
HLCL’98 to appear

Distribution and Mobility with Lexical Scoping
in Process Calculi

Vasco T. Vasconcelos a,1 Lúıs Lopes b,2 Fernando Silva b,2

a Department of Computer Science, University of Lisbon, Portugal
b Department of Computer Science, University of Porto, Portugal

Abstract

We propose a simple model of distribution for mobile processes, independent of
the underlying calculus. Conventional processes compute within sites; inter-site
computation is achieved by message sending and object migration, both obeying
a lexical scope. We focus on the semantics of networks, on programming practice,
and on physical realization with current technology.

1 Introduction

Milner, Parrow, and Walker’s π-calculus [12] has provided a formal frame-
work for most of the research on concurrent, communication based systems.
Several forms and extensions of the asynchronous π-calculus [9] have since
been proposed to provide for more direct programming styles, and to improve
efficiency and expressiveness [3,6,18]. The π-calculus has also been used as
a basis to reason about distributed computations. Introducing distribution,
code mobility, and failure detection and recovery into π-computations is a fast
growing research field, with immediate applications in mobile computing, web
languages, cryptography, to name a few.

We propose a simple model of distribution for mobile processes. The fol-
lowing major constraints guided its design:

(i) the model must be a simple extension of the calculi we have today;

(ii) must be independent of the base calculus chosen;

(iii) must meet realistic expectations of current distributed systems;

(iv) must be efficiently implementable in current hardware.

1 Partially supported by Project Escola PRAXIS/2/2.1/MAT/46/94.
2 Partially supported by Project Dolphin PRAXIS 2/2.1/TIT/1577/95.

This is a preliminary version. The final version can be accessed at
URL: http://www.elsevier.nl/locate/entcs/volume16.html

Vasconcelos, Lopes, and Silva

No distributed system can be conceived without the notion of site (or
location) where conventional (name-passing, in this case) computations take
place. So we have sites, and we have site identifiers, distinct from the usual
names. Our processes are network aware: names can be local or remote; the
distinction is explicit in the syntax. Local names are those of the base calculus;
remote names are pairs site-name, called located names.

Sites abstract nodes in a network. They are composed of located processes
— processes paired with site identifiers — denoting the execution of the pro-
cess in the site, which is similar to most proposals to date [1,7,8,14,16]. Lo-
cated processes can be put to run in parallel. Furthermore, since name-passing
calculi are capable of extruding the scope of a (local) name, our networks are
equipped with a located name restriction operation. In summary, networks
are located processes equipped with a composition and a restriction operator,
yielding a flat organization of sites quite close to Distributed-π [14], and in
contrast with the tree structure of Mobile Join [7], and the nested structure
of Ambients [5].

The model encompasses two levels: processes and networks (cf. [1,8,14]).
Local computations happen at located processes, as prescribed by the se-
mantics of the base calculus. What do we want for remote computations?
For the moment we only allow the communication of prefixed processes be-
tween different sites. These include remote message invocation (messages in
the asynchronous π-calculus [9], Join [6], or TyCO [18]), the migration of
procedures (input-prefix processes in π-calculus and resources in the Blue cal-
culus [3], replicated or not), the migration of objects (in TyCO), and the
migration of messages with continuations (output-prefix processes in the π-
calculus). The transport of prefixed processes is deterministic, point to point,
and asynchronous; synchronization only happens locally, at reduction time.

We adhere to the lexical scoping in a distributed context of Obliq [4]. The
free names of any “piece of code” transmitted over the network are bound
to the original location. Network transmission implies the translation of the
free names in the code in order to reflect the new site where the code is to be
executed.

An important design decision related to points (iii) and (iv) above is the
incapacity of the model to create remote names and the inability to spawn
processes at remote sites, thus providing for site protection against arbitrary
uploads. Section 3.4 shows how this can be circumvented with the collabora-
tion of the remote site.

As a first proposal, our site identifiers are not first class objects: they
cannot be sent in messages; we deliberately eschew the possibility of checking
whether a site is alive and of killing a site [1,7,14], of checking whether two
remote names reside at the same site [16], of comparing site identifiers, of
dynamically constructing a located name given a name and a site identifier.

