
Core-TyCO

The Language Definition
Version 0.1

Vasco T. Vasconcelos
Rui Bastos

DI–FCUL TR–98–3

March 1998

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1700 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/biblioteca/tech-reports.
The files are stored in PDF, with the report number as filename. Alternatively, reports
are available by post from the above address.

This is the second report on TyCO [3], a (still) experimental strongly and
implicitly typed concurrent object oriented programming language based on a
predicative polymorphic calculus of objects [4, 5], featuring asynchronous mes-
sages, objects, and process declarations, together with a predicative polymor-
phic typing assignment system assigning monomorphic types to variables and
polymorphic types to process variables.

Sections 1 and 2 define the syntax and static semantics of the language, both
in the style of Standard ML [2]. Dynamic semantics is the subject of Section 3,
presented along the lines of the π-calculus [1].

Contents

1 Syntax 1
1.1 Reserved words . 1
1.2 Identifiers . 2
1.3 Grammar . 2
1.4 Syntactic restrictions . 4
1.5 Comments . 4
1.6 Derived forms for processes . 4

2 Static semantics 4
2.1 Simple objects . 4
2.2 Compound objects . 4
2.3 Operations on finite maps . 4
2.4 Recursive types, infinite trees, and typing compatibility 5
2.5 Free type variables . 5
2.6 Type schemes, closure, and instances 5
2.7 Environment modification and projection 5
2.8 Derived forms for types . 6
2.9 Types for primitive operations and objects 6
2.10 Inference rules . 6

3 Dynamic semantics 9
3.1 Free identifiers . 9
3.2 Variable substitution and α-conversion 10
3.3 Structural congruence . 10
3.4 Reduction rules . 11

1 Syntax

1.1 Reserved words

Figure 1 lists the reserved words of core-TyCO. They may not be used as
identifiers.

1

and branch def else if in inaction

into let new not or then

! ? | { } [] () , _

+ - * / % = <> > >= < <= ^

Figure 1: Reserved Words

c or const ∈ Const constants (Integer, Boolean, and String)
a, x or var ∈ Var variables

v or val ∈ Const ∪Var values
l or label ∈ Label labels

X or procvar ∈ ProcVar process variables

Figure 2: Classes of Identifiers

1.2 Identifiers

The classes of identifiers for core-TyCO are shown in Figure 2.
An integer constant (decimal notation only) is an optional negation symbol

(-) followed by a non-empty sequence of decimal digits 0–9. A boolean constant
is either true or false. A string constant is a sequence, between quotes ("), of
zero or more characters.

1.3 Grammar

The phrase classes for core-TyCO are shown in Figure 3 and the grammatical
rules in Figure 4. Brackets 〈 〉 enclose optional phrases.

program ∈ Program programs
P , Q, R or proc ∈ Proc processes

D or dec ∈ Dec declarations
bind ∈ Bind process bindings

multbind ∈ MultBind sequence of bindings
M or method ∈ Method methods

M+ or methrow ∈ MethRow method rows
e or exp ∈ Exp expressions

expseq ∈ Exp+ sequence of expressions
varseq ∈ Var+ sequence of variables
valseq ∈ Val+ sequence of values
binop ∈ BinOp binary operators
unop ∈ UnOp unary operators

Figure 3: Phrase Classes

The scope of new extends as far to the right as possible, and the operator |
takes precedence over def–in, so, for example, def D in new x P | Q means
def D in (new x (P | Q)). The precedence and associativity of the remaining
operators (including arithmetical and logical) is standard.

