Core-TyCO
 The Language Definition
 Version 0.1

Vasco T. Vasconcelos
Rui Bastos
DI-FCUL TR-98-3

March 1998

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa
Campo Grande, 1700 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/biblioteca/tech-reports. The files are stored in PDF, with the report number as filename. Alternatively, reports are available by post from the above address.

This is the second report on TyCO [3], a (still) experimental strongly and implicitly typed concurrent object oriented programming language based on a predicative polymorphic calculus of objects [4, 5], featuring asynchronous messages, objects, and process declarations, together with a predicative polymorphic typing assignment system assigning monomorphic types to variables and polymorphic types to process variables.

Sections 1 and 2 define the syntax and static semantics of the language, both in the style of Standard ML [2]. Dynamic semantics is the subject of Section 3, presented along the lines of the π-calculus [1].

Contents

1 Syntax 1
1.1 Reserved words 1
1.2 Identifiers 2
1.3 Grammar 2
1.4 Syntactic restrictions 4
1.5 Comments 4
1.6 Derived forms for processes 4
2 Static semantics 4
2.1 Simple objects 4
2.2 Compound objects 4
2.3 Operations on finite maps 4
2.4 Recursive types, infinite trees, and typing compatibility 5
2.5 Free type variables 5
2.6 Type schemes, closure, and instances 5
2.7 Environment modification and projection 5
2.8 Derived forms for types 6
2.9 Types for primitive operations and objects 6
2.10 Inference rules 6
3 Dynamic semantics 9
3.1 Free identifiers 9
3.2 Variable substitution and α-conversion 10
3.3 Structural congruence 10
3.4 Reduction rules 11

1 Syntax

1.1 Reserved words

Figure 1 lists the reserved words of core-TyCO. They may not be used as identifiers.

```
and branch def else if in inaction
        into let new not or then
    ! ? | { } [ ] ( ) , _
    + - * / % <> > >= < <= ^
```

Figure 1: Reserved Words

c or const	\in	Const	constants (Integer, Boolean, and String)
a, x or $v a r$	\in	Var	variables
v or val	\in	Const \cup Var	values
l or label	\in	Label	labels
X or procvar	\in	ProcVar	process variables

Figure 2: Classes of Identifiers

1.2 Identifiers

The classes of identifiers for core-TyCO are shown in Figure 2.
An integer constant (decimal notation only) is an optional negation symbol $(-)$ followed by a non-empty sequence of decimal digits $0-9$. A boolean constant is either true or false. A string constant is a sequence, between quotes ("), of zero or more characters.

1.3 Grammar

The phrase classes for core- TyCO are shown in Figure 3 and the grammatical rules in Figure 4. Brackets \rangle enclose optional phrases.

| program | \in | Program | programs |
| ---: | :--- | :--- | :--- | :--- |
| P, Q, R or proc | \in | Proc | processes |
| D or dec | \in | Dec | declarations |
| bind | \in | Bind | process bindings |
| multbind | \in | MultBind | sequence of bindings |
| M or method | \in | Method | methods |
| M^{+}or methrow | \in | MethRow | method rows |
| e or exp | \in | Exp | expressions |
| expseq | \in | Exp $^{+}$ | sequence of expressions |
| varseq | \in | Var^{+} | sequence of variables |
| valseq | \in | Val^{+} | sequence of values |
| binop | \in | BinOp^{2} | binary operators |
| unop | \in | UnOp | unary operators |

Figure 3: Phrase Classes

The scope of new extends as far to the right as possible, and the operator I takes precedence over def-in, so, for example, def D in new $x P \mid Q$ means def D in (new $x(P \mid Q)$). The precedence and associativity of the remaining operators (including arithmetical and logical) is standard.

```
program ::= proc
    proc ::= var ! label [ \langleexpseq\rangle]
        var ? { \langlemethrow\rangle}
        new var proc
        def dec in proc
        procvar [ <expseq\rangle]
        proc | proc
        if exp then proc else proc
        inaction
        ( proc)
        dec ::= multbind
multbind ::= bind \langleand multbind\rangle
        bind ::= procvar ( \langlevarseq\rangle) = proc
methrow ::= method \langle, methrow\rangle
    method ::= label ( \langlevarseq\rangle) = proc
        exp ::= exp binop exp
        unop exp
        val
        ( exp )
    expseq ::= exp \langle, expseq\rangle sequence of expressions
    varseq ::= var \langle, varseq\rangle sequence of variables
    binop ::= + | - | * | | % | ` |
        = | <> |> |>= | < | <= |
        and or
    unop ::= - | not
```