The outline of the paper is as follows. The next section introduces the
network model, its syntax and semantics; section 3 presents several program-

2

Vasconcelos, Lopes, and Silva

ming examples that attest the flexibility of our proposal; section 4 discusses
implementation; and section 5 includes a comparison with related work. The
last section presents ideas for future development.

2 The Model

The ideas presented in the previous section can be embodied in any name-
passing calculus. The model is two level: on the first level we have the processes
in the base calculus; on the second level we build networks.

We have said that our model is independent of the base calculus. There
are however a few conditions that it must fulfill:

(i) the base calculus may incorporate values in general, and should provide
for names in particular. For the purpose of this exposition, we let a range
over names, and v over values.

(ii) it should allow to create a new name visible only in a given process,
obeying the lexical scoping convention. We write νxP , as usual.

(iii) it should have processes prefixed on some name. Examples are output
and input prefixes (avP , a(x)P , !a(x).P) in the π-calculus [12], messages
and objects (a�m, a�M) in TyCO [18], requests for session initiation
(accept a(k) in P , request a(k) in P) in Structured Communication-
Based Programming [10], and names and resources (a, a⇐ P , a = P) in
the Blue calculus [3]. All the above examples are prefixed at name a; for
the purpose of this exposition we write them aC.

(iv) it should have a parallel composition operator and the corresponding
neutral element. We write them | and 0, respectively.

(v) it should incorporate a notion of substitution of names by values in a
process, avoiding the capture of the names substituted. If P is a process
and σ a total function from names to values, we denote by Pσ the process
resulting from applying σ to P .

We find these requirements mild; most calculus to date [3,9,10,12,18] fulfill
these constraints. A possible exception is the Join calculus [7] and item (iii)
above.

We start by introducing a new class of identifiers, sites, distinct from names
or any other class of identifiers the base calculus may include. Located names
are site-name pairs. We let s range over sites, and e over located names. A
name a located at site s is denoted by s·a. We then allow located names to
occur in any position in the base calculus where (non-binding occurrences of)
names can. The calculus thus obtained constitutes the first level of the model.
Since site identifiers are introduced anew, there must be no provision in the
base calculus for binding located names. As such, at this level, a located name
behaves as any other constant in the base calculus.

The second level is composed of site-process pairs called located processes

3

Vasconcelos, Lopes, and Silva

(denoted s : P), composed via conventional parallel (N ‖ N) and (located
name) restriction (νeN) operators. The set of networks is given by the fol-
lowing grammar.

N ::= s : P | N ‖ N | νeN | 0

The bindings in networks are as expected: a located name e occurs free in
a network if e is not in the scope of a νeN ; otherwise e occurs bound. The set
of free located names in a network N , notation fn(N), is defined accordingly.

Structural congruence allows us to abstract from the static structure of
networks; it is defined as the least relation closed over composition and restric-
tion, that satisfies the monoid laws for composition, as well as the following
rules taken from Hennessy-Riely [8]. 3

(Nil) s : 0 ≡ 0

(Split) s : P1 ‖ s : P2 ≡ s : (P1 | P2)

(New) s : νaP ≡ νs·a(s : P)

(Extr) N1 ‖ νeN2 ≡ νe(N1 ‖ N2) if e 6∈ fn(N1)

Rule Nil garbage collects terminated located processes. When used from
left to right, the rule Split gathers processes under the same location, allowing
reduction to happen; the right to left usage is for isolating prefixed processes
to be transported over the network (see rule Move in the reduction relation
below). The remaining rules allow the scope of a name local to a process to
extrude (rule New) and encompass a network with several located processes
(rule Extr).

