Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Information
and |
Computation

VARV ARV IRV

VI
VA
4

Editor-in-Chief
Albert R. Meyer

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Information and Computation 212 (2012) 64-91

Contents lists available at SciVerse ScienceDirect =

Information

Computation

Information and Computation

www.elsevier.com/locate/yinco

An Algebra of Behavioural Types

Anténio Ravara®*1, Pedro Resende®, Vasco T. Vasconcelos €

4 Software Systems area at Center for Informatics and Information Technologies and Dep. of Informatics, FCT, Univ. Nova de Lisboa, Portugal
b Center for Mathematical Analysis, Geometry, and Dynamical Systems and Dep. of Mathematics, IST, Univ. Técnica de Lishoa, Portugal
¢ Group of Software Systems at Large-Scale Informatics Systems Laboratory and Dep. of Informatics, FC, Univ. de Lisboa, Portugal

ARTICLE INFO ABSTRACT
Article history: We propose a process algebra, the Algebra of Behavioural Types, as a language for typing
Received 6 June 2002 concurrent objects. A type is a higher-order labelled transition system that characterises

Revised 6 November 2011

!) all possible life cycles of a concurrent object. States represent interfaces of objects; state
Available online 25 January 2012

transitions model the dynamic change of object interfaces. Moreover, a type provides
an internal view of the objects that inhabits it: a synchronous one, since transitions
correspond to message reception. To capture this internal view of objects we define
a notion of bisimulation, strong on labels and weak on silent actions. We study several
algebraic laws that characterise this equivalence, and obtain completeness results for
image-finite types.

© 2012 Published by Elsevier Inc.

1. The role of types

Type systems in programming languages are used to discipline the computational mechanism of the language, ruling out
program behaviours judge as erroneous. Examples of such errors are the application of a function with the wrong number
of arguments, or the invocation of a non-existing method in an object. A type system is a collection of axiom schemas and
inference rules, and acts as a proof system, guaranteeing the absence of erroneous program behaviours. Therefore, types
are abstract representations of the correct behaviour of the various entities of a program, constituting partial behavioural
specifications.?

To ensure the absence of a particular form of bad program behaviour, i.e. a specific safety property, a good notion of type
is an important ingredient. Our aim is a language of types capable of expressing behavioural aspects of computing entities
like objects. This language should be expressible enough to be used in (decidable) proof systems for ensuring statically not
only safety properties of such entities, but also some (limited, although interesting) liveness properties.

A programming language is type safe if it is equipped with a (static) type system that guarantees the absence of run-time
errors in well-typed programs. This important safety property may be obtained combining two properties:

1. the absence of run-time errors in well-typed programs; and
2. Curry’s Subject-Reduction, which ensures that if a program is typable, then the computation mechanism preserves the
typability of all the programs resulting from the intermediate steps.

In sequential and functional languages, types are assigned to the terms of the language. The information that a type de-
scribes can be very simple (a set of values, booleans or integers), more elaborate (a function, from integers to booleans,

* Corresponding author.

E-mail addresses: aravara@fct.unl.pt (A. Ravara), pmr@math.ist.utl.pt (P. Resende), vv@di.fc.ul.pt (V. T. Vasconcelos).
1 Research reported herein done while the author was at the Dep. of Mathematics, IST, Univ. Técnica de Lisboa, Portugal.
2 Readers interested in a general introduction to this issue should consult Pierce’s thorough work [48].

0890-5401/$ - see front matter © 2012 Published by Elsevier Inc.
doi:10.1016/.ic.2011.12.005

A. Ravara et al. / Information and Computation 212 (2012) 64-91 65

for example), or can even be a complex structure (a graph or a term of a process algebra), depending on the purpose of
the type system. Type systems can ensure a wide range of properties, from basic, like all operations are invoked with the
adequate arguments, to more elaborate, like guaranteeing termination or deadlock-freedom.

In systems of objects, types usually record the methods of objects and the types of its parameters, constituting interfaces
for these objects. In a programming language with objects, a type system should prevent the usually known as ‘method-
not-understood’ error, a run-time error due to the erroneous call of a method at the target object (non-existence or wrong
number of arguments passed).

1.1. Types in a concurrent scenario

To ensure a safety result for a given program, one needs mathematical tools to deal with, and reason about, the behaviour
of such program. Ideas, concepts, and techniques from the typed A-calculus and from (name-passing) process calculi have
been successfully applied to the study of behavioural properties and of type systems for concurrent object-oriented lan-
guages. A calculus of mobile—or name-passing—processes is one where the communication topology changes dynamically.
Processes communicate via channels—called names—and may also exchange names during the interaction, acquiring new ac-
quaintances that they can use for further communications. The precursor and paradigmatic case is the r-calculus of Milner,
Parrow and Walker [39].