Figure 4: Grammar

1.4 Syntactic restrictions

1. No label may appear twice in the same method row.
2. No method or process binding parameter list may contain the same variable twice.
3. No sequence of bindings may contain the same process variable twice

1.5 Comments

A comment is any character sequence beginning with -- and extending to the end of the same line.

1.6 Derived forms for processes

A list of derived forms built from the primitives of the core language is shown in Figure 5, where variable z is fresh. Symbol \Longrightarrow means 'rewrites to'.

2 Static semantics

2.1 Simple objects

The simple objects for the static semantics are defined in Figure 6.

2.2 Compound objects

When A and B are sets, $A \mapsto B$ denotes the set of finite maps (partial functions with finite domain) from A to B. The domain of a finite map f is denoted $\operatorname{dom}(f)$.

Figure 7 shows the compound objects for the static semantics.

2.3 Operations on finite maps

A finite map will often be written explicitly in the form $\left\{a_{1}: b_{1}, \ldots, a_{n}: b_{n}\right\}$, for $n \geq 0$; in particular, the empty map is $\left\}\right.$. When $a^{n}=a_{1} \cdots a_{n}$ and $b^{n}=b_{1} \cdots b_{n}$, we abbreviate the above finite map to $\left\{a^{n}: b^{n}\right\}$.

When f and g are finite maps, the map $f+g$, called f modified by g, is the finite map with domain $\operatorname{dom}(f) \cup \operatorname{dom}(g)$ and values

$$
(f+g)(a)=\text { if } a \in \operatorname{dom}(g) \text { then } g(a) \text { else } f(a)
$$

When f is a finite map and A a set, $f \backslash A$, called f restricted by A, is the finite map with domain $\operatorname{dom}(f) \backslash A$ and values

$$
(f \backslash A)(a)=f(a)
$$

2.4 Recursive types, infinite trees, and typing compatibility

Types are interpreted as regular infinite trees. A translation ()* from types to infinite trees is defined as follows.

$$
\begin{aligned}
t^{*} & =t \\
\varrho^{*} & =\left\{l: \alpha_{1}^{*} \cdots \alpha_{n}^{*} \mid l: \alpha_{1} \cdots \alpha_{n} \in \varrho\right\} \\
\mu t . \alpha^{*} & =\operatorname{fix}\left(\lambda \rho \cdot \alpha^{*}[\rho / t]\right)
\end{aligned}
$$

Two types α and β are equivalent, denoted by $\alpha \approx \beta$, iff $\alpha^{*}=\beta^{*}$. Two typings Γ and Δ are compatible, denoted by $\Gamma \asymp \Delta$, iff whenever $a \in \operatorname{dom}(\Gamma) \cap$ $\operatorname{dom}(\Delta)$ then $\Gamma(a) \approx \Delta(a)$. Similarly, two record types ϱ and ϱ^{\prime} are compatible, $\varrho \asymp \varrho^{\prime}$, iff whenever $l \in \operatorname{dom}(\varrho) \cap \operatorname{dom}\left(\varrho^{\prime}\right)$ then $\varrho(l)=\alpha_{1} \cdots \alpha_{n}, \varrho^{\prime}(l)=\beta_{1} \cdots \beta_{n}$, and $\alpha_{i} \approx \beta_{i}$, for $1 \leq i \leq n$.

2.5 Free type variables

The set of free type variables in the various semantic objects is inductively defined as follows.

$$
\begin{aligned}
\operatorname{ftv}(t) & =\{t\} \\
\operatorname{ftv}\left(\alpha_{1} \cdots \alpha_{n}\right) & =\bigcup_{1 \leq i \leq n} \mathrm{ftv}\left(\alpha_{i}\right) \\
\mathrm{ftv}(\mu t \cdot \alpha) & =\mathrm{ftv}(\alpha) \backslash\{t\} \\
\operatorname{ftv}\left(\forall t^{n} \cdot \tau\right) & =\operatorname{ftv}(\tau) \backslash\left\{t^{n}\right\} \\
\operatorname{ftv}(f) & =\bigcup_{a \in \operatorname{dom}(f)} \operatorname{ftv}(a) \quad \text { (for } f \text { a finite map) }
\end{aligned}
$$

2.6 Type schemes, closure, and instances

Two type schemes are considered equal if they can be obtained from each other by renaming and reordering of bound type variables, and deleting type variables from the prefix which do not occur in the body.

