump-to-critical instructions can be
separated by arbitrary assembly code. As far as the type system goes, the thread holds the lock only after
the conditional jump, even though at runtime it may have been obtained long before.

The main contribuitons of this paper are:

• A type system for deadlock elimination. We devise a type system that establishes a strict par-
tial order on lock acquisition, hence enforcing that well typed MIL programs do not deadlock—
Theorem 4;

• An algorithm for automatic program annotation. In order to check the absence of deadlock, MIL
programs must be annotated to reflect the order by which locks must be acquired. Annotating large
assembly programs, either manually or as the result of a compilation process, is not plausible.
We present an algorithm that takes a plain MIL program and produces an annotated program
together with a collection of constraints over lock sets that are passed to a constraint solver. In
case the constraints are solvable the annotated program is typeble—Theorem 8—hence free from
deadlocks.
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registers r ::= r1 | . . . | rR

lock values b ::= 0 | 1 | 0λ

values v ::= r | n | b | l | v[λ ] | ?τ

instructions ι ::=
control flow r := v | r := r + v | if r = v jump v | fork v

memory r := malloc [~τ]λ | r := v[n] | r[n] := v |
locking λ : (Λ,Λ),r := newLock | r := testSetLock v | unlock v

inst. sequences I ::= ι ; I | jump v | done

types τ ::= int | λ | 〈~τ〉λ | Γ requires Λ | ∀[λ : (Λ,Λ)].τ
register file types Γ ::= r1 : τ1, . . . , rn : τn

permissions Λ ::= λ1, . . . ,λn

heaps H ::= {l1 : h1, . . . , ln : hn}
heap values h ::= 〈v1 . . .vn〉λ | τ{I}

thread pool T ::= {〈l1[~λ1],R1〉, . . . ,〈ln[~λn],Rn〉}
register files R ::= {r1 : v1, . . . , rR : vR}
processors array P ::= {1: p1, . . . ,N : pN}
processor p ::= 〈R;Λ; I〉
states S ::= 〈H;T ;P〉 | halt

Figure 2: Syntax.

The outline of this paper is as follows. The next section introduces the syntax of programs and
machine states, together with the running example. Then Section 3 presents the operational semantics
and the notion of deadlocked states. Section 4 describes the type system and the first main result, typable
states do not deadlock. Section 5 introduces the annotation algorithm and the second main result, the
correctness of the algorithm with respect to the type system. Finally, Section 6 describes related work
and concludes the paper.

2 Syntax

The syntax of our language is generated by the grammar in Figure 2. We rely on two mutually disjoint
sets for heap labels, ranged over by l, and for singleton lock types, ranged over by λ . Letter n ranges
over integer values.

Values v comprise registers r, integer values n, lock values b, labels l, type application v[λ ], and
uninitialised values ?τ . Lock value 0 represents an open lock, whereas lock value 1 denotes a closed
lock; the λ annotation in 0λ allows to determine the lock guarding the critical section a processor is
trying to enter and will be useful when defining deadlocked states. Lock values are runtime entities, they
need to be distinct from conventional integer values for typing purposes only. Labels are used as heap
addresses. Uninitialised values represent meaningless data of a certain type.
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Most of the machine instructions ι presented in Figure 2 are standard in assembly languages. Distinct
in MIL are the instructions for creating new threads—fork places in the run queue a new thread waiting
for execution—, for allocating memory—malloc[τ1, . . . ,τn]λ allocates a tuple in the heap protected by
lock λ and comprising n cells each of which containing an uninitialised value of type τi—, and for
manipulating locks. In this last group one finds newLock to create a lock in the heap and store its address
in register r (λ describes the singleton lock type associated to the new lock, further described below),
testSetLock to acquire a lock, and unlock to release a lock.

Instructions are organised in sequences I, ending in jump or in done. Instruction done terminates a
thread, voluntarily releasing the core, giving rise to a cooperative multi-threading model of computation.

Types τ include the integer type int, the singleton lock type λ , the tuple type 〈~τ〉λ describing a tuple
in the heap protected by lock λ , and the code type ∀[~λ : (~Λ,~Λ)].(Γ requires Λ) representing a code block
abstracted on singleton lock types~λ , expecting registers of the types in Γ and requiring locks as in Λ.
Each universal variable is bound by two sets of singleton lock types Λ, used for deadlock prevention, as
described below. For simplicity we allow polymorphism over singleton lock types only; for abstraction
over arbitrary types see [10].