2

program ::= proc program

proc ::= var ! label [〈expseq〉] message
var ? { 〈methrow〉 } object
new var proc scope restriction
def dec in proc local declaration
procvar [〈expseq〉] process instantiation
proc | proc parallel composition
if exp then proc else proc conditional
inaction inaction
(proc)

dec ::= multbind sequence of bindings

multbind ::= bind 〈and multbind〉 multiple binding

bind ::= procvar (〈varseq〉) = proc process binding

methrow ::= method 〈, methrow〉 method row

method ::= label (〈varseq〉) = proc method

exp ::= exp binop exp infixed expression
unop exp prefixed expression
val value
(exp)

expseq ::= exp 〈, expseq〉 sequence of expressions

varseq ::= var 〈, varseq〉 sequence of variables

binop ::= + | - | * | / | % | ^ |
= | <> | > | >= | < | <= |
and | or

unop ::= - | not

Figure 4: Grammar

3

1.4 Syntactic restrictions

1. No label may appear twice in the same method row.

2. No method or process binding parameter list may contain the same vari-
able twice.

3. No sequence of bindings may contain the same process variable twice.

1.5 Comments

A comment is any character sequence beginning with -- and extending to the
end of the same line.

1.6 Derived forms for processes

A list of derived forms built from the primitives of the core language is shown
in Figure 5, where variable z is fresh. Symbol =⇒ means ‘rewrites to’.

2 Static semantics

2.1 Simple objects

The simple objects for the static semantics are defined in Figure 6.

2.2 Compound objects

When A and B are sets, A 7→ B denotes the set of finite maps (partial functions
with finite domain) from A to B. The domain of a finite map f is denoted
dom(f).

Figure 7 shows the compound objects for the static semantics.

2.3 Operations on finite maps

A finite map will often be written explicitly in the form {a1 : b1, . . . , an : bn},
for n ≥ 0; in particular, the empty map is {}. When an = a1 · · ·an and
bn = b1 · · · bn, we abbreviate the above finite map to {an : bn}.

When f and g are finite maps, the map f + g, called f modified by g, is the
finite map with domain dom(f) ∪ dom(g) and values

(f + g)(a) = if a ∈ dom(g) then g(a) else f(a).

When f is a finite map and A a set, f \ A, called f restricted by A, is the
finite map with domain dom(f) \A and values

(f \A)(a) = f(a).

4

2.4 Recursive types, infinite trees, and typing compatibil-
ity

Types are interpreted as regular infinite trees. A translation ()∗ from types to
infinite trees is defined as follows.

t∗ = t
%∗ = {l : α∗1 · · ·α

∗
n | l : α1 · · ·αn ∈ %}

µt.α∗ = fix(λρ.α∗[ρ/t])

Two types α and β are equivalent, denoted by α ≈ β, iff α∗ = β∗. Two
typings Γ and ∆ are compatible, denoted by Γ � ∆, iff whenever a ∈ dom(Γ) ∩
dom(∆) then Γ(a) ≈ ∆(a). Similarly, two record types % and %′ are compatible,
% � %′, iff whenever l ∈ dom(%)∩dom(%′) then %(l) = α1 · · ·αn, %′(l) = β1 · · ·βn,
and αi ≈ βi, for 1 ≤ i ≤ n.

2.5 Free type variables

The set of free type variables in the various semantic objects is inductively
defined as follows.

ftv(t) = {t}
ftv(α1 · · ·αn) =

⋃
1≤i≤n ftv(αi)

ftv(µt.α) = ftv(α) \ {t}
ftv(∀tn.τ) = ftv(τ) \ {tn}

ftv(f) =
⋃
a∈dom(f) ftv(a) (for f a finite map)

2.6 Type schemes, closure, and instances

Two type schemes are considered equal if they can be obtained from each other
by renaming and reordering of bound type variables, and deleting type variables
from the prefix which do not occur in the body.

A type scheme σ = ∀tn.τ generalizes another type scheme σ′ = ∀un.τ ′,
written σ � σ′, if τ ′ = τ [αn/tn], for some αn, and un contains no free type
variables of σ.

Let τ be a sequence of types and E an environment. The closure of τ with
respect to E, closE(τ), is the type scheme ∀tn.τ , where tn = ftv(τ) \ ftv(E).

When B is a basis whose range contains only type sequences (rather than
arbitrary type schemes), closE(B), the closure of B with respect to E, is the
basis {X : closE(τ) | X : τ ∈ B}.

2.7 Environment modification and projection

When E is an environment, Γ a typing and B a basis, E+B means E+({}, B),
and E + Γ means E + (Γ, {}).