A type scheme $\sigma=\forall t^{n} \cdot \tau$ generalizes another type scheme $\sigma^{\prime}=\forall u^{n} \cdot \tau^{\prime}$, written $\sigma \succ \sigma^{\prime}$, if $\tau^{\prime}=\tau\left[\alpha^{n} / t^{n}\right]$, for some α^{n}, and u^{n} contains no free type variables of σ.

Let τ be a sequence of types and E an environment. The closure of τ with respect to $E, \operatorname{clos}_{E}(\tau)$, is the type scheme $\forall t^{n} . \tau$, where $t^{n}=\operatorname{ftv}(\tau) \backslash \operatorname{ftv}(E)$.

When B is a basis whose range contains only type sequences (rather than arbitrary type schemes), $\operatorname{clos}_{E}(B)$, the closure of B with respect to E, is the basis $\left\{X: \operatorname{clos}_{E}(\tau) \mid X: \tau \in B\right\}$.

2.7 Environment modification and projection

When E is an environment, Γ a typing and B a basis, $E+B$ means $E+(\{ \}, B)$, and $E+\Gamma$ means $E+(\Gamma,\{ \})$.

Given an environment E, the expression C of E accesses the C component of E, namely, Γ of E means "the typing component of E " and B of E means "the basis component of E ".

2.8 Derived forms for types

Notation $\alpha^{n} \rightarrow \beta^{m}$, for $n, m \geq 0$, is used to emphasize the "functional" nature of some methods, and abbreviates type $\left\{\mathrm{val}: \alpha^{n}\left\{\mathrm{val}: \beta^{m}\right\}\right\}$. For empty type sequences (when n or m are 0) we write () instead of ε.

2.9 Types for primitive operations and objects

Core-TyCO has as predefined the primitive types int, bool, and string, along with the following operations.

+	$:$	int int	\rightarrow
int			
-	$:$	int int	\rightarrow
int			
$*$	$:$	int int	\rightarrow
int			
$/$	$:$	int int	\rightarrow
int			
$\%$	$:$	int int	\rightarrow
int			
-	$:$	int	\rightarrow
int			
-	$:$	string string	\rightarrow
string			
and $:$	bool bool	\rightarrow	bool
or	$:$	bool bool	\rightarrow
not	$:$	bool	\rightarrow

The usual relational operations are also provided. Currently they may take as arguments only integers.

$=$	$:$	int int \rightarrow	bool
$<>$	$:$	int int \rightarrow	bool
$<$	$:$	int int	\rightarrow
bool			
$<=$	$:$	int int \rightarrow	bool
$>$	$:$	int int	\rightarrow
bool			
$>=$	$:$	int int \rightarrow	bool

A basic stream based I/O facility is available by means of an object io.

$$
\begin{aligned}
& \text { io }: \quad \text { \{getb }:() \rightarrow \text { bool, } \\
& \text { putb }: \text { bool, } \\
& \text { geti }:() \rightarrow \text { int, } \\
& \text { puti }: \text { int, } \\
& \text { gets }:() \rightarrow \text { string, } \\
&\text { puts }: \text { string }\}
\end{aligned}
$$

2.10 Inference rules

Variables
$\Gamma \vdash$ var \Rightarrow type

$$
\begin{gather*}
\frac{x \in \operatorname{dom}(\Gamma)}{\Gamma \vdash x \Rightarrow \Gamma(x)} \tag{1}\\
\frac{x \notin \operatorname{dom}(\Gamma)}{\Gamma \vdash x \Rightarrow \alpha} \tag{2}
\end{gather*}
$$

Comment:

(2) Allows for free variables in processes.

