Typing Non-uniform Concurrent Objects

Anténio Ravara! and Vasco T. Vasconcelos?

! Department of Mathematics, Instituto Superior Técnico, Portugal
2 Department of Informatics, Faculty of Sciences, University of Lisbon, Portugal

Abstract. Concurrent objects may offer services non-uniformly, con-
straining the acceptance of messages on the states of objects. We advo-
cate a looser view of communication errors. Safe programmes must guar-
antee that every message has a chance of being received if it requests a
method that may become enabled at some point in the future. We for-
malise non-uniform concurrent objects in TyCO, a name-passing object
calculus, and ensure program safety via a type system. Types are terms
of a process algebra that describes dynamic aspects of the behaviour of
objects.

1 Introduction

Herein we study non-uniform concurrent objects in TyCO [25,27], an asyn-
chronous name-passing object calculus along the lines of the m-calculus [15, 16].
Concurrent objects may offer services non-uniformly according to synchronisa-
tion constraints, that is, the availability of a service may depend on the state
of the object [18]. Objects exhibiting methods that may be enabled or disabled,
according to their internal state, are very common in object-oriented program-
ming (think of a stack, a buffer, an FTP server, a bank account, a cash machine).
Nevertheless, the typing of concurrent objects poses specific problems, due to
the non-uniform availability of their methods.

The typed A-calculus is a firm ground to study typing for sequential object-
oriented languages, with a large body of research and results, namely on record-
types for objects. However, a static notion of typing, like types-as-interfaces, is
not powerful enough to capture dynamic properties of the behaviour of concur-
rent objects. Hence, we aim at a type discipline that copes with non-uniform
concurrent objects. The interface of an object should describe only those meth-
ods that are enabled, and when a client asks for a disabled method the message
should not be rejected if the object may evolve to a state where the method
becomes available. To achieve this objective, we propose a looser view of commu-
nication errors, such that an object-message pair is not an error if the message
may be accepted at some time in the future. Therefore, an error-free process
guarantees that messages are given a chance of being attended, as a perma-
nently enabled object eventually receives a message target to it. Errors are those
processes containing an object that persistently refuses to accept a given mes-
sage, either because the object is blocked, or because it will never have the right
method for the message.

Traditional type systems assign rigid interface-like types to the names of
objects [15,27]. Take the example of a one-place buffer that only allows read
operations when it is full, and write operations when it is empty. We like to
specify it as follows, showing that the buffer alternates between write and read.

def Empty(b) = b?{write(u)= Full[b, u]}
and Full(b, u) = b?{read(r)= rlvalu] | Empty[b]}

The referred type systems reject the example above, since name b alternates its
interface. An alternative typable implementation uses the busy-waiting technique
to handle non-available operations.

def Buf(b,v, empty) =
b?{ write(u) = if empty then Buf[b, u, false]
else blwrite[u] | Buf[b, v, false]
read(r)=if empty then blread[r] | Buf[b, v, true]
else rlval[v] | Buflb, v, true]}

In the second implementation, a process containing the redex Buf[b, v, empty] |
blread[r] is not an error, and the presence of a message of the form blwrite[u]
makes possible the acceptance of the read message. Similarly, in the first im-
plementation, a process containing the redex Empty[b] | blread[r] should not be
considered an error, as again, the presence of a message like blwrite[u] also makes
the reception of the read message possible. Nonetheless, notice that a deadlocked
process like vb (Empty[b] | blread[r]) should be considered an error. In conclusion,
the implementations behave similarly, in the sense that both accept a read mes-
sage when the buffer is full, afterwards becoming empty, and accept a write
message when the buffer is empty, afterwards becoming full. A more thorough
discussion on non-uniform objects in TyCO, with more complex examples, can
be found elsewhere [20].

We have been working on a theory of types able to accommodate this style
of programming [21,22]. We adopt a types-as-behaviours approach, such that
a type characterises the semantics of a concurrent objects by representing all
its possible life-cycles as a state-transition system. Types are terms of a process
algebra, fuelled by an higher-order labelled transition system, providing an in-
ternal view of the objects that inhabit them. It constitutes a synchronous view,
since a transition corresponds to the reception of a message by an object. Hence,
the types enjoy the rich algebraic theory of a process algebra, with an operational
semantics defined via a labelled transition system, and a notion of equivalence.
The equivalence is based on a bisimulation that is incomparable with other no-
tions in the literature, and for which we define an axiomatic system, complete
for image-finite types [21]. Therefore, types are partial specifications of the be-
haviour of objects, able to cope with non-uniform service availability. They are
also suitable for specifying communication protocols, like pop3, since a type can
represent sequences of requests to a server, and also deals with choice.

Equipped with a more flexible notion of error and with these richer types,
we develop a type system which guarantees that typable processes will not run
into communication errors.