The abstract machine is parametric on the number of available processors N, and on the number
of registers per processor R. An abstract machine can be in two possible states S: halted or run-
ning. A running machine comprises a heap H, a thread pool T , and an array of processors P of fixed
length N. Heaps are maps from labels l into heap values h that may be either data tuples or code
blocks. Tuples 〈v1, . . . ,vn〉λ are vectors of mutable values vi protected by some lock λ . Code blocks
∀[~λ : (~Λ,~Λ)].(Γ requires Λ){I} comprise a signature (a code type) and an instruction sequence I, to be
executed by a processor. A thread pool T is a multiset of pairs 〈l[~λ ],R〉, each of which contains the
address (a label) of a code block in the heap, a sequence of singleton lock types to act as arguments to
the forall type of the code block, and a register file. A processor array P contains N processors, each of
which is composed of a register file R mapping the processor’s registers to values, a set of locks Λ (the
locks held by the thread running at the processor, often call the thread’s permission), and a sequence of
instructions I (the instructions that remain to execute).

Lock order annotations Deadlocks are usually prevented by imposing a strict partial order on locks,
and by respecting this order when acquiring locks [4, 9, 12]. The syntax in Figure 2 introduces annota-
tions that specify the locking order. When creating a new lock, we declare the order between the newly
introduced singleton lock type and the locks known to the program. We use the notation λ : (Λ1,Λ2)
to mean that lock type λ is greater than all lock types in set Λ1 and smaller than each lock type in set
Λ2. The annotated syntax differs from the original syntax ([10, 17]) in two places: at lock creation
λ : (Λ,Λ),r := newLock; and in universal types ∀[λ : (Λ,Λ)].τ , where we explicitly specify the lock
order on newly introduced singleton lock types.

Example Figure 1 shows an example of a non-annotated program. Annotating such a program requires
describing the order for each lock introduced in code block main, say,

f1::({},{}), r3:= newLock
f3::({f1},{}), r5:= newLock
f2::({f1},{f3}), r4:= newLock

and at the types for the three code blocks below.

liftLeftFork ∀[l::({},{})].∀ [m::({l},{})].(r1:〈l〉l, r2:〈m〉m)
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∀i.P(i) = 〈 ; ;done〉
〈 ; /0;P〉 → halt

(R-HALT)

P(i) = 〈 ; ;done〉 H(l) = ∀[~λ : ( , )].( requires Λ){I}
〈H;T ]{〈l[~λ ′],R〉};P〉 → 〈H;T ;P{i : 〈R;Λ; I〉[~λ ′/~λ ]}〉

(R-SCHEDULE)

P(i) = 〈R;Λ]Λ′;(fork v; I)〉 R̂(v) = l[~λ ] H(l) = ∀[ ].( requires Λ′){ }
〈H;T ;P〉 → 〈H;T ∪{〈l[~λ ],R〉};P{i : 〈R;Λ; I〉}〉

(R-FORK)

P(i) = 〈R;Λ;(λ : ( , ),r := newLock; I)〉 l 6∈ dom(H) λ ′ fresh
〈H;T ;P〉 → 〈H{l : 〈0〉λ ′};T ;P{i : 〈R{r : l};Λ; I[λ ′/λ ]〉}〉

(R-NEWLOCK)

P(i) = 〈R;Λ;(r := testSetLock v; I)〉 R̂(v) = l H(l) = 〈0〉λ

〈H;T ;P〉 → 〈H{l : 〈1〉λ};T ;P{i : 〈R{r : 0λ};Λ]{λ}; I〉}〉
(R-TSL 0)

P(i) = 〈R;Λ;(r := testSetLock v; I)〉 H(R̂(v)) = 〈1〉λ λ 6∈ Λ

〈H;T ;P〉 → 〈H;T ;P{i : 〈R{r : 1};Λ; I〉}〉
(R-TSL 1)

P(i) = 〈R;Λ]{λ};(unlock v; I)〉 R̂(v) = l H(l) = 〈 〉λ

〈H;T ;P〉 → 〈H{l : 〈0〉λ};T ;P{i : 〈R;Λ; I〉}〉
(R-UNLOCK)

Figure 3: Operational semantics (thread pool and locks).

liftRightFork ∀[l::({},{})].∀[m::({l},{})].(r1:〈l〉l, r2:〈m〉m) requires {l}
eat ∀[l::({},{})].∀[m::({l},{})].(r1:〈l〉l, r2:〈m〉m) requires {l,m}

Notice that abstracting one lock at a time, as in the types just shown, precludes declaring code blocks
with non-strict partial orders on locks, such as ∀[l : ( /0,{m}),m : ({l}, /0)].τ , which cannot be fulfilled by
any conceivable sequence of instructions.

3 Operational Semantics and Deadlocked States

The operational semantics is defined in Figures 3 and 4. The scheduling model of our machine is de-
scribed by the first three rules in Figure 3. The machine halts when all processors are idle and the thread
pool is empty (rule R-HALT). An idle processor (a processor that executes instruction done) picks up an
arbitrary thread from the thread pool and activates it (rule R-SCHEDULE); the argument locks~λ ′ replace
the parameters~λ in the code for the processor. For a fork instruction, the machine creates a “closure” by
putting together the code label plus its arguments, l[~λ ], and a copy of the registers, R, and by placing it
in the thread pool. The thread permission is partitioned in two: one part (Λ) stays with the thread, the
other (Λ′) goes with the newly created thread, as required by the type of its code.