Non-located names in processes are implicitly located at the site the pro-
cess occurs at: a name a occurring in a network s : P is implicitly located at
site s. When sending names over the network, the implicit locations of names
need to be preserved, if we are to abide by the lexical scoping convention.
As such, a name a moving from site r to any other site must become r·a.
Similarly a located name s·a arriving at site s may drop its explicit location.
The remaining names and values need no translation. A translation of values
from site r to site s is a total function σrs defined as follows: 4

σrs(a)
def
= r·a σrs(s·a)

def
= a σrs(v)

def
= v

Processes prefixed at located names play a crucial role in the model, by
moving towards the location of the located name: a process s·aC is meant to
move to site s. If aC is a message (say av in the asynchronous π-calculus), then
s·aC denotes a remote message send; if on the other hand aC includes “some
code” (say a(x)P in the π-calculus), then s·aC denotes a process migration

3 Rules Nil, Split, and Extr are present in Sewell et al. [16] as well.
4 The last rule should be applied last.

4

Vasconcelos, Lopes, and Silva

operation. We thus see that conceptually there is not much difference between
a remote message send and a process migration; in section 4 we show that from
an implementation point of view the difference is not abysmal either.

The reduction relation for networks is given by the following axiom and
rule, plus the familiar rules for composition, restriction, and structural con-
gruence which we omit.

(Move) r : s·aC → s : a(Cσrs) (Local)
P → Q

s : P → s : Q

If prefix s·aC is located at site r, then, in order to keep the lexical scope
of names, the free names in C must translated according to Cσrs. So, when
sending s·aC from r to s we actually transmit (s·aC)σrs = aCσrs. This is the
essence of the axiom Move. Rule Local allows processes in sites to evolve
locally.

As an example let us try a remote procedure call in the π-calculus. The
client at site s invokes the procedure p at site r with a local argument v, waits
for the reply and continues with P . The procedure accepts a request and
answers a local name u (somewhere in the body Q of the procedure).

s : νa(r·p[va] | a(y).P) ‖ r : p(xc).Q ≡ (New,Extr)

νs·a(s : r·p[va] ‖ s : a(y).P ‖ r : p(xc).Q)→ (Move)

νs·a(r : p[s·v s·a] ‖ s : a(y).P ‖ r : p(xc).Q)) ≡ (Split)

νs·a(s : a(y).P ‖ r : (p[s·v s·a] | p(xc).Q))→ (Local)

νs·a(s : a(y).P ‖ r : Q[s·v s·a/xc])→∗

νs·a(s : a(y).P ‖ r : s·a[u])→→ (Move,Split,Local)

νs·a(s : P [r·u/y]) ≡ s : νaP [r·u/y] (New)

We thus see that a remote communication involves two reduction steps:
one to get the message/object to the target site and the other to consume the
message/object at the target (cf. [7]); the former is an asynchronous operation,
the latter requires a rendez-vous. This reflects actual implementations.

3 Programming

Pick your favorite name-passing programming language, and simply add two
new declarations.

export name in process

import name from site in process

There is no need to change the syntax of the base language whatsoever. In
particular we never write located names explicitly. The translation into the

5

Vasconcelos, Lopes, and Silva

base calculus extended with located names is quite simple.

[[export a in P]]
def
= [[P]]

[[import a from s in P]]
def
= [[P [s.a/a]]]

We thus see that the export declaration is really unnecessary. Since pro-
grams are to be closed, we could take the view that every free name in a
program is to be exported. From a programming point of view we however
feel that the dual import/export declarations impose a more disciplined pro-
gramming style, avoiding, for example, the automatic exporting of names that
the programmer forgot to protect with a new.

The remainder of this section is devoted to the presentation of several pro-
gramming examples that attest the flexibility of the model. The new ideas are
embodied in our favorite name-passing programming languages: TyCO [17],
and Structured Communication-Based Programming [10].

3.1 Java applet server

Our first example illustrates code transmission over the network. The idea is
from Fournet et al. [7], but we have taken advantage of objects in TyCO to
allow for the downloading of different applets.

In order to set the context for the example we briefly review TyCO [18,17].
TyCO is a name-passing calculus in the line of the asynchronous π-calculus [9]
that incorporates, in place of (unlabeled) messages and receptors (av, a(x).P),
labeled messages and objects composed of methods.

a!l[ṽ] a?{l1(x̃1) = P1, . . . , ln(x̃n) = Pn} message/object

In the syntax above, a is a name, ṽ, x̃1, . . . , x̃n are sequences of names, and
l, l1, . . . , ln are labels. Labels constitute a syntactic category distinct from
names. Labels l1, . . . , ln, and names in each x̃i, are pairwise distinct. A mes-
sage a!li[ṽ] selects the method li in an object a?{l1(x̃1) = P1, . . . , ln(x̃n) = Pn};
the result is the process Pi where names in ṽ replace those in x̃i. These primi-
tives are further combined by the following standard constructs in concurrent
programming.