2 The Calculus of Objects

TyCO (Typed Concurrent Objects) is a name-passing calculus featuring asyn-
chronous communication between concurrent objects via labelled messages car-
rying names. The calculus is an object-based extension of the asynchronous
m-calculus [5,11] where the objects behave according to the principles of the
actor model of concurrent computation [1] (with the exception of the uniqueness
of actors’ names and the fairness assumption).

Syntaz. Consider names a,b,v,x,y, and labels [,m,n, ..., possibly subscripted
or primed, such that the set of names is countable and disjoint from the set of
labels. Let v stand for a sequence of names, and T for a sequence of pairwise
distinct names; moreover, a denotes a pair of sequences of names, the first iden-
tified by a;, and the second by a,, a = a;; a,. Furthermore, assume a countable
set of process variables, X, Y, ..., disjoint from the previous sets.

The grammar in Table 1 defines the set of processes. Objects, of the form a?M ,
and messages, of the form a!l[0], are the basic processes in the calculus. An object
is an input-guarded labelled sum where the name a is the location of the object,
and M is a finite collection of labelled methods; each method I(Z)= P is labelled
by a distinct label [, has a finite sequence of names Z as parameters, and has an
arbitrary process P for body. An asynchronous message has a name a as target,
and carries a labelled value 1[0] that selects the method [with arguments ©. The
location of an object or the target of a message is the subject of the process;
arguments of messages are its objects. The process (rec X (x).a?M)[v] denotes a
persistent object, as it is done in the asynchronous m-calculus [2]. It is a recursive
definition together with two sequences of arguments: input and output. The
original formulation of TyCO used replication to provide for persistent objects.
Despite its simplicity, replication is unwieldy. A recent formulation [25] uses
‘process-declaration’, of which the recursive definition herein is a particular case.

The remaining constructors of the calculus are fairly standard in name-
passing process calculi: process P | @ denotes the parallel composition of pro-
cesses; process vr P denotes the scope restriction of the name z to the process
P (often seen as the creation of a new name, visible only within P); inaction,
denoted 0, is the terminated process. The process X[v] is a recursive call.

In contrast with the actor model, and with most object-oriented languages,
in TyCO there can be several objects sharing the same location and locations
without associated objects. A distributed object is a parallel composition of sev-
eral objects sharing the same location, possibly with different sets of methods,
describing different copies of the same object, each in a different state. The type
system ensures that only the output capability of names may be transmitted, e.g.
in a method (%) = P the parameters & are not allowed to be locations of ob-
jects in the body P. Such a restriction, henceforth called the locality condition,
is present in object-oriented languages where the creation of a new name and of
a new object are tightly coupled (e.g. Java), as well as in recent versions of the
asynchronous w-calculus [2,4,13], and in the join-calculus [10]. This restriction
is crucial; we would not know how to type non-uniform objects without it.

Notation. In [(Z)= P, we omit the parentheses when 7 is the empty sequence,
writing [= P. Furthermore, we abbreviate to [a method [= 0 or a labelled
value [[], and abbreviate to vZ P a process vy ---va, P. Also, we consider that
the operator ‘v’ extends as far to the right as possible. Finally, let {Z} denote
the set of names of the sequence Z, and {x} denote {Z;} U {Z,}. Henceforth, we
assume the standard convention on names and process variables. Furthermore,
we consider that process variables occur only bound in processes, and that in a
recursive definition, (rec X (x).a?M)[v], condition fn(a?M) C {x} holds. Notice
that {Z;} N {Z,} is not necessarily empty.

Syntax:
P:=a?™ | all[t] | P|Q | vz P | (recX(x).a?M)[v] | X[v] | O
where M ::= {l;(Z;)= P;}ier, and I is a non-empty finite indexing set.
Structural Congruence:
P=Q, if P=, Q; a?M = a?M’, if M is a permutation of M’;
Plo=P, P|Q=Q|P and (P|Q)[R=P|(Q|R);
ve0=0, vzyP=vyzP, and vz P |Q =vz (P|Q) if z ¢ Mm(Q).
Action Labels: m:= 7 | a?l[0] | vzall[t], where {Z} C {0}\ {a}.
Message Application: M e [[7] ef Plv/z], if I(Z)= P is a method in M.
Asynchronous Transition Relation:
ouvr alifs] Lo v a?2M ZL Mel[s] Com a?M | all[5] = M e I[3)]
RIN (rec X (zzx).z?M)[av] atifo] Mlrec X (zx).2?M/X][av/zx] o I[D]
REC (rec X (zz).x?M)[av] | all[5] = M]rec X (zz).2?M/X][av/zx] o 1[7]

_P™mQ _ pg :
PAR PR OR (bn(m) Nfn(R) = () OPEN P T (a ¢ {z7})

Res — &2 % (z¢f(m)Ubn(m)) Strucr P=EF P —Q Q@ =0Q
ve P —vaxQ PQ

Table 1. Typed Concurrent Objects.

A Labelled Transition System. Following Milner et al. [16], we define the opera-
tional semantics of TyCO via two binary relations on processes, a static one —
structural congruence — and a dynamic one — a labelled transition relation in
an early style — as this formulation expresses more naturally the behavioural
aspects of the calculus that we seek.