Some rules rely on the evaluation function R̂ that looks for values in registers and in value application.

R̂(v) =


R(v) if v is a register
R̂(v′)[λ ] if v is v′[λ ]
v otherwise
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P(i) = 〈R;Λ;(r := malloc [~τ]λ ; I)〉 l /∈ dom(H)
〈H;T ;P〉 → 〈H{l : 〈?~τ〉λ};T ;P{i : 〈R{r : l};Λ; I〉}〉

(R-MALLOC)

P(i) = 〈R;Λ;(r := v[n]; I)〉 H(R̂(v)) = 〈v1..vn..vn+m〉λ λ ∈ Λ

〈H;T ;P〉 → 〈H;T ;P{i : 〈R{r : vn};Λ; I〉}〉
(R-LOAD)

P(i) = 〈R;Λ;(r[n] := v; I)〉 R(r) = l H(l) = 〈v1..vn..vn+m〉λ λ ∈ Λ

〈H;T ;P〉 → 〈H{l : 〈v1.. R̂(v)..vn+m〉λ};T ;P{i : 〈R;Λ; I〉}〉
(R-STORE)

P(i) = 〈R;Λ; jump v〉 R̂(v) = l[~λ ] H(l) = ∀[~λ ′ : ( , )]. {I}
〈H;T ;P〉 → 〈H;T ;P{i : 〈R;Λ; I[~λ/~λ ′]〉}〉

(R-JUMP)

P(i) = 〈R;Λ;(r := v; I)〉
〈H;T ;P〉 → 〈H;T ;P{i : 〈R{r : R̂(v)};Λ; I〉}〉

(R-MOVE)

P(i) = 〈R;Λ;(r := r′+ v; I)〉
〈H;T ;P〉 → 〈H;T ;P{i : 〈R{r : R(r′)+ R̂(v)};Λ; I〉}〉

(R-ARITH)

P(i) = 〈R;Λ;(if r = v jump v′; )〉 R(r) = v R̂(v′) = l[~λ ] H(l) = ∀[~λ ′ : ( , )]. {I}
〈H;T ;P〉 → 〈H;T ;P{i : 〈R;Λ; I[~λ/~λ ′]〉}〉

(R-BRANCHT)

P(i) = 〈R;Λ;(if r = v jump ; I)〉 R(r) 6= v
〈H;T ;P〉 → 〈H;T ;P{i : 〈R;Λ; I〉}〉

(R-BRANCHF)

Figure 4: Operational semantics (memory and control flow).

In our model the heap tuple 〈0〉λ represents an open lock, whereas 〈1〉λ represents a closed lock. A
lock is an uni-dimensional tuple holding a lock value because the machine provides for tuple allocation
only; lock λ is used for type safety purposes, just like all other singleton lock types. Instruction newLock
creates a new open lock in the heap and places a reference l to it in register r. Instruction testSetLock
loads the contents of the lock tuple into register r and sets the heap value to 〈1〉λ ; it also makes sure that
the lock is not in the thread’s permission (rules R-TSL0 and R-TSL1). Further, applying the instruction to
an unlocked lock adds lock λ to the permission of the processor (rule R-TSL0). Locks are waved using
instruction unlock, as long as the thread holds the lock (rule R-UNLOCK).

Rules related to memory manipulation are described in Figure 4. Rule R-MALLOC creates an heap-
allocated λ -protected uninitialised tuple and moves its address to register r. To store values in, and load
from, a tuple we require that the lock that guards the tuple is among the processor’s permission. In rules
R-BRANCHT and R-BRANCHF, we ignore the lock annotation on lock values, so that 0λ is considered
equal to 0. The remaining rules are standard (cf [14]).

Deadlocked States The difficulty in characterising deadlock states stems from the fact that processors
never block and that threads may become (voluntary) suspended while in critical a region. We aim at
capturing conventional techniques for acquiring locks, namely busy-waiting and sleep-lock [17]. To-
wards this end, we need to restrict reduction of a given state S to that of a single processor in order to
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Ψ ` λ : (Λ1, ) λ1 ∈ Λ1

Ψ ` λ1 ≺ λ

Ψ ` λ : ( ,Λ2) λ2 ∈ Λ2

Ψ ` λ ≺ λ2

Ψ ` λ1 ≺ λ2 Ψ ` λ2 ≺ λ3

Ψ ` λ1 ≺ λ3

Ψ ` λ1 ≺ λ · · · Ψ ` λn ≺ λ

Ψ ` {λ1, . . . ,λn} ≺ λ

Ψ ` λ ≺ λ1 · · · Ψ ` λ ≺ λn

Ψ ` λ ≺ {λ1, . . . ,λn}

Figure 5: Less-than relation on locks and permissions

ftv(τ)⊆ dom(Ψ)
Ψ ` τ

Ψ ` τi

Ψ ` r1 : τ1, . . . , rn+m : τn+m <: r1 : τ1, . . . , rn : τn
(T-TYPE,S-REGFILE)