P1 | P2 concurrent composition

new x P name hiding

def X1(x̃1) = P1 and . . . and Xn(x̃n) = Pn in P recursion

X[ṽ] instantiation

Contrary to the conventional practice in name-passing calculi, we let the

6

Vasconcelos, Lopes, and Silva

scope of a new extend as far to the right as possible. We single out a label —
val— to be used in objects with a single method. This allows to abbreviate
messages and objects. The let constructor is quite useful in getting back
results; the syntax is taken from Pict [13].

a![ṽ] abbreviates a!val[ṽ]

a?(x̃) = P abbreviates a?{val(x̃) = P}

let x = a!l[ṽ] in P abbreviates new r a!l[ṽr] | r?(x) = P

This finishes the introduction of all language constructs we shall use in
this section; we may now go into our example. An applet server provides for
the downloading of k different applets through the k methods of an object.
The server locates applet Pj at the name p provided with the invocation of
method appletj . Here is the code to be run at site sumatra.

def AppletServer (self) =
self ? {

applet1(p) = p?(x)=P1 | AppletServer[self],
. . .

appletk(p) = p?(x)=Pk | AppletServer[self]}
in export appletserver
in AppletServer[appletserver]

Each client creates a fresh name where the applet server is supposed to
locate the applet, then invokes the server with this name and, in parallel,
triggers the applet.

import appletserver from sumatra
in new p appletserver!appletj [p] | p![v]

Let us see how the server and the client interact. We start by translating
the import/export clauses to obtain

sumatra: def . . . in AppletServer[appletserver] ‖
client: new p sumatra·appletserver!appletj [p] | p![v]

Then, the message sumatra·appletserver!appletj [p] moves to the server (yield-
ing the message appletserver!appletj [client·p]) with one Move reduction step,
one local reduction at the server invokes the appletj method, and one final
Move step migrates the applet client·p?(x)=Pj back to the client, yielding
the process: 5

sumatra: def . . . in AppletServer[appletserver] ‖
client: new p p?(x)=Pjσsumatra client | p![v]

Notice how the structural congruence rules New and Extr are used (from

5 Incidentally, three is the number of reduction steps that Mobile Join [7] takes to perform
the same operation.

7

Vasconcelos, Lopes, and Silva

left to right) to allow name p at client to encompass both sites, and then (from
right to left) to bring p local to the client again. Notice also that the applet
body gets translated to reflect its new site: if P refers to some name a local
to the applet server, then Pjσsumatra client refers to the remote name sumatra·a.

It should be obvious that a client does not need to download the applet to
its site; a message appletserver!appletj [s·p] will load the applet at site s.

3.2 Compute server

The next example, inspired by Cardelli [4], distinguishes local from remote
computation. A compute server provides two operations, lexec and rexec,
allowing the execution of a given parameterless procedure P at the client site
and at the server site, respectively. Here is the code to be run at site borneo.

def ComputeServer (self, replay) =
self ? {

lexec(p) =
p![] | ComputeServer[self, p],

rexec(replyTo) =
new p replyTo![p] | p![] | ComputeServer[self, p]}

in export computeserver
in ComputeServer[computeserver,]

The method for local execution triggers the procedure located at name p.
Once again, exactly where the procedure runs depends on where p is located,
and that is in the hands of the client. The method for remote execution
provides for the migration of the procedure to the server by creating a new
name p (local to the server) and by sending it back to the client. The client
is then supposed to locate the procedure at this name while, as in the applet
example, the server triggers the procedure. As in the original example [4], the
server cheats on clients by storing the latest client procedure in (this time) a
local variable. 6

Here is a possible client.

import computeserver from borneo
in new p p?()=P | computeserver!lexec[p] | – local execution

let p = computeserver!rexec[] in p?()=P – remote execution

For the local execution, the client creates a new name p where it locates
the procedure, and invokes lexec with argument p. For the remote execution
the client waits for a name from the server and locates the procedure at this
name. In both cases the triggering is done by the server. We can see that
the difference between the two kinds of execution is centered on where the
procedure identifier p is located.