Definition 1 (Free and Bound Variables and Substitution).

1. An occurrence of a process variable X in a process P is bound, if it occurs in
the part M of a subterm (rec X (x).a?M)[v] of P; otherwise the occurrence
of X is free. We define accordingly the set tv(P) of the free variables in P.

2. An occurrence of a name x in a process P is bound if it occurs in the sub-
term @ of the the part l(Wxg) = Q, or in the subterm va Q, or in the subterm
(rec X (x).a?M)[v] where xe{x}; otherwise the occurrence of x is free. Ac-
cordingly, we define the set tn(P) of the free names in P.

3. Alpha-conversion, =, affects both bound names and bound process variables.

4. The process P[v/Z] denotes the simultaneous substitution in P of the names
in U for the free occurrences of the respective mamess in T; it is defined
only when & and ¥ are of the same length. Similarly, the process Plv/x]
denotes the simultaneous substitution in P of the pair of sequences in v
for the respective sequences in x. Finally, the process P[A/X] denotes the
simultaneous substitution in P of the part A for the free occurrences of X.

Table 1 defines the action labels. The silent action T denotes internal commu-
nication in the process; the input action a?l[v] represents the reception on the
name ¢ of an [-labelled message carrying names v as arguments; the output
action vT all[D] represents the emission to @ of an I-labelled message carrying
names o as arguments, some of them bound (those in Z; the name a is free to
allow the message to be received). In the last two action labels, the name a is
the subject of the label, and the names ¢ are their objects.

Definition 2 (Free and Bound Names in Labels). An occurrence of a name
x in an action label m is bound, if it occurs in the part all[0] of vyxz all[D];
otherwise the occurrence of x is free. Accordingly, we define the sets fn(m) and
bn(m) of the free names and of the bound names in an action label m.

We define the operational semantics of TyCO via an asynchronous transition
relation that is inspired by the labelled relation defined Amadio et al. for the
asynchronous m-calculus [3]. The asynchronous transition relation is the smallest
relation on processes generated by the respective rules in Table 1, assuming
the structural congruence relation inductively defined by the respective rules
of Table 1. Notice that rules IN, RIN, CoM, and REC assume that message
application is defined. Otherwise, the transition does not take place.

3 Error-Free Processes

A communication error in TyCO is an object-message pair, such that message
application is not defined. Two different reasons may cause the error: (1) the
message requests a method that does not exist in the target object; (2) the
message requests a method available in the object, but with a wrong number of
arguments. To deal with non-uniform service availability of concurrent objects,
this static notion of error is unsuitable. We propose a looser understanding of
what is a process with a communication error where the situations mentioned

above are no longer considered errors, if the request may be accepted by the
object at some time in the future (after changing its state).

The new notion of ‘process without communication errors’ needs the auxiliary
notion of reder. A redex is a object-message pair sharing the same subject.
If message application — the contractum of the redex — is defined, then the
redex may reduce, and we call it a good redex; otherwise, it is a bad one. Since
an object’s location is not unique, there may be several redexes for the same
message. To stress the identity of the object and that of the labelled value
involved in the redex, we define alt-redexes. For the rest of this section, consider
that m denotes only input actions. Let = denote —*, == denote ==,

and =2 denote sequences of == In the following definitions, when we refer to
objects, we do not distinguish the ephemeral from the persistent.

Definition 3 (Redexes).

1. The parallel composition of a distributed object II;c;a?M; and a message
all[v] is an ald-redex. A process of the form v@ I;c;a?M; | all[0] | Q has an
alv-redex, if there is no input action m with subject a such that Q ==

2. A alv-redex is persistent in P if it is present in all the derivatives of P.

3. A non-empty m makes an alv-redex emerge from P by substituting xo, if
(a) P has a subterm xoll[Z] in a part of the form (W)= Q where {xg,Z} N

{w} =0, and
(b) P = vzQ[av/z0%] | Q', which has an alt-redex.

4. A sequence m generates an alv-redex in P, if

(a) there is xo% such that m makes an alv-redex emerge from P by substi-
tuting xox, and

(b) there is i # m such that n makes a blu-redex emerge from P by substi-
tuting xox, and bl # av.

An occasional bad redex is not enough to make the process an error, if further
computation can consume (at least) one of the components of the redex. In short,
errors are persistent bad redezes.

Definition 4 (Error-Free process). The process P is error-free if, for all al®,

Vo.m P BN Q and Q has a bad ald-redex not generated by m implies
Irs Q . R and R does not have a bad alv-redex.

The condition on @ ensures that the message participating in a bad alv-redex
neither comes from, nor is generated by, the environment, since an environment
can always interact incorrectly to produce errors. Otherwise, any process with
free input-names would be an error.

In conclusion, communication errors are processes containing a message that
can never be accepted by a persistent object. We can distinguish two cases: (1)
message-never-understood, when the object does not have the method requested
by the message, and it will never have it; (2) blocking, when the object has the
method requested by the message, but not in its present interface, and it can
never reach a state where it could accept the message.