Ψ ` τ

Ψ, l : τ;Γ ` l : τ

Ψ ` τ

Ψ;Γ1,ri : τ,Γ2 ` ri : τ
Ψ;Γ ` n : int Ψ;Γ ` 0,1,0λ : λ Ψ;Γ `?τ : τ

(T-LABEL,T-REG,T-INT,T-LOCK,T-UNINIT)

Ψ ` λ ′ Ψ;Γ ` v : ∀[λ : (Λ1,Λ2)]τ Ψ ` Λ1 ≺ λ ′ ≺ Λ2

Ψ;Γ ` v[λ ′] : τ[λ ′/λ ]
(T-VALAPP)

Figure 6: Rules for values Ψ;Γ ` v : τ , for subtyping Ψ ` Γ <: Γ , and for types Ψ ` τ .

control the progress of a single core: let relation S →i S′ denote a reduction step on processor i excluding
rules R-HALT, R-SCHEDULE and R-UNLOCK.

Definition 1 (Deadlocked states). Let S be the state 〈H;T ;P〉.

• A processor 〈R;Λ; I〉 holds lock λ when λ ∈ Λ; a suspend thread 〈l[~λ ′],R〉 holds lock λ when
H(l) = ∀[~λ : ( , )].( requires Λ){ } and λ ∈ Λ[~λ ′/~λ ];

• A processor p in P immediately tries to enter a critical section guarded by lock λ if p is of the form
〈R; ;(if r = 0 jump v; )〉 and R(r) = 0λ ;

• For busy waiting, a thread in processor pi is trying to enter a critical region guarded by λ if S→∗
i S′

and processor pi in state S′ immediately tries to enter a critical section guarded by λ ;

• For sleep-lock, a thread 〈l[~λ ′],R〉 in thread pool T is trying to enter a critical region guarded by λ if
H(l) = ∀[~λ : ].( requires Λ){I}, and the thread in processor p1 of state S+P{1: 〈R;Λ; I〉[~λ ′/~λ ]}
is trying to enter a critical region guarded by λ ;

• A state S is deadlocked if there exist locks λ0, . . . ,λn, with λ0 = λn, and indices d0, . . . ,dn−1 (n > 0)
such that for each 0≤ i < n, either processor pdi or suspended thread tdi holds lock λi and is trying
to enter a critical region guarded by λi+1.

Notice that di 6= d j does not imply pdi 6= pd j and similarly for threads in the thread pool, so that a
state deadlocked on locks λ0, . . . ,λn may involve less than n threads. We have excluded the R-UNLOCK

rule from the →i reduction relation, yet releasing a lock is not necessarily an indication that the thread
is leaving a deadlocked state, for the released lock may not be involved in the deadlock; a more general
definition of deadlocked state would take this fact into account.
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Ψ;Γ; /0 ` done (T-DONE)

Ψ;Γ ` v : Γ′ requires Λ Ψ;Γ;Λ′ ` I Ψ ` Γ <: Γ′

Ψ;Γ;Λ]Λ′ ` fork v; I
(T-FORK)

Ψ,λ : (Λ1,Λ2);Γ{r : 〈λ 〉λ};Λ ` I λ 6∈ Ψ,Γ,Λ

Ψ;Γ;Λ ` λ : (Λ1,Λ2),r := newLock; I
(T-NEWLOCK)

Ψ;Γ ` v : 〈λ 〉λ Ψ;Γ{r : λ};Λ ` I λ 6∈ Λ

Ψ;Γ;Λ ` r := testSetLock v; I
(T-TSL)

Ψ;Γ ` v : 〈λ 〉λ Ψ;Γ;Λ ` I
Ψ;Γ;Λ]{λ} ` unlock v; I

(T-UNLOCK)

Ψ;Γ ` r : λ Ψ;Γ ` v : Γ′ requires Λ]{α} Ψ;Γ;Λ ` I Ψ ` Γ <: Γ′ Ψ ` Λ ≺ λ

Ψ;Γ;Λ ` if r = 0 jump v; I
(T-CRITICAL)

Figure 7: Typing rules for instructions (thread pool and locks) Ψ;Γ;Λ ` I .

4 A Type System for Deadlock Prevention

Type System Typing environments Ψ map heap addresses l to types τ , and singleton lock types λ to
lock kinds (Λ1,Λ2). An entry λ : (Λ1,Λ2) in Ψ means that λ is larger than all lock types in Λ1 and
smaller than any lock type in Λ2, a notion captured by relation ≺ described in Figure 5. Instructions are
also checked against a register file type Γ holding the current types of the registers, and a set Λ of lock
variables: the permission of (the processor executing) the code block. The type system is presented in
Figures 6 to 9.