6 Since the variable replay is local to the server, there is not much use to it. We could
however add a replay method to ComputeServer: replay() = replay![] | ComputeServer[self,
replay].

8

Vasconcelos, Lopes, and Silva

While in the previous example, the applet server defines the procedures
(applets) and provides for the uploading, in this example it is the client that
defines the procedures to be run. The local execution takes three reduction
steps until P is ready to be triggered; the remote execution takes five steps
to accomplish the same. The two extra steps involve asking for and getting a
name p local to the server, where the procedure is to be located.

3.3 Spawning processes

An important design decision is that “remote channel creation is only possible
with a remote friend.” Hence “new name at site” is something we cannot
write. 7 The knowledge of a site name must not award the possibility of
directly accessing the site’s memory. The consequences would be far reaching.
In particular, such a construct would allow the spawning of arbitrary processes
regardless of the willingness of the server to accept the processes. Spawning
a process P at site s without s’s consent could be easily written as 8

new a at s a?()=P | a![].

Instead, to model arbitrary migration, we require the collaboration of some
friend in the remote location to provide a remote name. Friends can be written
as follows.

Friend(self) = self?{newName(replyTo) = new a replyTo![a] | Friend[self]}

Thus, spawning a process P in a location where we have aFriend can be modeled
as

spawn P at aFriend
def
= let p = aFriend!newName[] in p?()=P | p![].

We have already used this technique in the remote execution method of the
compute server (section 3.2) only that there the migrating process is triggered
by the server.

An immediate application of this technique allows us to send a computation
to a remote server and to get the results (cf. [7]). Here the client defines the
request, the request moves to the server, runs there, and sends the result back
to the client. Suppose that R is a request that eventually issues a message
a![v] with the result v, and e is the name of a friend at the server. Then, we
may send R to the remote server, get the result in x and continue with P, by
simply writing:

new r spawn R at e | a?(x)=P.

We can specialize remote friends. Here is one that accepts the migration of
arbitrary processes (with the necessary collaboration of the client; see method
rexec of the compute server, section 3.2), and invokes them.

7 We stick to the idea of not writing located names explicitly. The counterpart in the
(extended) base calculus would be νs·aP . Sewell et al. [16] write (new a@s)P .
8 Amadio writes spawn(s, P) [1]; Hennessy-Riely write s :: P [8], and also goto(s, P) [14].

9

Vasconcelos, Lopes, and Silva

Friend(self) = self?{migrate(replyTo) = new a replyTo![a] | a![] | Friend[self] }

Since the procedure is triggered at the server, this version saves one remote
message passing when compared to the method newName. We could go one
step forward and stipulate a gateway for each site providing for all the services
we could anticipate for the site, as in Amadio [1]. The gateway name would
then represent the site itself and we could work with gateway names as if we
were dealing directly with sites.

There is also an implementation related reason why we do not want remote
name creation. All our remote primitives (but export/import) are accom-
plished with a single (asynchronous) remote message passing. To implement
remote name creation we would need two remote messages (one asking for the
creation, the other replying the name created).

3.4 Migrating a buffer cell

This example uses the friends discussed above. Inspired on Amadio’s “migra-
tion stack” [1], we have down sized the stack into a one-place buffer cell in
order to simplify the migration of the state. Our cell provides for read , write,
and move operations. The last operation allows the migration of the whole
cell (that is, the cell itself and its value) to a new site. The invoker of the
move operation must provide for a friend at the remote location; in return it
gets the new location of the cell. We assume that the value the cell is holding
possesses a move method as well.

def Cell (self, value) =
self ? {

write(newVal) =
Cell[self, newVal],

read(replyTo) =
replyTo![value] | Cell[self, value],

move(aFriend, replyTo) =
let newSelf = aFriend!newName[]
in let newVal = value!move[aFriend]
in replyTo![newSelf] | Cell[newSelf, newVal]}

3.5 FTP server

Our final example is written in Structured Communication-Based Program-
ming [10] extended with import/export declarations, thus showing that the
ideas of this paper can be embodied into different languages. Before we go
into the example we briefly review the syntax of the language.