Example 1. Consider the one-place buffer defined in the introduction®.

1. Process Empty[b] | blthink is an error, since the object b will never have

the method think. Processes R % Empty[b] | blread[r] and S & Empty[b] |
blwriteu] | blwrite[v] are not errors, since the bad redexes can disappear, if
the environment provides the right messages. Processes vb R and vbS are
erroneous, since in both processes the object b is blocked (as the scope of the
object’s name is restricted), hence the bad redexes become persistent (cf. an
example by Boudol [6]). However, vb R|all[b] is not an error, since the name
b can be extruded, so the bad redex is not necessarily persistent.

2. Process (rec X (z;y).a?{l; =yl | ?{lo=ylls | X[z;y]}})a;a] | all1 | alls is
not an error, although there is always a bad redex, but with messages con-
taining different labels. The bad redex is recurring, but not persistent. Pro-
cess (rec X (zy;zy).x?{l= Xzy;zy] | 2l | y!lm | y!n | y?n})[ab; ab] is an er-
ror, even though the object and the messages participating in the bad am-
redex are always different.

3. We do not want to reject processes that compute erroneously due only to
the incorrect behaviour of the environment.

(a) Process Qdﬁf Empty[b] | c?{l(x) = z!think} is not an error, although there

are interactions with it leading to errors (take Q n, Empty[b]|blthink).

(b) Process (rec X (x;).2?{l= X[z;]})[a;]|b?{i(x) = vozll[v]|v?{l(z)= x!l}]
c¢?{l(x) = z!l[a]} is not an error, although it has derivatives which are
errors, depending on the requests coming from the environment.

It is easy to conclude that this notion is undecidable. However, any notion of
run-time error of a (Turing complete) language is undecidable, since it can be
reduced to the halting problem [26]. A common solution, which should be proved
correct, but obviously cannot be complete, is the use of a type system to ensure
that well-typed processes do not attain run-time errors.

4 The Algebra of Behavioural Types

We propose a process algebra, the Algebra of Behavioural Types, ABT, where
terms denote types that describe dynamic aspects of the behaviour of objects.
A type denotes a higher-order labelled transition system where states represent
the possible interfaces of an object; state transitions model the dynamic changes
of the interfaces by executing a method, thus capturing some causality informa-
tion. The syntax and operational semantics of ABT are similar to a fragment of
CCS [14], the class of Basic Parallel Processes (BPP) of Christensen [7] where
communication is not present (parallel composition is merge). However, we need
to give a different interpretation to some features of the process algebra, and
thus decided to develop ABT. A thorough discussion is presented elsewhere [21].

! The translation of Empty[b] into the syntax of this section is the following:
((rec X (z;).x?{write(u) = x?{read(r) = rlval[u] | X[z;]}})[b;].

Syntar. Assume a countable set of method names, I,m,n,..., possibly sub-
scripted, and a countable set of type variables, denoted by ¢. Consider the sets
disjoint.

The grammar in Table 2 defines the set of behavioural types. A term of the
form I(@).«c is a method type. The label [in the prefix stands for the name of a
method possessing parameters of type &; the type « under the prefix prescribes
the behaviour of the object after the execution of the method [with parameters
of type a. A term of the form v.a is a blocked type, the type of an unavailable
method. The sum ‘)’ is a non-deterministic type composition operator that:
(1) gathers together several method types to form the type of an object that of-
fers the corresponding collection of methods — the labelled sum), 1;(cv;).cu;
(2) associates several blocked types in the blocked sum), v.c;; after being
released, the object behaves according to one of the types «;. The parallel com-
position (‘||’) is the type of the concurrent composition of several objects located
at the same name (interpreted as different copies of the same object, each in a
different state), or the type of the concurrent composition of several messages
targeted to the same name. Finally, the term ut.«v (for a#t) denotes a recursive
type, enabling us to characterise the behaviour of persistent objects. Assume the
variable convention and that types are equal up to a-conversion.

Definition 5 (Free and Bound Variables). An occurrence of the variable t
in a part a of the type pt.av is bound; the occurrence of t in the type « is free.
The type «[B/t] denotes the substitution in « of B for the free occurrences of t.

Syntax:

an= Yy (@) | Yigva | alla |t] pta
where [is a finite indexing set, and each @; is a finite sequence of types.

Action Labels: m:=wv | l(a).

Labelled transition relation:

Act ser T 0, a; (eI
Rpap —_a—a Loan o —a Ree oluto/t] = o
Ly !/ ™ ! T !/
all8— o |8 Bla= gla pt.a = o

Table 2. The Algebra of Behavioural Types.

Operational Semantics. A higher-order labelled transition system defines the
operational semantics of ABT. Label v denotes a silent transition that releases a
blocked object; label I(&) denotes the invocation of method ! with arguments of
types a. The rules of Table 2 inductively define the labelled transition relation.