Typing rules for values are illustrated in Figure 6. Rule T-TYPE makes sure types are well-formed,
that all free singleton lock types (or free type variables, ftv) in a type are bound in the typing environment.
A formula Γ <: Γ′ allows “forgetting” registers in the register file type, and is particularly useful in jump
instructions where we want the type of the target code block to be more general (ask for less registers)
than those active in the current code [14]. The rule for value application, T-VALAPP, checks that the
argument λ ′ is within the interval (Λ1,Λ2), as required by the parameter λ .

The rules in Figure 7 capture the policy for lock usage. Rule T-DONE requires the release of all
locks before terminating the thread. Rule T-FORK splits permissions into sets Λ and Λ′: the former
is transferred to the forked thread according to the permissions required by the target code block, the
latter remains with the processor. Rule T-NEWLOCK assigns a lock type 〈λ 〉λ to the register. The new
singleton lock type λ is recorded in Ψ, so that it may be used in the rest of the instructions I. Rule
T-TSL requires that the value under test is a lock in the heap (of type 〈λ 〉λ ) and records the type of the
lock value λ in register r. This rule also disallows testing a lock already held by the processor. Rule
T-UNLOCK makes sure that only held locks are unlocked. Rule T-CRITICAL ensures that the processor
holds the permission required by the target code block, including the lock under test. A processor is
guaranteed to hold the tested lock only after (conditionally) jumping to the critical region. A previous
test-and-set-lock instructions may have obtained the lock, but the type system records that the processor
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Ψ;Γ{r : 〈~τ〉λ};Λ ` I τi 6= λ λ ∈ Λ

Ψ;Γ;Λ ` r := malloc [~τ]λ ; I
(T-MALLOC)

Ψ;Γ ` v : 〈τ1..τn+m〉λ Ψ;Γ{r : τn};Λ ` I τn 6= λ ′ λ ∈ Λ

Ψ;Γ;Λ ` r := v[n]; I
(T-LOAD)

Ψ;Γ ` v : τn Ψ;Γ ` r : 〈τ1..τn+m〉λ Ψ;Γ{r : 〈τ1..τn+m〉λ};Λ ` I τn 6= λ ′ λ ∈ Λ

Ψ;Γ;Λ ` r[n] := v; I
(T-STORE)

Ψ;Γ ` v : τ Ψ;Γ{r : τ};Λ ` I
Ψ;Γ;Λ ` r := v; I

(T-MOVE)

Ψ;Γ ` r′ : int Ψ;Γ ` v : int Ψ;Γ{r : int};Λ ` I
Ψ;Γ;Λ ` r := r′+ v; I

(T-ARITH)

Ψ;Γ ` r : int Ψ;Γ ` v : int Ψ;Γ ` v : Γ requires Λ Ψ;Γ;Λ ` I
Ψ;Γ;Λ ` if r = v jump v; I

(T-BRANCH)

Ψ;Γ ` v : Γ′ requires Λ Ψ ` Γ <: Γ′

Ψ;Γ;Λ ` jump v
(T-JUMP)

Figure 8: Typing rules for instructions (memory and control flow) Ψ;Γ;Λ ` I .

holds the lock only after the conditional jump. The rule checks that the newly acquired lock is larger
than all locks in the possession of the thread.

The typing rules for memory and control flow are depicted in Figure 8. Operations for loading
from (T-LOAD), and for storing into (T-STORE), tuples require that the processor holds the right permis-
sions (the locks for the tuples it reads from, or writes to). Both rules preclude the direct manipulation of
lock values by programs, via the τn 6= λ ′ assumptions.

The rules for typing machine states are illustrated in Figure 9. The rule for a thread item in the thread
pool checks that the type and required registers R are as expected in the type of the code block pointed
by v. Similarly, the rule for type checking a processor also permits that type Γ of the registers R be more
specific than the register file type Γ′ required to type check the remaining instructions I. The heap value
rule for code blocks adds to Ψ each singleton lock type (together with its bounds), so that they may be
used in the rest of the instructions I.

Example As expected, the example is not typable with the annotations introduced previously. The
three newLock instructions place in Ψ three entries f1 : ( /0, /0), f2 : ({ f1},{ f3}), f3 : ({ f1}, /0). Then
the value (liftLeftFork[f2])[f1] (in the example: liftLeftFork[f1,f2]) in the first fork instruction issues goals
Ψ ` /0 ≺ f1 ≺ /0 and Ψ ` { f1} ≺ f2 ≺ /0, which are easy to guarantee given that Ψ contains an entry
f2 : ({ f1},{ f3}). Likewise, the second fork instruction, generates goals Ψ ` /0 ≺ f2 ≺ /0 and Ψ ` { f2} ≺
f3 ≺ /0, which are again hold because of same entry. However, the last fork instruction requires Ψ ` /0 ≺
f3 ≺ /0 and Ψ ` { f3} ≺ f2 ≺ /0, the second of which does not hold.