Sequences of variables

$$
\Gamma \vdash \text { varseq } \Rightarrow \text { typeseq }
$$

$$
\begin{equation*}
\frac{\Gamma \vdash x \Rightarrow \alpha \quad\left\langle\Gamma+\{x: \alpha\} \vdash \text { varseq } \Rightarrow \alpha^{n}\right\rangle}{\Gamma \vdash x\langle, \text { varseq }\rangle \Rightarrow \alpha\left\langle\alpha^{n}\right\rangle} \tag{3}
\end{equation*}
$$

Comment:
When the option is present, varseq is a sequence of n variables.

Expressions

$$
\Gamma \vdash \exp \Rightarrow \text { type }, \Gamma
$$

Function typeof, when applied to a constant or a primitive operator, returns its type.

$$
\begin{gather*}
\Gamma \vdash c \Rightarrow \operatorname{typeof}(c),\{ \} \tag{4}\\
\frac{\Gamma \vdash x \Rightarrow \alpha}{\Gamma \vdash x \Rightarrow \alpha,\{x: \alpha\}} \tag{5}\\
\frac{\Gamma \vdash \exp _{1} \Rightarrow \rho_{1}, \Gamma_{1} \quad \Gamma \vdash \exp _{2} \Rightarrow \rho_{2}, \Gamma_{2} \quad \Gamma_{1} \asymp \Gamma_{2}}{\Gamma \vdash \exp _{1} \text { binop } \exp _{2} \Rightarrow \rho, \Gamma_{1}+\Gamma_{2}} \\
\frac{\text { typeof }(\text { unop })=\rho \rightarrow \rho^{\prime} \quad \Gamma \vdash \exp \Rightarrow \rho, \Gamma^{\prime}}{\Gamma \vdash \text { unop exp } \Rightarrow \rho^{\prime}, \Gamma^{\prime}} \tag{6}
\end{gather*}
$$

Comments:

(6) By the current definition of binary operators, both parameters always have the same type, so $\rho_{1}=\rho_{2}$.
(7) Both the parameter and the returned result of all current unary operators have the same type, so $\rho=\rho^{\prime}$.

Sequences of expressions

$$
\Gamma \vdash \text { expseq } \Rightarrow \text { typeseq, } \Gamma
$$

$$
\begin{equation*}
\frac{\Gamma \vdash \exp \Rightarrow \alpha, \Gamma^{\prime} \quad\left\langle\Gamma+\Gamma^{\prime} \vdash \operatorname{expseq} \Rightarrow \alpha^{n}, \Gamma^{\prime \prime}\right\rangle}{\Gamma \vdash \exp \langle, \operatorname{expseq}\rangle \Rightarrow \alpha\left\langle\alpha^{n}\right\rangle, \Gamma^{\prime}\left\langle+\Gamma^{\prime \prime}\right\rangle} \tag{8}
\end{equation*}
$$

Comment:
When the option is present, expseq is a sequence of n expressions.

Methods

$$
E \vdash \text { method } \Rightarrow \varrho, \Gamma
$$

$$
\begin{equation*}
\frac{E\left\langle+\left\{x^{n}: \alpha^{n}\right\}\right\rangle \vdash \operatorname{proc} \Rightarrow \Gamma}{E \vdash l\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=\operatorname{proc} \Rightarrow\left\{l: \varepsilon\left\langle\alpha^{n}\right\rangle\right\}, \Gamma\left\langle\backslash\left\{x^{n}\right\}\right\rangle} \tag{9}
\end{equation*}
$$

Comment:
When the option is present, the variables x^{n} don't appear in the resulting typing.

Method rows

$$
E \vdash \text { methrow } \Rightarrow \varrho, \Gamma
$$

$$
\begin{equation*}
\frac{E \vdash \text { method } \Rightarrow \varrho, \Gamma \quad E \vdash \text { methrow } \Rightarrow \varrho^{\prime}, \Gamma^{\prime} \quad \Gamma \asymp \Gamma^{\prime}}{E \vdash \operatorname{method}\langle, \text { methrow }\rangle \Rightarrow \varrho\left\langle+\varrho^{\prime}\right\rangle, \Gamma\left\langle+\Gamma^{\prime}\right\rangle} \tag{10}
\end{equation*}
$$

Comment:

When the option is present, we have $\operatorname{dom}(\varrho) \cap \operatorname{dom}\left(\varrho^{\prime}\right)=\emptyset$, by the syntactic restrictions.