Notation. Let 0 denote the sum with the empty indexing set; we omit the sum
symbol if the indexing set is singular, and we use the plus operator (‘+’) to
denote binary sums of types. The type (&) denotes [(@).0, and [denotes [().
The interface of a type «, int(«), is the set of its observable labels: in a labelled
sum it is the set {l;(&;)}icr, in a blocked type it is empty, and in a parallel
composition it is the union of the interfaces of the components. Let = denote

U %

7'r ™ T s
—*, = denote = —=—, and = denote sequences of =>.

Type Equivalence. Label-strong bisimulation, Isb, is a higher-order strong bisim-
ulation on labels and a weak bisimulation on unblockings. We require that if «
and 3 are label-strong bisimilar, then: (1) if « offers a method, also 3 offers that
method, and the parameters of the methods are pairwise bisimilar; and (2) if «
offers an unblocking transition, 8 offers zero or more unblocking transitions.

Definition 6 (Bisimilarity on Types).

1. A symmetric relation R CT x T is a bisimulation, if whenever aRp,
(a) « CON o' implies Hﬁ, 56 DN 6" and a'&Rﬁ’ﬁ;Q
(b) a2 o implies 33 f = B' and o'Rf'.

2. Two types a and B are label-strong bisimilar, or simply bisimilar, a3, if
there is a label-strong bisimulation R such that aRg.

The usual properties of bisimilarities hold, namely ~ is an equivalence relation
and a fixed point. The sum of method types and the sum of blocked type pre-
serve bisimilarity, as they are guarded sums. Furthermore, parallel composition
and recursion also preserve bisimilarity. Briefly, Isb is a higher-order congruence
relation. However, it is not known if the relation is decidable.

Type equivalence is a symmetric simulation; the simulation, <, is a partial
order (reflexive, transitive, and anti-symmetric — any two types which simulate
each other are equivalent). Thus, if a simulates o/, then we say that « is a subtype
of a’. Moreover, the operators of ABT, as well as Isb, preserve subtyping.

5 Type Assignment

To ensure that a process is error-free (Definition 4), the interactions within the
process should be disciplined in such a way that persistent bad redexes do not
appear. The types specify the interactions that can happen on a name and the
types of the names carried by it. Thus, a type system assigning types to the
names of a process imposes the discipline.

Typings. We need to distinguish the usage of names within a process — either
as locations of objects or as targets of messages — since it is their simulta-
neous presence that may result in communication errors. Therefore, the type
system assigns pairs of types to names and pairs of sequences of types to process
variables.

2 We write a1 ...anR0B1 ... s to denote a1 RB1, . .., and anRfn.

Definition 7 (Typing Judgements). Consider def (o, B) and ~ def (@, B)

1. Type assignment to names are formulae a:y.

2. Type assignment to process variables are formulae X:y.

8. Typings, ', A, are finite sets of type assignments — to names or to process
variables — where no name and no process variable occurs twice.

4. Judgements are formulae I' - P. Process P is typable if such a formula holds.

Notation. Let dom(I") be the set of the names and the process variables in I'.
Then, I - ay denotes I' U {a:v} if a ¢ dom(I"). Let I'(a) =~ if ary € I', and
I'(a)=(0,0) otherwise; furthermore, I'(a); =« and I'(a), = 3. Take bisimulation
and subtyping on 7-types pairwise defined; hence, v <+ if 73 <4/ and 7, <,
and I'" = I' if, for all ¢ € dom(I") Ndom(I"), I'(a); = I"'(a); and I'(a)o =~ I"'(a)o.

Capturing the Notion of Communication Error. We refer to two syntactic cat-
egories of types, input and output, describing names as object locations and as
message targets. An input-type characterises the sequences of messages that an
object can accept, and thus the object life-cycle; an output-type characterises
the messages sent to an object. We define co-inductively two new higher-order
contravariant relations on types, the agreement relation and the compatibility
relation. The former ensures the absence of blockings, the latter the absence of
messages-never-understood. If a type denotes a graph, or a rational tree (cf. [22]),
an output-type agrees with an input-type if either they share one path, or a path
of one of them is a prefix of a path of the other, and, moreover, all paths which
have a common prefix are equal (up-to agreement on the parameters, contravari-
antly). Unblocking occurs only when at least one of the types is blocked, or when
both types have the same interface. Furthermore, if one of the types is equivalent
to an empty type, then it agrees with all types (i.e. a message or an object, by
themselves, are not errors). The compatibility relation is a relaxing of the agree-
ment relation by allowing the environment to “help”, providing some transitions.
Hence, the compatibility relation considers projections of input-types.

Definition 8 (Agreement on Types). Fiz I' and P such that '+ P.