The idea central to the idiom is a session. A session is a series of recip-
rocal interactions between two parties, possibly with branching and recursive
structures, and serves as a unit of abstraction for the structure of interaction.
Communications which belong to a session are done via a port specific to that

10

Vasconcelos, Lopes, and Silva

session. A fresh channel is generated when initiating each session, for the use
in communications in the session. To initiate a session we use request and
accept commands.

request a(k) in P accept a(k) in P initiation of a session

A request first requests, via a name a, the initiation of a session as well as
the generation of a fresh channel k, then P would use the channel for later
communications. An accept, on the other hand, receives the request for the
initiation of a session via a, generates a new channel k, which would be used
for communications in P . The parenthesis (k) and the keyword in shows
the binding and its scope. Via a channel of a session, three kinds of atomic
interactions are performed: value passing (including name passing), branching,
and channel passing (or delegation).

k![e1 . . . en];P k?(x1 . . . xn) in P data sending/receiving

k � l;P k � {l1 = P1, . . . , ln = Pn} label selection/branching

throw k[k′];P catch k(k′) in P channel sending/receiving

Data sending/receiving is the standard synchronous message passing. Here
ei denotes an expression such as arithmetic/boolean formulae as well as names.
The branching/selection is the minimization of method invocation in object-
based programming. l, l1, . . . , ln are labels. Similarly to TyCO, variables
x1, . . . , xn and also labels l1, . . . , ln are pairwise distinct. The channel send-
ing/receiving, which we often call delegation, passes a channel which is being
used in a session to another process, thus radically changing the structure of a
session. Sessions are combined via concurrent composition, name hiding, and
recursion, as described in section 3.1 for TyCO.

Our example, taken from Honda et al. [10], is composed of an FTP server
and a pool of threads. The FTP server establishes a session with a client and,
after authenticating the client (code not shown), delegates the session to some
idle thread. The server is then free to take another client request. The novelty
of the example is that threads may be located at a different machine.

def Ftpd (self, ready) =
accept self(aClient)
in accept ready(aThread)
in throw aThread[aClient] | Ftpd[self, ready]

in export ftp
in import ready from threadSite
in Ftpd[ftp, ready]

Site ftpServer runs the above code while importing name ready from the
site providing for the threads, and exporting name ftp to potential clients.

11

Vasconcelos, Lopes, and Silva

def Thread (ready) =
accept ready(ftp)
in catch ftp(aClient)
in def Actions() =

aClient � {
put= aClient?(aFile) in · · · Actions[],
get= aClient?(aFilename) in · · · Actions[],
quit= Thread[ready]}

in Actions[]
in export ready
in Thread[ready]

Threads run at threadSite, exporting name ready to potential ftp-servers.
Idle threads accept service from the ftp-server and catch client’s sessions. The
session with the client is then initiated by means of the loop Actions. Here is
a client that requests a session with the ftp server, puts a file and quits.

import ftp from ftpServer
in request ftp(aSession)
in aSession�put; aSession![myFile]; aSession�quit

4 Implementation

The model discussed in section 2 can be easily incorporated in the TyCO
programming environment.

For the implementation of base processes we rely on the technology we have
developed: the TyCO abstract machine [11], TyCOAM for short. Programs
in TyCO are first compiled into an intermediate assembly language and then
assembled into byte-code files, which in turn are emulated by the TyCOAM.

To emulate a byte-code program, a TyCOAM relies on two distinct address
spaces: a heap and a program area. The program area contains static data
and the byte-code. The heap is used for dynamic allocation of frames (blocks
of contiguous machine words) for data-structures such as messages, objects
and channels. Message frames contain the label and the arguments of the
message; object frames contain the address of the object’s method table in
the program area, and the values for the object’s free variables. Channels are
queues of either messages or objects (or empty) waiting for reduction.