Given an environment E, the expression C of E accesses the C component
of E, namely, Γ of E means “the typing component of E” and B of E means
“the basis component of E”.

5

2.8 Derived forms for types

Notation αn → βm, for n,m ≥ 0, is used to emphasize the “functional” nature
of some methods, and abbreviates type {val : αn{val : βm}}. For empty type
sequences (when n or m are 0) we write () instead of ε.

2.9 Types for primitive operations and objects

Core-TyCO has as predefined the primitive types int, bool, and string, along
with the following operations.

+ : int int → int

- : int int → int

* : int int → int

/ : int int → int

% : int int → int

- : int → int

^ : string string → string

and : bool bool → bool

or : bool bool → bool

not : bool → bool

The usual relational operations are also provided. Currently they may take
as arguments only integers.

= : int int → bool

<> : int int → bool

< : int int → bool

<= : int int → bool

> : int int → bool

>= : int int → bool

A basic stream based I/O facility is available by means of an object io.

io : {getb : () → bool,
putb : bool,
geti : () → int,
puti : int,
gets : () → string,
puts : string}

2.10 Inference rules

Variables Γ ` var ⇒ type

x ∈ dom(Γ)
Γ ` x⇒ Γ(x)

(1)

x 6∈ dom(Γ)
Γ ` x⇒ α

(2)

6

Comment:
(2) Allows for free variables in processes.

Sequences of variables Γ ` varseq ⇒ typeseq

Γ ` x⇒ α 〈Γ + {x : α} ` varseq ⇒ αn〉
Γ ` x 〈, varseq〉 ⇒ α〈αn〉

(3)

Comment:
When the option is present, varseq is a sequence of n variables.

Expressions Γ ` exp ⇒ type,Γ

Function typeof, when applied to a constant or a primitive operator, returns its
type.

Γ ` c⇒ typeof(c), {} (4)

Γ ` x⇒ α

Γ ` x⇒ α, {x : α}
(5)

typeof(binop) = ρ1 ρ2 → ρ
Γ ` exp1 ⇒ ρ1,Γ1 Γ ` exp2 ⇒ ρ2,Γ2 Γ1 � Γ2

Γ ` exp1 binop exp2 ⇒ ρ,Γ1 + Γ2

(6)

typeof(unop) = ρ→ ρ′ Γ ` exp ⇒ ρ,Γ′

Γ ` unop exp ⇒ ρ′,Γ′
(7)

Comments:
(6) By the current definition of binary operators, both parameters always

have the same type, so ρ1 = ρ2.
(7) Both the parameter and the returned result of all current unary operators

have the same type, so ρ = ρ′.

Sequences of expressions Γ ` expseq ⇒ typeseq,Γ

Γ ` exp ⇒ α,Γ′ 〈Γ + Γ′ ` expseq ⇒ αn,Γ′′〉
Γ ` exp 〈, expseq〉 ⇒ α〈αn〉,Γ′〈+ Γ′′〉

(8)

Comment:
When the option is present, expseq is a sequence of n expressions.

Methods E ` method ⇒ %,Γ

E 〈+ {xn : αn}〉 ` proc ⇒ Γ
E ` l(〈x1, . . .,xn〉) = proc ⇒ {l : ε〈αn〉},Γ〈\ {xn}〉

(9)

7

Comment:
When the option is present, the variables xn don’t appear in the resulting

typing.

Method rows E ` methrow ⇒ %,Γ

E ` method ⇒ %,Γ E ` methrow ⇒ %′,Γ′ Γ � Γ′

E ` method 〈, methrow〉 ⇒ %〈+ %′〉,Γ〈+ Γ′〉
(10)

Comment:
When the option is present, we have dom(%)∩dom(%′) = ∅, by the syntactic

restrictions.