Notice however that each of the three jump instructions are typable per se. For example, in code
block liftRightFork, instruction if r3= 0 jump eat[l,m] requires Ψ ` {l} ≺ m, which holds because the
signature for the code block includes the annotation m : ({l}, /0).
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∀i.Ψ ` Γ(ri) Ψ; /0 ` R(ri) : Γ(ri)
Ψ ` R : Γ

(reg file, Ψ ` R : Γ )

∀i.Ψ ` P(i)
Ψ ` P

Ψ ` R : Γ Ψ;Γ′;Λ ` I Ψ ` Γ <: Γ′

Ψ ` 〈R;Λ; I〉
(processors, Ψ ` P )

∀i.Ψ ` ti
Ψ ` {t1, . . . , tn}

Ψ; /0 ` v : Γ′ requires Ψ ` R : Γ Ψ ` Γ <: Γ′

Ψ ` 〈v,R〉
(thread pool, Ψ ` T )

τ = ∀[~λ : (~Λ1,~Λ2)].(Γ requires Λ) Ψ,~λ : (~Λ1,~Λ2);Γ;Λ ` I
Ψ ` τ{I} : τ

∀i.Ψ; /0 ` vi : τi

Ψ ` 〈~v〉λ : 〈~τ〉λ

(heap value, Ψ ` h : τ )

∀l.Ψ ` H(l) : Ψ(l)
Ψ ` H

(heap, Ψ ` H )

Ψ ` halt
Ψ ` H Ψ ` T Ψ ` P

Ψ ` 〈H;T ;P〉
(state, Ψ ` S )

Figure 9: Typing rules for machine states.

Typable States Do Not Deadlock The main result of the type system, namely that Ψ ` S and S →∗ S′

implies S′ not deadlocked, follows from Subject Reduction and from Typable States Are Not Deadlocked,
in a conventional manner.

Lemma 2 (Substitution Lemma). If Ψ,λ : (Λ1,Λ2);Γ,Λ` I and Ψ(λ )′ = (Λ1,Λ2), then Ψ;Γσ ,Λσ ` Iσ ,
where σ = [λ ′/λ ].

Theorem 3 (Subject Reduction). If Ψ ` S and S → S′, then Ψ′ ` S′, where Ψ′ = Ψ or Ψ′ = Ψ, l : 〈~τ〉λ

(with l fresh) or Ψ′ = Ψ, l : 〈λ 〉λ ,λ : (~Λ1,~Λ2) (with l,λ fresh).

Proof. (Outline) By induction on the derivation of S → S′ proceeding by case analysis on the last
rule of the derivation, using the substitution lemma for rules R-SCHEDULE, R-FORK, R-JUMP, and
R-BRANCHT, as well as weakening in several rules.

Theorem 4 (Typable States Are Not Deadlocked). If Ψ ` S, then S is not deadlocked.

Proof. (Sketch) Consider the contra-positive and show that deadlocked states are not typable. With-
out loss of generality suppose that S is of the form 〈H;〈td0 , . . . , tdm〉;{dm+1 : pdm+1 , . . . ,dn : pdn}〉 with
suspended threads tdi and processors pd j not necessarily distinct.

Each of these threads and processors are trying to enter a critical region. For a processor pdi we have
that S →∗

di
S′ where di-th processor in S′ is of the form 〈R;Λ;(if r = 0 jump v; )〉 and R(r) = 〈 〉λ

di+1 .
By Subject Reduction Ψ′ ` S′ where Ψ′ extends Ψ as stated in Theorem 3. A simple derivation starting
from rule T-CRITICAL allows to conclude that Ψ `Λdi ≺ λdi+1 . For a thread tdi = 〈l[~λ ′],R〉 in thread pool
of S we run the machine S′′ obtained from S by replacing processor 1 with 〈R;Λ; I〉[~λ ′/~λ ], where H(l) =
∀[~λ : ].( requires Λ){I}. Proceeding as for processes above, we conclude again that Ψ ` Λdi ≺ λdi+1 .

We thus have Ψ ` Λd0 ≺ λd1 , . . . Ψ ` Λdn−1 ≺ λdn , Ψ ` Λdn ≺ λd0 which is not satisfiable.
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5 Type Inference

Annotating lock ordering on large assembly programs may not be an easy task. In our setting, program-
mers (compilers, more often) produce annotation free programs such as the one in Figure 1, and use an
inference algorithm to provide for the missing annotations.

The Algorithm The annotation-free syntax is obtained from that in Figure 2, by removing the : (Λ,Λ)
part both in the newLock instruction and in the universal type. Given an annotation-free program H,
algorithm W produces a pair, comprising a typing environment Ψ and an annotated program H?, such
that Ψ ` H?, or else fails. In the former case H? is typable, hence does not deadlock (Theorem 3); in the
latter case, there is no possible labeling for H.

We depend on a set of variables over permissions (sets of locks), ranged over by ν , disjoint from the
set of heap labels and from the set singleton lock types introduced in Section 2. Constraints are computed
by an intermediate step in our algorithm.

Definition 5 (Constraints and solutions).