As a process algebra, one may use a mobile calculus not only to specify (concurrent) systems, but also to verify properties
of those systems using the rich algebraic theory that such a calculus possesses. On one hand, its features, like referencing—
or naming—and scoping, make process calculi approaches suitable for describing and studying object-oriented programming.
Thus, not surprisingly, there are many works on the semantics of (concurrent) objects as (mobile) processes (a brief synopsis
may be found in [45]). On the other hand, process calculi provide: (1) structural operational semantics—an essential element
for describing the operational behaviour of programs; (2) various static type systems—ensuring the absence of run-time
errors in well-typed programs; and (3) several notions of behavioural equivalences together with proof techniques, algebraic
laws, and logical characterisations—providing tools to reason about properties of programs.

In mobile calculi, types are usually assigned to names, constituting a discipline for communication: they determine the
arity of a name (and, in some systems, its directionality—input or output), and recursively, the arity of the names carried by
that name [38,49,67]. The roles of a type system in a mobile calculus are two-fold: (1) it avoids communication errors, due
to arity-mismatch; and (2) it allows refinements on the algebraic theory, leading to specialised behavioural equivalences.

Nonetheless, the referred systems provide little information about process behaviour, and to ensure more than the usual
safety properties one needs richer notions of types, able of capturing the information flow within the processes. A natural
approach is to consider processes as types, as for instance done in [7,13,23,28-30,53,71].

1.2. Typing non-uniform objects

Objects exhibiting methods that may be enabled or disabled according to their internal state—non-uniform objects—are
very common in object-oriented programming. Simple examples are a stack (from which one cannot pop elements if it is
empty); a finite buffer (where one cannot write if it is full); a cash machine (from which one can only get a balance if the
connection with the bank is enabled).

A static notion of typing, as interfaces-as-types, is not powerful enough to capture this kind of dynamic properties of
the behaviour of objects. A rigid interface, exhibiting all methods of an object, gives misleading information about the
functionality of the object. In the beginning of the 90s, Nierstrasz proposes the use of a regular language to type active
objects, i.e., objects that may dynamically change behaviour [47]. The purpose is to characterise all the traces of the menus
offered by objects and to define a notion of behavioural subtyping. Although the idea applies to a sequential setting, the
work on this topic has mainly been developed for concurrent objects. Notice however that the type theory developed herein
can be used in sequential object-oriented languages (almost) straightforwardly.

Concurrent setting. In a name-passing calculus of objects such as TyCO [68] or JTaV [59], processes denote the behaviour of
a community of interacting objects, where each object has a location identified by a name. As in the m-calculus, processes
determine an assignment of types to names that reflects a discipline for communication.

Statically detecting ‘method-not-understood’ errors is a more delicate problem in systems of (possibly distributed) con-
current objects, since the enabling conditions of methods are harder to verify in this scenario. The usual records-as-types
paradigm gives each name a static type that contains information about all the methods of the object, regardless of whether
they are enabled or not. Is this an adequate notion of type of an object, in the presence of concurrency? Nierstrasz argued
that typing concurrent objects posed particular problems, due to the ‘non-uniform service availability of concurrent objects’.
By synchronisation constraints, the availability of a service depends upon the internal state of the object (which reflects
the state of the system). Despite having developed a calculus of objects, Nierstrasz did not apply these ideas in the form
of a type system for it, neither did he show how to model non-uniform objects. This task has then been taken by several
authors [7,20-22,42,44,50,52,51,55,56]. Most of these works propose a specific calculus, and develop a particular language
of types aiming at guaranteeing some envisaged property. Herein we study the semantics of a language of types designed
to cope with behavioural aspects of non-uniform objects, using in this study process algebraic tools and results. At the end
of this paper we compare the referred works with our own.

66 A. Ravara et al. / Information and Computation 212 (2012) 64-91

1.3. Rationale of our approach

The purpose of this work is to study the semantic foundations of types for concurrent objects, using the tools and the body
of knowledge of the theory of process algebras. We propose a process algebra of types, discuss a notion of equivalence, and
study its algebraic properties.