Processes E ` proc ⇒ Γ

E ` inaction⇒ {} (11)

Γ of E ` a⇒ % 〈Γ of E ` expseq ⇒ αn,Γ〉 l ∈ dom(%) ∧ % � {l : ε〈αn〉}
E ` a!l[〈expseq〉]⇒ {a : %} 〈+ Γ〉

(12)

Γ of E ` a⇒ {}〈+ %〉 〈E ` methrow ⇒ %,Γ {a : %} � Γ〉
E ` a?{〈methrow〉}⇒ {a : {}〈+ %〉} 〈+ Γ〉

(13)

E ` proc1 ⇒ Γ1 E ` proc2 ⇒ Γ2 Γ1 � Γ2

E ` proc1 | proc2 ⇒ Γ1 + Γ2
(14)

E + {x : α} ` proc ⇒ Γ
E ` new x proc ⇒ Γ \ {x}

(15)

B of E(X) � ε〈αn〉 〈Γ of E ` expseq ⇒ αn,Γ〉
E ` X[〈expseq〉]⇒ {}〈+ Γ〉

(16)

E ` dec ⇒ B E +B ` proc ⇒ Γ
E ` def dec in proc ⇒ Γ

(17)

E ` proc ⇒ Γ
E ` (proc)⇒ Γ

(18)

Γ of E ` exp ⇒ bool,Γ
E ` proc1 ⇒ Γ1 E ` proc2 ⇒ Γ2 Γ � Γ1 � Γ2

E ` if exp then proc1 else proc2 ⇒ Γ + Γ1 + Γ2

(19)

8

Comments:
(12) Object a must contain (at least) a method l, accepting as arguments n

values of types αn, for n ≥ 0.
(15) Bound variable x does not appear in the resulting typing.
(16) When the option is present, the instantiation of type schemes allows

different occurrences of a process variable to have different types.

Bindings E ` bind ⇒ B

E 〈+ {xn : αn}〉 ` proc ⇒ {}〈+ {xn : αn}〉
E ` X(〈x1, . . . ,xn〉) = proc ⇒ {X : ε〈αn〉}

(20)

Comment:
In the resulting basis, process variable X always has a type instead of a type

scheme.

Multiple bindings E ` multbind ⇒ B

B = B′ +B′′

E +B ` bind ⇒ B′ E + B ` multbind ⇒ B′′

E ` bind 〈and multbind〉 ⇒ B

(21)

Comment:
When the option is present, the syntactic restrictions assure that dom(B′)∩

dom(B′′) = ∅.

Declarations E ` dec ⇒ B

E ` multbind ⇒ B

E ` dec ⇒ closE(B)
(22)

Comment:
By rules (20) and (21) we have that basis B contains only types. The closure

of B is what allows process variables to be used polymorphically, via rule (16) (in
rule (17), proc is typed in an environment that already includes the polymorphic
basis).

Programs E ` program ⇒ Γ

E ` program ⇒ {} (23)

Comment:
A program must have no free variables.

3 Dynamic semantics

3.1 Free identifiers

A variable x occurs free in a process P if x is not in the scope P of a method
l(. . . x . . .) = P , a process binding X(. . . x . . .) = P , or a scope restriction

9

new x P ; otherwise it occurs bound. The set of free variables in a process P is
denoted by fn(P).

A process variableX occurs free in a process ifX is not in the scope P,Q〈, D〉
of a declaration def X(. . .) = Q 〈and D〉 in P ; otherwise it occurs bound. The
set of free process variables in a process P is denoted by fv(P).

3.2 Variable substitution and α-conversion

The simultaneous substitution of free variables xn in a process P by values vn,
for n ≥ 0, and provided that each x does not appear twice in xn, is denoted by
P [vn/xn].

A process P is α-convertible to Q if Q results from P by a series of changes
of bound variables and bound process variables.