Processes

$$
E \vdash \text { proc } \Rightarrow \Gamma
$$

$$
\begin{equation*}
E \vdash \text { inaction } \Rightarrow\} \tag{11}
\end{equation*}
$$

$\frac{\Gamma \text { of } E \vdash a \Rightarrow \varrho \quad\left\langle\Gamma \text { of } E \vdash \text { expseq } \Rightarrow \alpha^{n}, \Gamma\right\rangle \quad l \in \operatorname{dom}(\varrho) \wedge \varrho \asymp\left\{l: \varepsilon\left\langle\alpha^{n}\right\rangle\right\}}{E \vdash a!l[\langle\text { expseq }\rangle] \Rightarrow\{a: \varrho\}\langle+\Gamma\rangle}$

$$
\begin{equation*}
\frac{\Gamma \text { of } E \vdash a \Rightarrow\}\langle+\varrho\rangle \quad\langle E \vdash \text { methrow } \Rightarrow \varrho, \Gamma \quad\{a: \varrho\} \asymp \Gamma\rangle}{E \vdash a ?\{\langle\text { methrow }\rangle\} \Rightarrow\{a:\{ \}\langle+\varrho\rangle\}\langle+\Gamma\rangle} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\frac{E \vdash \operatorname{proc}_{1} \Rightarrow \Gamma_{1} \quad E \vdash \operatorname{proc}_{2} \Rightarrow \Gamma_{2}}{E \vdash \text { proc }_{1} \backslash \operatorname{proc}_{2} \Rightarrow \Gamma_{1}+\Gamma_{2}} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\frac{E+\{x: \alpha\} \vdash \operatorname{proc} \Rightarrow \Gamma}{E \vdash \text { new } x \text { proc } \Rightarrow \Gamma \backslash\{x\}} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\frac{B \text { of } E(X) \succ \varepsilon\left\langle\alpha^{n}\right\rangle \quad\left\langle\Gamma \text { of } E \vdash \text { expseq } \Rightarrow \alpha^{n}, \Gamma\right\rangle}{E \vdash X[\langle\text { expseq }\rangle] \Rightarrow\}\langle+\Gamma\rangle} \tag{16}
\end{equation*}
$$

$$
\frac{E \vdash \operatorname{dec} \Rightarrow B \quad E+B \vdash \operatorname{proc} \Rightarrow \Gamma}{E \vdash \operatorname{def} \operatorname{dec} \text { in } p r o c \Rightarrow \Gamma}
$$

$$
\begin{equation*}
\frac{E \vdash p r o c \Rightarrow \Gamma}{E \vdash(\text { proc }) \Rightarrow \Gamma} \tag{18}
\end{equation*}
$$

\[

\]

Comments:

(12) Object a must contain (at least) a method l, accepting as arguments n values of types α^{n}, for $n \geq 0$.
(15) Bound variable x does not appear in the resulting typing.
(16) When the option is present, the instantiation of type schemes allows different occurrences of a process variable to have different types.

Bindings

$E \vdash$ bind $\Rightarrow B$

$$
\begin{equation*}
\frac{E\left\langle+\left\{x^{n}: \alpha^{n}\right\}\right\rangle \vdash \operatorname{proc} \Rightarrow\left\}\left\langle+\left\{x^{n}: \alpha^{n}\right\}\right\rangle\right.}{E \vdash X\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=\operatorname{proc} \Rightarrow\left\{X: \varepsilon\left\langle\alpha^{n}\right\rangle\right\}} \tag{20}
\end{equation*}
$$

Comment:
In the resulting basis, process variable X always has a type instead of a type scheme.

Multiple bindings

$E \vdash$ multbind $\Rightarrow B$

$$
\begin{gather*}
B=B^{\prime}+B^{\prime \prime} \\
\frac{E+B \vdash \text { bind } \Rightarrow B^{\prime} \quad E+B \vdash \text { multbind } \Rightarrow B^{\prime \prime}}{E \vdash \text { bind }\langle\text { and multbind }\rangle \Rightarrow B} \tag{21}
\end{gather*}
$$

Comment:

When the option is present, the syntactic restrictions assure that $\operatorname{dom}\left(B^{\prime}\right) \cap$ $\operatorname{dom}\left(B^{\prime \prime}\right)=\emptyset$.