To capture the behaviour of non-uniform objects, we advocate the use of non-uniform types, types that are themselves
modelled as processes. Then, several questions arise: What is the appropriate syntax and operational semantics? What
is a good notion of behavioural equality? Our purpose is to address theses questions: we develop herein the Algebra of
Behavioural Types, ABT, where a type characterises all possible life cycles of an object. A type (a term of ABT) is basically a
collection of enabled methods (an interface); such a type is dynamic in the sense that the execution of a method can change
it—thus, a type may express temporal properties as ordering sequences of events, and reflects a dependency of the interface
of an object upon its internal state. Hence, the type of an object is a partial representation of its behaviour, modelled as
a labelled transition system: states represent interfaces of objects; state transitions model the dynamic change of object
interfaces.

Therefore, apart from sequencing, other operators of process algebra naturally express behaviour common to objects:
sum represents an object interface; parallel composition represents communities of objects. Types are thus built with the
following operators:

1. non-deterministic labelled sum, denoting the collection of methods that an object offers at a given state;
2. blocking v, expressing that a collection of methods is not currently enabled;

3. parallel composition, merging types>;

4, recursion via a least fixed-point.

The operational semantics describes how the “execution” of a method yields a new type; the equivalence notion equates
behaviourally similar objects.

14. A paradigmatic example

Consider a one-place buffer, where one may write an integer value if the buffer is empty, and from where one may read
a value, providing a return address, if the buffer is full. An interface type for that buffer would look like [read:nam, write:int].
This type provides no information on the right order of calls the object may attend. In TyCO, the buffer may be simply
written as follows.*

def Empty(b) = b?{write(u) = Full(b, u)},
and Full(b, u) = b?{read(r) = (rlval(u) | Empty(b))}.

The buffer alternates between an Empty state, where it only allows write operations, and a Full state, where it only allows
read operations. In each state the object waits (at name b) for requests of the method offered (write or read), requests
passing as argument the value to store (in the case of write) or the return address (r) where the client waits for the value
that was stored. Notice that b is the identity of the object, following the ‘?’ sign one finds a set of methods, each with a
name, a list of parameters and a body (after the ‘=" sign). A message (or method call) like r!val{u) indicates the identity of
the called object (r), the name of the method (val), and the argument of the call (u). The vertical bar (‘|’) denotes parallel
composition. It is worth noticing that the calculus is asynchronous: the method call is non-blocking and, in the example,
is in parallel with the object in state Empty (after the consumption of the value in the buffer). A behavioural type clearly
expresses this ordering: wt.write(int).read(nam).t.

Elsewhere we use ABT as syntactic types for non-uniform concurrent objects in TyCO. We formalise a notion of process
with a communication error that copes with non-uniform service availability, and define a type system that assigns terms
of the type algebra to names occurring in processes. This system enjoys the subject-reduction property, and guarantee that
typable processes do not deadlock or run into errors [56].

1.5. A novel behavioural equivalence

We assume that objects communicate via asynchronous message-passing; nevertheless, types, as defined here, essentially
correspond to a notion of object behaviour as it would be perceived by an internal observer located within an object (the
object’s private “gnome”). This observer can see methods being invoked and can detect whether the object is blocked, even
though its methods may be enabled for self calls. Therefore, this notion of behaviour is synchronous, as the gnome can

3 Parallel composition is a merge operator since the operands—types—do not communicate among themselves.
4 Available for http://www.dcc.fc.up.pt/~tyco/. This version is not typable by the current type system of TyCO, which uses an interface-like notion of types.
The problem is the change in the interface. A workaround is a busy-waiting implementation, less readable and less natural.

A. Ravara et al. / Information and Computation 212 (2012) 64-91 67

detect refusals of methods when they are not enabled for outside calls. The action of unblocking a method, denoted by v,
corresponds to an invocation of a method in another object. Thus, this action is similar to CCS’s 7 in that it is hidden, but
it is external rather than internal [36].

To illustrate what we mean by ‘blocked method’, consider a buffer that copies the stored value to a stack. Thus, after
accepting a write operation, the buffer performs an internal operation—inserts the value in a stack s—before allowing read
operations. The method read is blocked until receiving a message acknowledging the insertion of the value.

(vs)(def Empty(b) = b?{write(u) = (vc)(s'push(u, c) | c?{done = Full(b, u)})}
and Full(b, u) = b?{read(r) = r'val(u) | Empty(b) }
| Stack(s)).

A behavioural type describing this buffer should now take into account that a read operation is not immediately available,
depending on some computation taking place in other object (pushing the value; sending the acknowledgement message).
Thus, a possible type is wut.write(int).v.read(nam).t.

The unblocking action is also useful to express internal non-determinism. Consider the following object.

a?{l= (o) ((ctmy | cmy) | c?{my = a?{l;},my = a?{l2}})}.