Sites are abstract “places” where computations evolve. We associate a
unique TyCOAM with each site. To take advantage of multiprocessors, we
do not map sites one-to-one with IP addresses. Instead we allow several sites
to coexist at a given IP node. Therefore, a site identifier is a pair ip-location
where location is a small natural number selecting a site within the IP node.
To handle communication between distinct sites we endow each IP node with a
communication daemon, TyCOd for short. Thus each IP node is formed by an
arbitrary number of TyCOAMs plus a TyCOd. Sites at the same IP node run

12

Vasconcelos, Lopes, and Silva

in parallel (if the architecture allows), or interleaved (in mono-processors). In
either case, the scheduling of the TyCOAMs is left either to a thread package
or to the local OS kernel. Within and IP node, each site has its own address
space in a global shared memory; the TyCOd has access to each of these
address spaces. Figure 1 illustrates the architecture of an IP node.

Network

Outgoing
Site

Message
or Object

Message
or Object

Site

SiteTyCOd

Incoming

Incoming

Incoming

Fig. 1. IP Node Architecture

Each TyCOd maintains a symbol table relating exported names with local
channels. All export/import declarations in a program are processed at launch
time: an “export name” declaration updates the symbol table with the channel
associated with name; an “import name from site” clause enquires site for the
channel of name and binds the result locally.

For remote messages, the TyCO compiler generates a specialized assem-
bly instruction – remote-message, instead of the usual try-reduce-message
which is used for local communication. Similarly, for object migration, a spe-
cialized remote-object instruction is generated in place of the usual try-
reduce-object.

A TyCOAM (a site in the figure) executes a remote-message instruction
by sending to the local TyCOd a request with the target site identifier and the
address of the message-frame currently in the heap. The request is placed in a
outgoing queue maintained by the TyCOd. The daemon eventually processes
the request by translating the names in the message frame as defined in sec-
tion 2, packing the translated frame into an appropriately formated buffer, and
then sending the buffer through the network. If the target site is within the
same IP node, significant optimizations can be performed. The same approach
is taken for remote-object instructions. The TyCOd receives a request with
the target site identifier and the address of the object-frame. The daemon
translates the values (of the free variables of the object) in the frame, uses the
address of the object’s method table in the frame to extract the byte-code for
the object, and sends the translated frame and the byte-code to the TyCOd
at the target IP address.

13

Vasconcelos, Lopes, and Silva

When a remote message or object arrives, the local TyCOd unpacks the
buffer into a freshly allocated frame from the heap space of the appropriate
site, and places it in the site’s incoming queue. In the case of an object the
byte-code for the methods and the method-table is copied and dynamically
linked to the program currently running at the site. Before running a new
thread the site checks its incoming queue and processes all messages and
objects in it.

5 Related Work

Sewell et al. build, on top of the π-calculus, a system that identifies sites,
and that allows agents (processes located at a given name) to be themselves
located at sites [16]. The runtime system takes care of the current location of
agents. The model includes primitives to create a new agent at the current
site, to migrate an agent to a site, and to check whether two agents reside at
the same site. Our model does not contemplate the notion of agents in this
sense.

Fournet et al. introduce a migration primitive that allows a whole running
location to move into a new position in the tree of locations (and to trigger
some process upon arrival) [7]. In contrast to our proposal where remote
names have an explicit syntax, the syntax of Join ensures that names have a
unique site at which they are serviced.

Amadio identifies configurations composed of locations, messages, and pro-
cesses running at locations [1]. Messages include conventional remote messages
plus three primitives: to stop a location, to spawn a process at a location, and
to check whether a location is alive. As mentioned in the introduction, we
have decided not to incorporate these primitives.

Riely and Hennessy identify a CCS based calculus in which processes run
at locations. “The language provides operators to kill locations, test the status
(dead or alive) of locations, and to spawn processes at remote locations” [14].

Hennessy and Riely’s distributed π-calculus [8] is probably the project
closest to ours. Among the dissimilarities, Dπ allows the arbitrary spawning
of processes at remote locations, and is incapable to send a message directly
to a remote location (instead a process that sends the message locally must
be spawned at the location).

6 Conclusion

We have presented a model of distribution for process-calculi. The proposal
includes among its virtues: the possibility of being embodied in most process
calculi (section 2 discusses the assumptions on the base calculus), the extreme
simplicity of networks, and the feasible implementation in current hardware.
All these features come with a price.