1. A relation S CT x T is an agreement on I' and P, if whenever a S (3,
(a) B=0 or a0, or else

(b) i 3, PR R, o, B HBa) B, and for all all[v] subterms of P such

that I'(a) ~ (aB) and I'(%) ~ (G, 32), we have &z S By and o/ S,
Wy o 0 By 1) o, B HBa) B, and for all all[v] subterms of P such
that I'(a)~ (aB) and I'(%)~ (G, B2), we have s S By implies o/ SB’,
iii. if int(a) =0 or int(8) =0 or int(a) = int(3), then
a = o implies 33 = 3" and o’ S ', and
B2 3 implies 3y = o and o/ S 3.
2. A type a agrees with a type B on a typing I' and a process P, written amle 3,
if there is an agreement relation S on I' and P such that o S (.

The relation <t is the largest type agreement relation. We define similarly the
type compatibility relation <%, substituting ‘« = 0’ with ‘a finite’ in condition

16 ‘ 7 1B ~ .
1(a), and ‘o B o with o " o/, for some T without occurrences of silent

transitions’, in condition 1(b).

Type System. The rules in Table 3 inductively define the typing checking system.
There is a type rule for each process constructor, and an extra rule (=) that
allows the substitution of a type with a bisimilar one in a formula. Rules VAR
and REC check that the types of the arguments of the process variable are
equivalent to the types of its parameters; rule MsG checks that the output-type
of the message’s target has a transition labelled with the message’s label (with
the correct type parameters); rule OBJ checks that all the parameters of the
methods are only used for output, and that the input-type of the object has a
(reachable) state which has all its transitions labelled exactly with those of the
object’s interface. Notice that RES do not discard the bound variable from the
typing. This is because we may need its type-pair to verify an agreement.

NiL I'HO VAR I - Xy F X[v] (I'(v) =)
Mse I :(.,8) F all[d] (I'(@)e =22 and B~ 7))
OBy I'-%:(0,8:) F P (Fr.0 T'(a): N 1;(87) Vicr with Bz ~ B:)

I' Xy -zvyFa’M

REC 5077 (rec X (2.7 M)[o]

(v < and Vaersy v~ pt. 3o e, v-6i)

I'-P Pa 'P I'kQ N I -zyk-P

RES Frorp TFP[O ¥ BT .aorp (R0

Table 3. Typing Checking System.

Ezample 2 (Typing Objects).

1. One-place boolean buffer: {b:(ut.write(bool).read(val).t,0)} = Empty[b].

2. Internal non-determinism: consider an object with internal non-determinism,
a?{l = vecdmy | cdmg | ¢?{m; = a?ly,mg = a?ls}}. The input-type of a
expresses the choice: I'(a); = 1.(v.ly + v.ls).

3. Persistent objects (cf. [8]): consider the following three objects:

(a) P def (rec X (a;).a?{rep= X|a;] | a?{mess}})[a;],

(b) P, % (rec X (b;).b7{ quest(z)= X[b;] | x!rep})[bs], and

(c) P dof (rec X (c;).c?{rep= X|c;], mess= X|c;]|})[c;]-

Process Py | Py | Ps | blquest[a] | blquest|c] is error-free. It is easy to check that:

(a) I'(a); = pt.rep.(t||mess) =< rep = I'(a)o,

(b) I'(b); = put.quest(rep).t ¥ quest(rep)||quest(rep) = I'(b)o, and

(¢) I'(c); = pt.rep.t + mess.t >k rep = I'(c),.

4. Blocked objects:

(a) Let Fdéf{b:(ut.write(bool).read(val).t, read(val))} F vb Empty[b]|blread|r].
The process is an error, and I'(b); t4E I'(b),.

(b) Let I def {a:(m,v.n),b:(1,0)} F vabb?{l= aln} | a?{m}. The process is
not an error, but I'(a); %45 I'(a),.

(c) Let Fdﬁf{a:(n.m,v.n | m),b:(I,)} F vab?{l=aln}|a?{n}|alm|bl. The
process is neither an error nor a deadlock, still I'(a); 4% I'(a)o.

The type system accepts several type-pairs for each name in a process; not only
does it accept bisimilar types, but it also accepts types which are in the subtyping
relation. Consider a?m|a?l; possible input-types of a are m||l, I||m, m.[+I.m, and
I.m+m.l, all bisimilar. Consider now a?{l= a?m}|a!m; a minimal typing of P is
{a:(l.m, m)}, but there are subtypes of I'(a) which also succeed in type-checking
with P (like {a:(I.m,l || m)}, even though there is no message | with subject a).
Moreover, an error process can type-check with a typing “too generous” for it:
{a:(l.m, || m)} va P, since I'(a); <¥** I'(a),; nevertheless, va P is an error.

Definition 9 (Minimal Typing). Let A<I", if dom(A) Cdom(I") and A(a) <
I'(a), for all a € dom(A). We say that I" is a minimal typing for P, if 'FP
and VYo AF P implies A < ~I".

Proposition 1 (Basic Properties of Minimal Typings). A typable process
has a minimal typing which is unique up-to type equivalence.

Proposition 2 (Recursive Output Types). Take a minimal I’ for P. If, for
some name a, I'(a), has a subterm of the form ut.3, then B is a blocked sum.