3.3 Structural congruence

Processes proc ≡ proc

P is α-convertible to Q
P ≡ Q

(1)

P | Q ≡ Q | P (2)

(P | Q) | R ≡ P | (Q | R) (3)

P | inaction ≡ P (4)

new x inaction ≡ inaction (5)

new x new y P ≡ new y new x P (6)

x 6∈ fn(Q)
(new x P) | Q ≡ new x P | Q

(7)

def D in inaction ≡ inaction (8)

x 6∈ fn(D)
def D in new x P ≡ new x def D in P

(9)

fv(D) ∩ fv(Q) = ∅
(def D in P) | Q ≡ def D in (P | Q)

(10)

10

Method rows methrow ≡ methrow

M ′+ is a permutation of M+

M ′+ ≡M+ (11)

Declarations dec ≡ dec

D′ is a permutation of D
D′ ≡ D

(12)

3.4 Reduction rules

Expressions exp → val

val → val (1)

exp1 → c1 exp2 → c2
exp1 binop exp2 → c1 binop c2

(2)

exp → c

unop exp → unop c
(3)

Comment:
(1) Constants and variables reduce to themselves.

Sequences of expressions expseq → valseq

exp → v 〈expseq → vn〉
exp 〈, expseq〉 → v〈vn〉

(4)

Processes proc → proc

〈expseq → vn〉
a!l[〈expseq〉] | a?{l(〈x1, . . . ,xn〉) = P 〈, methrow〉}→ P 〈[vn/xn]〉

(5)

〈expseq → vn〉
def X(〈x1, . . . ,xn〉) = P 〈and D〉 in X[〈expseq〉] 〈| Q〉 →

def X(〈x1, . . .,xn〉) = P 〈and D〉 in P 〈[vn/xn]〉 〈| Q〉
(6)

P → P ′

P | Q→ P ′ | Q
(7)

11

P → P ′

new x P → new x P ′
(8)

P → P ′

def D in P → def D in P ′
(9)

P ≡ P ′ P ′ → Q′ Q′ ≡ Q
P → Q

(10)

References

[1] Robin Milner. Functions as processes. Journal of Mathematical Structures
in Computer Science, 2(2):119–141, 1992.

[2] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

[3] Vasco T. Vasconcelos. TyCO: the language definition, version 0.0. Keio
University, July 1993.

[4] Vasco T. Vasconcelos. Predicative polymorphism in π-calculus. In 6th Paral-
lel Architectures and Languages Europe, volume 817 of LNCS, pages 425–437.
Springer-Verlag, July 1994.

[5] Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus
of objects. In 1st ISOTAS, volume 742 of LNCS, pages 460–474. Springer-
Verlag, November 1993.

12

new x1, . . .,xn proc =⇒ new x1 · · · new xn proc

a?(〈varseq〉) = proc =⇒ a?{val(〈varseq〉) = proc}

a![〈expseq〉] =⇒ a!val[〈expseq〉]

l(. . . _ . . .) = proc =⇒ l(. . . z . . .) = proc

X(. . . _ . . .) = proc =⇒ X(. . . z . . .) = proc

if exp then proc =⇒ if exp then proc else inaction

branch a!〈l〉[〈expseq〉] =⇒ new z
into {〈methrow〉} a!〈l〉[〈expseq, 〉z] | z?{〈methrow〉}

branch X[〈expseq〉] =⇒ new z
into {〈methrow〉} X[〈expseq, 〉z] | z?{〈methrow〉}

let varseq = a!〈l〉[〈expseq〉] =⇒ branch a!〈l〉[〈expseq〉]
in proc into {val(varseq) = proc}

let varseq = X[〈expseq〉] =⇒ branch X[〈expseq〉]
in proc into {val(varseq) = proc}

Figure 5: Derived Forms

u, t or typevar ∈ TypeVar
typevarseq ∈ TypeVarSeq = TypeVarn

ρ or primtype ∈ PrimType = {int, bool, string}

Figure 6: Simple Semantic Objects

α, β ∈ Type = PrimType ∪ TypeVar ∪RcdType ∪ RecType
τ or αn ∈ TypeSeq = Typen

ε ∈ Type0

% ∈ RcdType = Label 7→ TypeSeq
µt.α ∈ RecType = TypeVar× Type

σ or ∀tn.τ ∈ TypeScheme =
⋃
n≥0 TypeVarn × TypeSeq

Γ,∆ ∈ Typing = Var 7→ Type
B ∈ Basis = ProcVar 7→ TypeScheme
E ∈ Env = Typing× Basis

Figure 7: Compound Semantic Objects

13