14

Vasconcelos, Lopes, and Silva

(i) Sites are not first class citizens. Site identifiers, constituting a class dis-
tinct from names, need a whole set of operations. There is no point in
allowing site names to be passed in messages if we cannot at least perform
one the following operations: to create sites locally, to compare sites for
equality/inequality, to dynamically form a located name given a site and
a name, to test whether a site is alive, to kill a site.

(ii) The model is unable to move a running process (or a whole site) to a
different location (cf. [7,16]). We can launch a process at a remote site,
but after the process is running there is no means to have it migrated. In
particular, we can send a computation to a remote server and get back
the result, but not the computation itself (see section 3.3).

We identify four lines for future research.

(i) Enhancing the expressiveness of the language taking into consideration
the points identified above.

(ii) The study of the semantic properties of the model proposed.

(iii) The study of type systems to discipline remote computations. It is our
believe that a form of distributed subject-reduction is attainable. Also,
mixing static with dynamic checking is a promising research direction
(cf. [15]).

(iv) The actual implementation of the model into two available hardware
architectures: 2 Quad-Pentium Pro machines interconnected with Fast
Ethernet, and 8 Dual Pentiums interconnected with Myrinet [2].

Acknowledgments. The first author would like thank Matthew Hennessy,
Julian Rathke, and Kohei Honda for fruitful discussions.

References

[1] Roberto M. Amadio. An asynchronous model of locality, failure, and process
mobility. In COORDINATION’97, volume 1282 of LNCS, pages 374–391.
Springer-Verlag, 1997. Full version as Rapport Interne, LIM Marseille, and
Rapport de Recherche RR-3109, INRIA Sophia-Antipolis, 1997.

[2] Nanette J. Boden et al. Myrinet: A gigabit per second local area network.
IEEE-Micro, 15(1):29–36, February 1995.

[3] Gérard Boudol. The pi-calculus in direct style. In 24th ACM Symposium on
Principles of Programming Languages, pages 228–241. ACM Press, 1997.

[4] Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27–
59, January 1995.

[5] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In FoSSaCS’98,
volume 1378 of LNCS, pages 140–155, 1998.

15

Vasconcelos, Lopes, and Silva

[6] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine
and the join-calculus. In 23rd ACM Symposium on Principles of Programming
Languages, pages 372–385. ACM Press, 1996.

[7] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and
Didier Rémy. A calculus of mobile agents. In Ugo Montanari and Vladimiro
Sassone, editors, Proceedings of CONCUR ’96, volume 1119 of LNCS, pages
406–421. Springer, 1996.

[8] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. Technical Report 2, Computer Science, University of Sussex,
February 1998.

[9] Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. In 5th European Conference on Object-Oriented Programming,
volume 512 of LNCS, pages 141–162. Springer-Verlag, 1991.

[10] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives
and type disciplines for structured communication-based programming. In
ESOP’98, volume 1381 of LNCS, pages 122–138. Springer-Verlag, 1998.

[11] Lúıs Lopes, Fernando Silva, and Vasco T. Vasconcelos. Compiling process
calculi. DCC 98–3, DCC-FC & LIACC, Universidade do Porto, March 1998.

[12] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, I and II. Information and Computation, 100:1–77, 1992.

[13] Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. CSCI Technical Report 476, Indiana University, March 1997.

[14] James Riely and Matthew Hennessy. Distributed processes and location
failures. In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-
Spaccamela, editors, Proceedings of ICALP ’97, volume 1256 of LNCS, pages
471–481. Springer, 1997. Full version as Report 2/97, University of Sussex,
Brighton.

[15] James Riely and Matthew Hennessy. Trust and partial typing in open systems
of mobile agents. Technical Report 4, Computer Science, University of Sussex,
July 1998.

[16] P. Sewell, P. Wojciechowski, and B. Pierce. Location independence for mobile
agents. In Workshop on Internet Programming Languages, 1998.

[17] Vasco T. Vasconcelos and Rui Bastos. Core-TyCO, the language definition,
version 0.1. DI/FCUL TR 98–3, Department of Computer Science, University
of Lisbon, March 1998.

[18] Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus of
objects. In 1st ISOTAS, volume 742 of LNCS, pages 460–474. Springer-Verlag,
November 1993.

16