The type of a expresses the internal choice: l.(v.l; + v.ly).
Naturally, the resulting notion of equivalence has an intuition different from that of bisimulation in CCS, since the ob-
server is internal, rather than external:

1. distinguishes a blocked from an unblocked type

read(nam) % v.read(nam), hence
t.write(int).read(nam).t % ut.write(int).v.read(nam).t,
2. does not count blockings

ut.write(int).v.read(nam).t ~ ut.write(int).v.v.read(nam).t.

The nature of the silent action—unblocking—induces an original behavioural equivalence notion. To capture the referred
internal view of objects, we define a notion of bisimulation, strong on labels and weak on silent actions. Naturally, we reach a
new set of algebraic laws, different from those we are aware of, in particular different from Milner’s t-laws.

An object o with methods I and m simultaneously available, as 0?{l = P,m = Q}, would be described by the ABT type
I+ m, assuming that o does not occur free in P and Q. Similarly, two objects sharing the same reference o, one with a
single method I and the other with a single method m, as 0?{I = P} | 0?{m = Q}, would be described by the type [|| m. This
type also characterises a parallel composition of messages targeting the same object as o!l | o!m. As usual, the behaviour
of this object system should not be distinguishable from that of 0?{I=P |0?{m=Q},m = Q | 0?{l = P}}, described by the
type l.m +m.l. Hence, an expansion law holds.

However, one must define carefully this expansion. Since terms of the algebra are intended to be types of objects,
it is useful to rule out meaningless terms: a type as v + [is not an object interface, i.e., the collection of its enabled
method names. To interpret sums as interfaces, mixed sums should not be allowed. Therefore, we do not want to express
the type ||| v.m as L.v.m + v.(l || m), since no object interface would be described by such a type. Moreover, the former
type gives a more precise information: one may request method I; in the environment there is another instance of the
object providing a method m, which is however unavailable. The technical work developed herein is simplified by this
assumption.

Assuming object interfaces as collections of enabled method names, the rationale for this interpretation of types of
objects is:

labelled sums denote interfaces; blocked sums denote currently unavailable objects that after unblocking offer an interface (a menu
of options).

In conclusion, the expansion law should not generate mixed sums. This choice leads to a novel setting, not studied before
in process algebra, since parallel composition usually enjoys expansion.

The problem of axiomatising our equivalence notion without eliminating the parallel composition operator is also in-
teresting from a mathematical point of view: we are not aware of any axiomatic system for a process algebra where the
parallel is not reduced to sum. We develop a proof system, based on these laws, which is complete with respect to the
notion of bisimulation, at least for image-finite types. Notice that the absence of mixed sums in ABT leads to a simpler
axiomatic system than that of CCS.

68 A. Ravara et al. / Information and Computation 212 (2012) 64-91

Applications. The type theory developed herein allows to reason about objects using an abstract representation of their
behaviour. Since an ABT term describes all the possible sequences of method calls for a particular type, and the equivalence
notion semantically characterises its behaviour, one may not only prove properties using equational reasoning, but also
perform program optimisations by transforming the type (e.g., the normal form of the type indicates its simplest syntactic
form).

1.6. Summary

A process algebra is a natural choice when the aim is to use behavioural types to statically enforce some behavioural
properties of systems. We show herein that a simple process algebra—ABT—may be used to cope with non-uniform concur-
rent objects. Since ABT is used as a language of types for concurrent objects, we tailored it not to be Turing powerful, so we
may envisage decidable simulation and bisimulation relations—such results would be useful to develop type checking and
inference algorithms.

ABT is similar to the Basic Parallel Processes, BPP [14], a fragment of CCS proposed by Christensen where communication
is not present—parallel composition is simply a merge of processes. The differences are basically three. In ABT: (1) all sums
are prefixed; (2) mixed sums (with labels and silent actions) are not allowed; and (3) the silent action represents activity
external, rather than internal, to the process. Since these items correspond to our main criteria for the envisaged notion of
type, to avoid confusions instead of using BPP, we decided to design a new process algebra.

We construct ABT gradually. The next section presents finite types built with a non-deterministic labelled sum and
a blocking operator; then defines the operational semantics and a novel equivalence notion; and finally provides a complete
axiomatisation for that equivalence. In Section 3 we add a parallel composition operator, this operator being a merge of
processes (i.e. without communication), and extend the previous axiomatic system with two expansion laws—consequence
of the absence of mixed sums—and a saturation law. Since normal forms include parallel compositions, the proof of com-
pleteness of the axiomatic system is not standard, and the result depends on a new inference rule that we add to the proof
system. The rule does not seem to be derivable. Finally, Section 4 presents the full algebra, with dynamic types obtained
by a recursive constructor. The axiomatic system contains three more laws to deal with recursion. In Section 5 we prove
the completeness of the axiomatic system for image-finite terms. The paper closes with comparisons with related work and
with some directions for future research, namely on a modal logic and on a notion of subtyping.