Declarations

$$
\begin{equation*}
\frac{E \vdash \text { multbind } \Rightarrow B}{E \vdash d e c \Rightarrow \operatorname{clos}_{E}(B)} \tag{22}
\end{equation*}
$$

Comment:
By rules (20) and (21) we have that basis B contains only types. The closure of B is what allows process variables to be used polymorphically, via rule (16) (in rule (17), proc is typed in an environment that already includes the polymorphic basis).

Programs

$$
E \vdash \text { program } \Rightarrow \Gamma
$$

$$
\begin{equation*}
E \vdash \text { program } \Rightarrow\} \tag{23}
\end{equation*}
$$

Comment:
A program must have no free variables.

3 Dynamic semantics

3.1 Free identifiers

A variable x occurs free in a process P if x is not in the scope P of a method $l(\ldots x \ldots)=P$, a process binding $X(\ldots x \ldots)=P$, or a scope restriction
new $x P$; otherwise it occurs bound. The set of free variables in a process P is denoted by $\mathrm{fn}(P)$.

A process variable X occurs free in a process if X is not in the scope $P, Q\langle, D\rangle$ of a declaration def $X(\ldots)=Q$ (and $D\rangle$ in P; otherwise it occurs bound. The set of free process variables in a process P is denoted by $\mathrm{fv}(P)$.

3.2 Variable substitution and α-conversion

The simultaneous substitution of free variables x^{n} in a process P by values v^{n}, for $n \geq 0$, and provided that each x does not appear twice in x^{n}, is denoted by $P\left[v^{n} / x^{n}\right]$.

A process P is α-convertible to Q if Q results from P by a series of changes of bound variables and bound process variables.

3.3 Structural congruence

Processes

$$
\begin{gather*}
\frac{P \text { is } \alpha \text {-convertible to } Q}{P \equiv Q} \tag{1}\\
P|Q \equiv Q| P \tag{2}\\
(P \mid Q)|R \equiv P|(Q \mid R) \tag{3}\\
P \mid \text { inaction } \equiv P \tag{4}\\
\text { new } x \text { inaction } \equiv \text { inaction } \tag{5}\\
\text { new } x \text { new } y P \equiv \text { new } y \text { new } x P \tag{6}\\
\frac{x \notin \operatorname{fn}(Q)}{\text { (new } x P) \mid Q \equiv \text { new } x P \mid Q} \tag{7}\\
\text { def } D \text { in inaction } \equiv \text { inaction } \tag{8}\\
x \notin \operatorname{fn}(D) \tag{9}\\
\hline \text { def } D \text { in new } x P \equiv \text { new } x \text { def } D \text { in } P \tag{10}\\
\text { fv }(D) \cap \operatorname{fv}(Q)=\emptyset \\
\hline \text { (def } D \text { in } P) \mid Q \equiv \operatorname{def} D \text { in }(P \mid Q)
\end{gather*}
$$

Method rows

methrow \equiv methrow

$$
\begin{equation*}
\frac{M^{\prime+} \text { is a permutation of } M^{+}}{M^{\prime+} \equiv M^{+}} \tag{11}
\end{equation*}
$$

Declarations

$$
\begin{equation*}
\frac{D^{\prime} \text { is a permutation of } D}{D^{\prime}=D} \tag{12}
\end{equation*}
$$

3.4 Reduction rules

Expressions

$$
\exp \rightarrow \text { val }
$$

$$
\begin{gather*}
\text { val } \rightarrow \text { val } \tag{1}\\
\frac{\exp _{1} \rightarrow c_{1} \quad \exp _{2} \rightarrow c_{2}}{\exp _{1} \text { binop exp } \operatorname{ex}_{2} \rightarrow c_{1} \text { binop } c_{2}} \tag{2}\\
\frac{\exp \rightarrow c}{\text { unop exp } \rightarrow \text { unop } c} \tag{3}
\end{gather*}
$$

Comment:
(1) Constants and variables reduce to themselves.