To be an error is a property of processes which cannot be modularly checked.
Thus, we cannot introduce side conditions in the rules to check that input types
are compatible or agres with output types. Therefore, after type checking a
process, we compute its minimal typing, and check whether the types of the free
names are compatible, and whether the types of the bound names agree.

Definition 10 (Well-Typed Processes). A process P is well-typed, if it is
typable and its minimal typing I satisfies the following conditions.

1. for all a € dom(I") Nfu(P), I'(a); <% I'(a),;
2. for all a € dom(I") Nbn(P), I'(a);><k I'(a),.

Theorem 1 (Operational Correspondence). Let I'FP % Q with AF Q.
1. m=vzall[v], if and only if, I'(a), XA, ~A(a)o where I'(¥)o ~ B;
2. m=a?l[v], if and only if, I'(a); LN ~A(a); where (%)~ f3:

)

(B 1(B2)

3. m=7, if and only if, Ja € n(P), I'(a); —= A(a); and I'(a), — A(a),.

The following theorem characterises the conditions under which the interactions
within a process, and between a process and the environment, preserve the ty-
pability of the process. Theorem 1 allows to construct the typings for Q. Since
the calculus is local,no context may create objects located at extruded names.

Theorem 2 (Subject Reduction). Consider I' a well-typing for process P.

1. If P 5 Q, then Q is well-typed.
2. If P vz et Q, then Q is well-typed.
3. IfP LN Q and aF(ﬁ),-<§2 I'(a)of with I'(a); B, o then Q is well-typed.

Corollary 1. If P is well-typed then P is error-free.

Notice that the converse of this result is not true. The agreement and compati-
bility relations do not have causality information, thus there are deadlocks which
are not errors and are detected (cf. Example 2.4(b)), but there are interesting
processes which are rejected (cf. Example 2.4(c)). The proofs of the above results
can be found in the full paper [23].

6 Related work

In the context of the lazy A-calculus, Dami proposed a liberal approach to poten-
tial errors [9], which is similar to our notion of communication-error. He argues
that the common notion of erroneous term is over-restrictive, as some programs,
in spite of having error terms in them, do not actually attain a run-time error
when executed. Since there is a family of programming languages based on the
lazy A-calculus, Dami proposes a lazy approach to errors: a term is considered
erroneous if and only if it always generates an error after a finite number of
interactions with its context. Nierstrasz on his work ‘Regular types for active
objects’ [18] discusses on non-uniform service availability of concurrent objects,
and proposes notions of behavioural typing and subtyping for concurrent object-
oriented programming, notions which take into account dynamic aspects of ob-
jects’ behaviour. Puntigam [19] starts from Nierstrasz’ work, defines a calculus
of concurrent objects, a process-algebra of types (with the expressiveness of a
non-regular language), and a type system which guarantees that all messages
that are sent to an object are accepted, this purpose being achieved by enforcing
sequencing of messages. Subtyping is a central issue in his work. It seems quite
natural to have a liberal approach to potential errors in non-uniform concurrent
objects. It allows a more flexible and behaviour-oriented style of programming
and, moreover, detects some deadlocks. In the context of the m-calculus, there
is some work on deadlock detection using types. Kobayashi proposes a type sys-
tem to ensure partial deadlock freedom and partial confluence of programs [12,
24] where types have information about the ordering of the use of channels, and
also about the reliability of the channels used (with respect to non-determinism).
Yoshida defines graph types for monadic m-processes where the nodes denote ba-
sic actions and the edges denote the ordering between the actions [28]. However,

TyCO is not 7, and making comparisons with 7 is not a simple task. Although
our types are easily adaptable to m — by associating a fix label, e.g. val, to
each channel name — the definition of error used herein is difficult to express, if
indeed possible. On non-uniform types for mobile processes, we know the works
by Boudol, by Colago, Pantel, and Sallé, and by Najm and Nimour. Boudol pro-
poses a dynamic type system for the Blue Calculus, a variant of the w-calculus
directly incorporating the A-calculus [6]. The types are functional, in the style
of Curry simple types, and incorporate Hennessy-Milner logic with recursion —
modalities interpreted as resources of names. Processes inhabit the types, and
this approach captures some causality in the usage of names in a process, en-
suring that messages to a name will meet a corresponding offer. Colago et al. [8]
propose a calculus of actors and a type system which aims at the detection of
“orphan messages”, i.e. messages that may never be accepted, either because
the requested service is not in the actor’s interface, or due to dynamic changes
in a actor’s interface. Types are interface-like with multiplicities, and the type
system requires complex operations on a lattice of types. Najm and Nimour [17]
propose several versions of a calculus of objects that features dynamically chang-
ing interfaces and distinguishes between private and public objects’ interfaces.
For each version of the calculus they develop a typing system handling dynamic
method offers in private interfaces, and guaranteeing some liveness properties.
Types are sets of deterministic guarded equations, equipped with a transition
relation that induces an equivalence relation, and a subtyping relation, both
based on bissimulation.