Contributions. In short, the novelties introduced are the following.

1. A very simple process language, yet expressive enough to capture the behaviour of (non-uniform) concurrent objects:
a term represents sequences of method offers.

2. An original notion of behavioural equivalence for (non-uniform) concurrent objects, to our knowledge the only one
proposed so far. This novel notion was neither proposed nor studied before.

3. An axiomatisation of the equivalence notion, where parallel composition is not reduced to choice, along the lines of the
works on spatial, and on separation, logic, treating the parallel operator as separating resources (different instances of
an object).

4. The axiomatisation is sound and complete (for image-finite terms). Soundness is proved for full language. Completeness
does not restrict the language to sequential terms, as in most process algebras (including CCS), demanding only image-
finiteness.

2. Non-deterministic finite types

We start by presenting an algebra of non-deterministic sequential finite types. The basic term is an object type, a labelled
sum that denotes an object interface—the collection of the names of the methods offered by an object. As we allow the
same label to appear more than once (possibly with different continuations), the sum is non-deterministic. This fact makes
possible the definition of an expansion law later on when we introduce a parallel composition operator. When an object
is in a state where its methods are disabled, its type reflects the situation: unavailable, or blocked, object types are types
prefixed by a blocking operator, denoted by v. A sum of blocked object types—a blocked sum—represents the possible types
of an object, after becoming enabled. Hence, the silent transition is labelled with v and corresponds to the release—or
unblocking—of the blocked sum due to some action in another object: it is an inter-object choice that makes available one of
the types in the sum. Thus, it should be interpreted as an action that is external to the object.

The intended meaning of a labelled sum and of a blocked sum clarify that it does not make sense to allow mixed
sums: we want to distinguish an object that is enabled and offers a certain collection of methods from one it is blocked.
Furthermore, we did not find in the literature of process algebra any equivalence notion build on this intuition. Therefore,
we develop a notion of type equivalence accordingly to the requirements explained above. This fact leads to axiomatic
systems that are not standard and require new proof techniques.

2.1. Syntax

Assume a countable set of method names, denoted by I, m, possibly subscripted.

A. Ravara et al. / Information and Computation 212 (2012) 64-91 69

Definition 2.1 (Non-deterministic sequential finite types). The grammar below defines the set 7 of sequential finite types.

o= Zli(&i).oz,' | ZU.O[I‘

iel iel

where [is a finite, possibly empty, indexing set, and each @; is a finite sequence of types.

A term of the form [(&).« is a method type. The label | in the prefix stands for the name of a method expecting arguments
of types &; the type o under the prefix prescribes the behaviour of the object after the execution of the method I. A term
of the form v.[(&).« is a blocked method type, the type of an unavailable method type I(&).cc. The term v.« denotes thus
a blocked type.

The only type composition operator of the algebra is the sum, ‘)", which has two uses:

1. gathers together several method types to form the type of an object that offers the corresponding collection of methods:
the labelled sum)_;_, l; (¢4;).ti;

2. associates several blocked types in the blocked sum) ;. v.«;; after being unblocked, the object behaves according to
one of the types «;.

Notation. We write o = 8 when the types o and 8 are syntactically identical. We consider also the following abbreviations:

1. the term 0 denotes the empty type (sum with empty indexing set); we omit the sum symbol if the indexing set is
singular, and we use the plus (‘+’) to denote binary sums of types, which we assume associative;
2. the term I(@) denotes [(@).0, and | denotes I().

This simple language has sufficient ingredients to support the specification of non-deterministic finite behaviours. To
illustrate the use of the language, we progressively develop a running example throughout the paper, the specification of
an Automatic Teller Machine (ATM, for short). In this section we present a finite ATM, i.e., a machine allowing only a finite
number of interactions.

Example 2.2. In its initial state, the ATM offers a welcome method that waits for two values—card number and pin. The data
provided by the user is validated by the bank while the user waits—activity denoted by the first v—and depending on the
bank’s reply—again not visible to the user—either the interaction is refused (method sorry) or the user selects one of the
operations offered: balance, deposit, or withdraw.

fATM def welcome(int, int).v.(v.sorry + v.Menu), where

Menu &' balance + deposit(int) + withdraw(int).
2.2. Operational semantics

A labelled transition relation on types defines the structural operational semantics for non-deterministic sequential finite
types.