Sequences of expressions

$$
\begin{equation*}
\frac{\exp \rightarrow v \quad\left\langle\operatorname{expseq} \rightarrow v^{n}\right\rangle}{\exp \langle, \operatorname{expseq}\rangle \rightarrow v\left\langle v^{n}\right\rangle} \tag{4}
\end{equation*}
$$

Processes

$$
\begin{gather*}
\frac{\left\langle\text { expseq } \rightarrow v^{n}\right\rangle}{a!l[\langle\text { expseq }\rangle] \mid a ?\left\{l\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=P\langle, \text { methrow }\rangle\right\} \rightarrow P\left\langle\left[v^{n} / x^{n}\right]\right\rangle} \tag{5}\\
\frac{\left\langle\text { expseq } \rightarrow v^{n}\right\rangle}{\operatorname{def} X\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=P\langle\text { and } D\rangle \text { in } X[\langle\text { expseq }\rangle]\langle\mid Q\rangle \rightarrow} \tag{6}\\
\operatorname{def} X\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=P\langle\text { and } D\rangle \text { in } P\left\langle\left[v^{n} / x^{n}\right]\right\rangle\langle\mid Q\rangle
\end{gather*}
$$

$$
\begin{equation*}
\frac{P \rightarrow P^{\prime}}{P\left|Q \rightarrow P^{\prime}\right| Q} \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
\frac{P \rightarrow P^{\prime}}{\text { new } x P \rightarrow \text { new } x P^{\prime}} \tag{8}\\
\frac{P \rightarrow P^{\prime}}{\operatorname{def} D \text { in } P \rightarrow \operatorname{def} D \text { in } P^{\prime}} \tag{9}\\
\frac{P \equiv P^{\prime} \quad P^{\prime} \rightarrow Q^{\prime} \quad Q^{\prime} \equiv Q}{P \rightarrow Q} \tag{10}
\end{gather*}
$$

References

[1] Robin Milner. Functions as processes. Journal of Mathematical Structures in Computer Science, 2(2):119-141, 1992.
[2] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML (Revised). MIT Press, 1997.
[3] Vasco T. Vasconcelos. TyCO: the language definition, version 0.0. Keio University, July 1993.
[4] Vasco T. Vasconcelos. Predicative polymorphism in π-calculus. In 6 th Parallel Architectures and Languages Europe, volume 817 of LNCS, pages 425-437. Springer-Verlag, July 1994.
[5] Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus of objects. In 1 st ISOTAS, volume 742 of $L N C S$, pages 460-474. SpringerVerlag, November 1993.

```
new }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{}\mathrm{ proc }\quad\Longrightarrow\mathrm{ new }\mp@subsup{x}{1}{}\cdots\mathrm{ new }\mp@subsup{x}{n}{}\mathrm{ proc
a?(\langlevarseq\rangle)=proc }\quad\Longrightarrow\quada?{val(\langlevarseq\rangle)=proc
a![\langleexpseq\rangle] \Longrightarrowa!val[\langleexpseq\rangle]
l(\ldots_...)= proc }\quad\Longrightarrow\quadl(\ldotsz\ldots)=pro
X(\ldots_...) = proc }\quad\Longrightarrow\quadX(\ldotsz\ldots)=pro
if exp then proc }\quad\Longrightarrow\mathrm{ if exp then proc else inaction
branch a!\langlel\rangle[\langleexpseq\rangle] < new z
    into {\langlemethrow\rangle}
branch X[\langleexpseq\rangle] }\quad\Longrightarrow\mathrm{ new z
    into {\langlemethrow\rangle}
let varseq = a!\langlel\rangle[\langleexpseq\rangle] \Longrightarrow branch a!\langlel\rangle[\langleexpseq\rangle]
    in proc
        into {val(varseq) = proc}
let varseq = X[\langleexpseq\rangle] \Longrightarrow branch X [\langleexpseq\rangle]
    in proc into {val (varseq) = proc}
```

Figure 5: Derived Forms

```
                u,t or typevar }\in\mathrm{ TypeVar
                    typevarseq }\in\mathrm{ TypeVarSeq = TypeVarr
                \rho or primtype }\in\mathrm{ PrimType ={int,bool, string}
```

Figure 6: Simple Semantic Objects

Figure 7: Compound Semantic Objects