Acknowledgements

Special thanks are due to Gérard Boudol, Jean-Louis Colago, Silvano Dal-Zilio,
and Uwe Nestmann for careful reading of previous versions of this work, as well as
for very important suggestions and fruitful discussions. We also thank the anony-
mous referees for their comments and suggestions. The Danish institute BRICS,
the ENSEEIHT at Toulouse, and the Franco-Portugais project “Sémantique des
objets concurrents” funded visits of the first author. This work was also par-
tially supported by the Portuguese Funda¢do para a Ciéncia e a Tecnologia, the
PRAXIS XXI Projects 2/2.1/TIT/1658/95 LogComp and P/EEI/120598/98 Di-
CoMo, as well as by the ESPRIT Group 22704 ASPIRE.

References

1. Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
M.I.T. Press, 1986.

2. Roberto Amadio. An asynchronous model of locality, failure, and process mobility.
In Coordination Languages and Models, LNCS 1282. Springer-Verlag, 1997.

3. Roberto Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for the
asynchronous m-calculus. Theoretical Computer Science, 195(2):291-324, 1998.

4. Michele Boreale. On the expressiveness of internal mobility in name-passing calculi.
Theoretical Computer Science, 195(2):205-226, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. Gérard Boudol. Asynchrony and the mw-calculus (note). Rapport de Recherche

RR~1702, INRIA Sophia-Antipolis, 1992.

. Gérard Boudol. Typing the use of resources in a concurrent calculus. In Advances

in Computing Science, LNCS 1345, pages 239-253. Springer-Verlag, 1997.

. Sgren Christensen. Decidability and Decomposition in Process Algebras. PhD thesis

ECS-LFCS-93-278, Dep. of Computer Science, University of Edinburgh, 1993.

. Jean-Louis Colago, Mark Pantel, and Patrick Sallé. A set constraint-based analyses

of actors. In Proc. of FMOODS’97. IFIP, 1997.

. Laurent Dami. Labelled reductions, runtime errors, and operational subsumption.

In Proc. of ICALP’97, LNCS 1256, pages 782—793. Springer-Verlag, 1997.

Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier
Rémy. A calculus of mobile agents. In Proc. of CONCUR’96, LNCS 1119, pages
406-421. Springer-Verlag, 1996.

Kohei Honda and Mario Tokoro. An object calculus for asynchronous communi-
cation. In Proc. of ECOOP’91, LNCS 512, pages 141-162. Springer-Verlag, 1991.
Naoki Kobayashi. A partially deadlock-free typed process calculus. In Proc. of
LICS’97, pages 128-139. Computer Society Press, 1997.

Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi. In
Proc. of ICALP’98, LNCS 1443, pages 856-967. Springer-Verlag, 1998.

Robin Milner. Communication and Concurrency. C. A. R. Hoare Series Editor—
Prentice-Hall, 1989.

Robin Milner. The polyadic w-calculus: a tutorial. In Logic and Algebra of Speci-
fication. Springer-Verlag, 1993.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
parts I and II. Information and Computation, 100:1-77, 1992.

Elie Najm and Abdelkrim Nimour. A calculus of object bindings. In Proc. of
FMOODS’97. IF1P, 1997.

Oscar Nierstrasz. Regular types for active objects. In Object-Oriented Software
Composition, pages 99-121. Prentice-Hall, 1995.

Franz Puntigam. Coordination Requirements Expressed in Types for Active Ob-
jects. In Proc. of ECOOP’97, LNCS 1241, pages 367-388. Springer-Verlag, 1997.
Anténio Ravara and Luis Lopes. Programming and implementation issues in non-
uniform TyCO. Research report DCC-99-1, Department of Computer Science,
Faculty of Sciences, University of Porto.

Anténio Ravara, Pedro Resende, and Vasco T. Vasconcelos. An algebra of be-
havioural types. Research report 26/99 DM-IST, Technical University of Lisbon.
Anténio Ravara and Vasco T. Vasconcelos. Behavioural types for a calculus of
concurrent objects. In Proc. of Euro-Par’97, LNCS 1300, pages 554-561. Springer-
Verlag, 1997.

Anténio Ravara and Vasco T. Vasconcelos. Typing non-uniform concurrent objects.
Research report 6/00 DM-IST, Technical University of Lisbon.

Eijiro Sumii and Naoki Kobayashi. A generalized deadlock-free process calculus. In
Proc. of HLCL’98, Electronic Notes in Theoretical Computer Science, (16), 1998.
Vasco T. Vasconcelos. Processes, functions, and datatypes. Theory and Practice
of Object Systems, 5(2):97-110, 1999.

Vasco T. Vasconcelos and Anténio Ravara. Communication errors in the m-calculus
are undecidable. Information Processing Letters, 71(5-6):229-233, 1999.

Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus of objects.
In Proc. of ISOTAS’93, LNCS 742, pages 460—474. Springer-Verlag, 1993.
Nobuko Yoshida. Graph types for monadic mobile processes. In Proc. of
FST/TCS’96, LNCS 1180, pages 371-386. Springer-Verlag, 1996.