Definition 2.3 (Actions). The following grammar defines the set of actions:
T a=v | 1(Q).
Action v denotes a silent transition that releases a blocked object; an action [(&) denotes a transition corresponding to

the invocation of method | with actual parameters of types &. When occurring in sums, we refer to actions as prefixes. We
write Y ;; 7.« to refer to an arbitrary sum, either with prefixes I;(@;)—labelled—or with prefix v—blocked.

Definition 2.4 (Labelled transition relation). The following rule inductively defines a labelled transition relation on Zgs.
T :
Act Zm.ai Laj (jeb.
iel
Act is in fact an axiom schema that captures two cases:

1. the labelled transition [(&)—execution of a method—corresponds to the invocation of a method with name | with argu-
ments of types &, yielding the type o of the object in the method body;
2. the silent transition v—unblocking—releases a blocked sum.

70 A. Ravara et al. / Information and Computation 212 (2012) 64-91

Notation. Let —> denote -2>* (the reflexive and transitive closure of %), and let = denote -“>* (the transitive closure
of X5).

Terminology. The following terminology regarding the transition relation simplifies the presentation of some proofs.

1. If « &> o’ then the type «’ is an immediate derivative of the type o.
When 7 =I(&@) we say the transition is labelled and «’ is an [-derivative of «.
When 7 = v we say the transition is silent and &’ is an v-derivative of «.

2. If @ == o’ then the type o’ is a derivative of the type .

3. A type is
(a) blocked, if it only has immediate v-derivatives, and is strictly blocked if all its derivatives are blocked,;
(b) unblocked, if it has at least an immediate [-derivative, and is strictly unblocked if all its derivatives are unblocked;
(c) inert, if it has no transitions.’

2.3. Notion of equivalence

We want two types to be equivalent if they offer the same methods—have the same interface—and if, after each transi-
tion, they continue to be equivalent, in a bisimulation style. Furthermore, from the point of view of each type, transitions
of other types can be regarded as hidden transitions, which would suggest weak bisimulation as the right notion of equiv-
alence for our types, with v playing the role of Milner’s t, but representing external interaction rather than internal.
However, we want types to distinguish an object that immediately makes available a method, from another that makes
it available only after being unblocked (by some object). Therefore, v should be externally unobservable—unobservable
from the outside of an object, but internally observable—an internal observer should detect that the object is blocked.
Hence, we would expect v.l to be different from I, since all the internal observer can see is that the object is blocked,
and after being released it can eventually execute the method I. This discards weak bisimulation as a candidate for type
equivalence. Furthermore, we want v.l and v.v.l to be equivalent, because the number of unblockings cannot be counted
from within the object as they correspond to transitions on other objects, thus discarding strong bisimulation [36] and
progressing bisimulation [41]. We also want to distinguish [.v.m from I.m on the grounds that, for the latter, a blocking
after | cannot be observed, and thus observational congruence [36] and rooted bisimulation [2] are unsuitable. Also, no-
tice that all the above mentioned equivalences, with the exception of weak bisimulation, are finer than what we need,
because they are congruences with respect to binary sums, as in CCS [36], whereas in this work we stick to prefixed
sums.

These considerations lead to the choice of a notion of equivalence that we call label-strong bisimulation, or lIsh. It is
a higher-order strong bisimulation on labels and a weak bisimulation on unblockings.

Hence, we require that if & and 8 are bisimilar then:

1. if o offers a particular method, then also g offers that method, and the parameters and the bodies of the methods are
pairwise bisimilar;
2. if a offers a hidden transition, then 8 can offer zero or more hidden transitions.

Conversely, the intuition is that two types are not bisimilar if they have different interfaces (set of the outermost labels of
a labelled sum), possibly after some matching transitions.
In Section 6.2 (p. 85) we further discuss the choices leading to this particular notion.

Definition 2.5 (Bisimilarity on types).

1. A symmetric binary relation R C 7g x 7 is a label-strong bisimulation, or simply a bisimulation, if, whenever « R 8:

(a) a @, o' implies 38, B (B LON B and '@ R B'B)°;

(b) a > o implies 38’ (B = p’ and o’ R B).
2. Two types « and B are label-strong bisimilar, or simply bisimilar, and we write o & 8, if there is a label-strong bisimu-
lation R such that o R 8.

The usual properties of a bisimilarity hold: it is an equivalence relation, the largest bisimulation, and a greatest fixed-
point. The proofs of these results are standard (cf. [36, Propositions 4.2 and 4.16]). The following characterisation of Isb is
useful.