• We consider constraints of three distinct forms: Λ ≺ λ , ν ≺ λ , and λ ≺ ν , and denote by C a set
of constraints;

• A substitution θ is a map from permission variables ν to permissions Λ;

• A substitution θ solves (Ψ,C) if Ψθ ` xθ ≺ yθ for all x ≺ y ∈C.

Algorithm W runs in two phases: the first, A , produces a triple comprising a typing environment Ψ,
an annotated program H?, and a collection of constraints C, all containing variables over permissions Λ.
The set of constraints is then passed to a constraint solver, that either produces a substitution θ or fails.
In the former case, the output of W is the pair (Ψθ ,H?θ); in the latter W fails. In practice, we do not
need to generate H? or to perform the substitutions; our compiler accepts H if the produced collection of
constraints is solvable, and rejects it otherwise.

Generating constraints Algorithm A , described in Figure 10, visits the program twice. On a first step
it builds an initial type environment Ψ0 = {li : τ?

i }i∈I collecting the types for all code blocks in the given
program {li : τi{Ii}}i∈I , annotating with permission variables (denoted by ν and ρ) the intervals for the
locks bound in forall types; on a second visit it generates the constraints and the annotated syntax for the
instructions in each code block.

The algorithm for instructions, I , also shown in Figure 10, generates annotations for the singleton
lock type introduced in newLock instructions, or further constraints in the case of the jump-to-critical
instruction. In the case of a fork instruction, the algorithm calls function V to obtain the required
permission Λ′ and passes the difference Λ\Λ′ to the function that annotates the continuation I.

The algorithm for values, V , generates constraints in the case of type application. Finally, the al-
gorithm for types annotates the singleton lock types in forall types. In the definition of all algorithms,
permission-variables ν ,ρ,~νi,~ρi are freshly introduced.

Example For the running example, we first rename all bound variables so that the type of code block
liftLeftFork mentions l1 and m1, that of liftLeftFork mentions l2 and m2, and that of eat uses l3 and m3. For
example:

liftRightFork ∀[l2].∀[m2].(r1:〈l2〉l2 , r2:〈m2〉m2) requires {l2}
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A ({li : τi{Ii}}i∈I) = (∪i∈IΨi,{li : τ
?
i {I?

i }}i∈I,∪i∈ICi)

where τ
?
i = ∀[~λi : (~νi,~ρi)].(Γi requires Λi) = T (τi)

and (I?
i ,Ψi,Ci) = I (Ii,{li : τ

?
i }i∈I ∪{~λi : (~νi,~ρi)},Γi,Λi)

I ((λ ,r := newLock; I),Ψ,Γ,Λ) = ((λ : (ν ,ρ),r := newLock; I?),Ψ′,C)

where (I?,Ψ′,C) = I (I,Ψ]{λ : (ν ,ρ)},Γ{r : 〈λ 〉λ},Λ)
I ((if r = 0 jump v; I),Ψ,Γ,Λ) = ((if r = 0 jump v; I?),Ψ′,C1∪C2∪{Λ ≺ λ})

where (Γ′ requires (Λ]{λ}),C1) = V (v,Ψ,Γ)
and (I?,Ψ′,C2) = I (I,Ψ,Γ,Λ)
and Ψ ` Γ <: Γ

′

and λ = Γ(r)
I ((fork v; I),Ψ,Γ,Λ) = ((fork v; I?),Ψ′,C1∪C2)

where (Γ′ requires Λ
′,C1) = V (v,Ψ′,Γ)

and (I?,Ψ′,C2) = I (I,Ψ,Γ,Λ\Λ
′)

and Ψ ` Γ <: Γ
′

V (v[λ ],Ψ,Γ) = (τ[λ/λ
′],C∪{ν ≺ λ ≺ ρ})

where (∀[λ ′ : (ν ,ρ)]τ,C) = V (v,Ψ,Γ)

T (∀[~λ ].((r1 : τ1, ..., rn : τn) requires Λ)) = ∀[~λ : (~ν ,~ρ)].((r1 : T (τ1), ..., rn : T (τn)) requires Λ)

Figure 10: The tagging algorithm (selected rules).

Then, algorithm A creates an initial environment Ψ0 by generating twelve variables (ρ1 to ρ12) to
annotate the six locks (li and mi) in the three code blocks that mention locks (liftLeftFork, liftRightFork,
and eat). They are l1 : (ρ1,ρ2), . . . , m3 : (ρ11,ρ12). Revisiting the signature of code block liftRightFork,
we get:

liftRightFork ∀[m2::(ρ7,ρ8)].∀[l2::(ρ5,ρ6)].(r1:〈l2〉l2 , r2:〈m2〉m2) requires {l2}

In the second pass, while in code block main, algorithm I generates six more permission variables
(ρ13 to ρ18) to annotate the new lock variables f1 to f3 introduced with the newLock instructions. They
are: f1 : (ρ13,ρ14) . . . f3 : (ρ17,ρ18). The rest of the second pass generates new constraints in type applica-
tion and in jump-to-critical instructions. For example, in code block liftRightFork, and for value eat[l2,m2],
four constraints are generated: ρ9 ≺ l2 ≺ ρ10,ρ11 ≺ m2 ≺ ρ12. Then, in the jump-to-critical instruction,
if r3= 0 jump eat[l2,m2], and since the thread holds lock l2 (as witnessed by its signature requires (l2)), a
new constraint {l2} ≺ m2 is generated. The thus created set of constraints is then passed to a constraint
solver, which is bound to fail.