3> If a type « is inert, then o = 0.

6 Let (ot1---0n) R (B1---Bn) denote oy R By A--- Aty R Ba.

A. Ravara et al. / Information and Computation 212 (2012) 64-91 71

Proposition 2.6 (Label-strong bisimilarity). Types o and 8 are bisimilar, if, and only if,
1 ol@ o implies 38, B (B ®, B and '@ ~ B'B);
2. a = ' implies3p’ (= B’ and a’ =~ p').

7

Proof. Notice that @ = o’ means o %>" o/, for some natural number n. The proof is by induction on n.” 0O

The sum of method types and the sum of blocked sums preserve bisimilarity. This result is simple to verify, since both
sums are guarded.

Proposition 2.7 (Congruence). Let &; ~ E, and a; ~ B; for all i in an indexing set I.

L Y @) ~ i li(B) iy and
2. Y vy v.bi

Briefly, Isb is a congruence relation with respect to prefixing and summation.

Proof. Proving that labelled sums and blocked sums preserve Isb is a direct application of Definition 2.5, and of the fixed-
point property of Isb. O

2.4. Algebraic characterisation

We present an axiomatisation of the equivalence notion and show that it is sound and complete. The proof scheme for
completeness is standard: a definition of a normal form for the types; a lemma ensuring that for all types there exists an
equivalent term in normal form; and finally the completeness theorem says that for all pairs of equivalent normal forms
there exists a derivation of their equality using the rules of the axiomatic system. However, the proofs differ from those in
the literature, since the particular syntactic conditions and restrictions of ABT make these proofs an elaborate combinatoric
problem.

Prop/Definition 2.8 (Axiomatisation). The following equivalences, sound with respect to Isb, inductively define the axiomatic sys-
tem Ass.

Commutativity: for any permutation® o : [— [we have ", Ti.0ti = 3 i o (i)Yo (i)
Idempotence: 7.0 + 7.0 + B =700 + B;
Ul: v.) v =) V.0

Proof. It is straightforward to build the respective bisimulations. O

Example 2.9. Using the v-law U1, one may simplify the specification of the finite ATM (c¢f. Example 2.2).

welcome(int, int).v.(v.sorry + v.Menu) = welcome(int, int).(v.sorry + v.Menu).
Notation. We write -« = 8 when we can prove o &~ 8 using the laws above and the usual rules of equational logic.
Theorem 2.10 (Soundness of Ass). If = o = B then a =~ B.
Proof. Follows from Proposition 2.7 and of Prop/Definition 2.8. O

Remark. The novelty of this system is the v-law U1: one can observe if a method is enabled or not, but in the latter case,
one cannot count how many unblockings must occur to enable the method. Notice some more facts about this law:

1. The proof of completeness uses two derived rules.
(@) If Vigr3je; Faj=p; and VjS]EI,-GI Fo; = Bj, then - Ziel V.0 = Zje] v.Bj.
(b) If Viet3je; (i =mj, Fa; = ,Bj,~and Fa; = Bj)
and Vjcj3ier (I =myj, o= ﬁj,Nand Fai=Bj),
then Ziel Li@).o = Zje] m;(B;).Bj.

7 This proof technique is known as “transition induction”—it is an induction on the maximum length of the derivation of the transition.
8 A permutation is a bijection of a set into itself.

72 A. Ravara et al. / Information and Computation 212 (2012) 64-91

The soundness of these rules is a consequence of Proposition 2.7, but it results also from the fact that they are derived
rules (the proof is simple). Therefore, the proof system without them is still complete.

2. An interesting instance of the v-law is that o ~ 0, if « is a blocked sum with all its derivatives being also blocked sums
(ie. a is a tree with all branches labelled by v).

3. The v-law corresponds to an instance of the CCS’s first t-law, «.7.P = «.P, when « is T (v, in our case).
One can easily recognise particular instances of the remaining t-laws of CCS that hold in this setting. For example, the
following derivable laws are instances of the second and third t-laws (P+7.P=7t.P and a¢.(P+7.Q)=a.(P+7.Q)+
«.Q respectively).
(@) v.P+v.v.P=v.U.P.
(b) v.(v.P+v.Q)=v.(V.P+v.Q)+v.Q.
The first clause is easy to prove, since v.v.P = v.P; to prove the second clause use first the v-law, then idempotence,
and then again the v-law.
However, the 7-laws do not hold in general in this setting; for instance, the third t-law does not hold, as the following
counterexample shows:

L(vm+vn)#L(v.m+uv.n)+Ln.