Main result For soundness we start with a few lemmas.

Lemma 6 (Value soundness). If V (v,Ψ,Γ) = (τ,C) and θ solves (Ψ,C) then Ψθ ;Γθ ` v : τθ .

Proof. (Outline) The proof proceeds by induction on the inference tree for Ψθ ;Γθ ` v : τθ performing
case analysis on the last typing rule applied.
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Lemma 7 (Instruction soundness). If I (I,Ψ,Γ,Λ) = (I?,Ψ′,C) and θ solves (Ψ′,C) then Ψ′θ ;Γθ ;Λθ `
I?θ and Ψ ⊆ Ψ′.

Proof. (Outline) The proof proceeds by induction on I. The cases for conditional jump and fork use
Lemma 6.

Theorem 8 (Soundness). If W (H) = (Ψ,H?) then Ψ ` H?.

Proof. (Outline) Follows directly from Lemma 7 using typing rules for heap values and heaps. We use
weakening on typing environments before applying the heap rule.

Conversely, we believe that if Ψ ` H?, then W (E (H?)) does not fail, where E is the obvious lock-
order annotation erasure function. A stronger result would include a notion of principal solutions.

6 Related Work and Conclusion

Related work The literature on type systems for deadlock freedom in lock-based languages is vast;
space restrictions prohibit a general survey. We however believe that the problem of type inference for
deadlock freedom in lock-based languages has been given not so much attention in high-level languages,
let alone low-level (assembly) languages. Three characteristics separate our work from most proposals
on the topic: the non block structure of the locking primitives, the facts that threads never block and that
they may be suspended while holding locks.

Following Coffman et al. one can classify the problem of deadlock under the categories of detection
and recovery, avoidance and prevention [5, 9]. In the first category, detection and recovery, on finds for
example works that check deadlocks at runtime. Cunningham et al. infer locks for atomicity in an object-
oriented language, but use a runtime mechanism to detect when a thread’s lock acquisition would cause
a deadlock [11]. Java PathFinder [7] and Driver Verifier [3] identify violations of the lock discipline
during runtime tests. Agarwal et al. [1, 2] present an algorithm that detects potential deadlocks involving
any number of threads.

Under the avoidance category on finds, e.g., a recent work by Boudol where a type and effect system
allows for the design of an operational semantics that refuses to lock a pointer whenever it anticipates to
take a pointer that is held by another thread [5].

Our work falls into the third category above, prevention. Flanagan and Abadi present a functional
language with mutable references where locking is block structured and threads physically block [12].
From this work we borrowed the idea of singleton lock types to describe, at the type level, a single lock.
Type based deadlock prevention has also been study in the realm of object-oriented languages, where,
e.g., Boyapati et al. use a variant of ownership types for preventing deadlocks in Java, performing partial
inference of annotations, but not of those related to lock order [6].

Suenaga proposes a concurrent functional language similar to Flanagan and Abadi’s mentioned
above, except that it features non block structured locking [16]; his language includes separate prim-
itives for locking/unlocking, as in our case. Albeit targeting at different level of abstraction, the results
(deadlock prevention) and the techniques (type inference) in both works are similar, in particular the
usage of a constraint-based algorithm to infer types. Differently from our case, Suenaga uses ownership
types rather than singleton lock types.
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Concluding remarks We have presented a type system that enforces a strict partial order on lock
acquisition, guaranteeing that well typed programs do not deadlock. Towards this end we extended
the syntax of our language to incorporate annotations on the locking order. Acknowledging that the
annotation of large assembly programs (either manually or as the result of a compilation process) is not
plausible, we have introduced an algorithm that infers the required annotations. The algorithm is proved
to be correct, hence that programs that pass our compiler are exempt from deadlocks.

The current implementation of the algorithm generates, from a non-annotated program, a set of con-
straints in the form of a Prolog goal. The goal is then checked against a Prolog program that implements
the ≺ relation in Figure 5. We consider the program typable if the goal succeeds. There is no point in
building the annotated syntax or performing the substitution, as explained in Section 5. Future work in
this area includes the automation of the whole process either by calling the Prolog interpreter from within
the compiler, or by implementing relation≺ directly in Java, the language of our type checker/interpreter.

Future work also includes trying to assess the usage of our type checker on larger programs, generated
for example from an imperative high-level language, and to further compare the singleton lock types and
the ownership types approaches for the description of non block structured locking.
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