After an I-transition, the right-hand side offers an n-transition, which is not available in the left-hand side.

From these remarks it is easy to conclude that both weak bisimulation, which is a congruence for prefixed sums, and
observation congruence are coarser than Ish, when considered in this setting.

We proceed now towards the completeness result for the axiomatic system, with respect to Isb. The proof technique to
establish the result uses the notion of depth of a type.

Definition 2.11 (Depth of a type). The following rules inductively define the depth of a type.
depth(0) =0,

depth(z v.ai) =1+ max{depth(ej) |i €I}, and

iel

depth <Zli(5t'i).ozf> = 1+ max{depth(&;) + depth(a;) | i € I},
iel

where depth(®) = max{depth(B) | 8 € &}.
Theorem 2.12 (Completeness of As¢). If o ~ 8 then - o = .

Proof. By induction on the sum of the depths of the types « and B.

Base case: depth(or) = depth(B8) = 0; by definition of depth, « =0= g.
It follows from the reflexivity law of the proof system that o = 8.
Induction step: there are two cases to consider.
1. Case « is a labelled sum, and hence also g is a labelled sum, as @ ~ f.
Thus, if @ ~*25 &' then B @, B and o’@ ~ B'B.
Since depth(e/@) + depth(8’B) < depth(cr) + depth(B), it follows by the induction hypothesis that - o/& = B'B.
2. Case « is a blocked sum, and hence also 8 is a blocked sum, as o ~ 8.
Thus, if « > o’ then 8 = g’ and o’ ~ f'.
Again, since depth(a’) + depth(B’) < depth() + depth(8), we conclude by the induction hypothesis that -a’ = g'.

The result follows using the derived inference rules: rule 1(b) in the first case and rule 1(a) in the second. O
3. Concurrent finite types

We extend the algebra of non-deterministic sequential finite types to concurrent types, adding a parallel composition
operator. Since the algebra does not have communication, this operator is simply a merge of types (cf. the parallel com-
position operator of BPP). A type constructed with the parallel composition operator denotes the behaviour of a parallel
composition of objects with the same name. In the parallel composition of types each component is the type of an element
of the parallel composition of objects.

The axiomatic system includes two new expansion laws: the parallel composition of labelled sums is equivalent to a
labelled sum; the parallel composition of blocked sums is equivalent to a blocked sum. However, the absence of mixed
sums in the grammar of types prohibits a general expansion law. The main consequence of this fact is that normal forms

A. Ravara et al. / Information and Computation 212 (2012) 64-91 73

include parallel compositions, and the standard proof technique to establish the completeness of the axiomatic system must
be refined. The mathematical study of the implications of the absence of mixed sums is interesting by itself.

To prove the axiomatic system complete, we were forced to add a new inference rule to the proof system of equational
logic, which we prove sound. The rule does not seem to be derivable.

We studied an alternative proof of completeness (without this new inference rule) which uses only induction. However,
the proof requires that the converse of the congruence for the parallel holds for normal forms. We conjecture that the result
holds, and leave it as an open problem, since its proof turned out to be quite difficult, due to the highly combinatorial nature
of the problem. If proved, the conjecture can be used as a lemma in a simpler proof of the completeness of the axiomatic
system for the notion of equivalence, system that would not require the new inference rule mentioned before.

3.1. Syntax

Take the set of method names assumed in the previous section.

Definition 3.1 (Concurrent finite types). The grammar below defines the set 7y of concurrent finite types.
@ =Yy L@ | Y vail @B
iel iel
where [is a finite, possibly empty, indexing set, and each @; is a finite sequence of types.
The parallel composition operator, denoted by ‘||, represents the existence of several objects located at (sharing) the

same name, and executing in parallel (interpreted as different copies of the same object, possibly in different states). The
prefixes of a sum bind tighter than the parallel constructor ‘|’, i.e., Lm || n is (I.m) || n.

Example 3.2. We refine the specification of the ATM, adding a method after the welcome that shows some messages to the
user while the communication with the bank is taking place.

fpATM & velcome(int, int).(show || v.(uv.sorry + v.Menu)), where

Menu def balance + deposit(int) + withdraw(int).

Notice that a mixed sum here would be confusing because it would look like a user’s choice.

3.2. Operational semantics

Take the set of labels specified by Definition 2.3.

Definition 3.3 (Labelled transition relation). The axiom schema of Definition 2.4 together with the two rules below inductively
define the labelled transition relation of the algebra of concurrent finite types.

o o o o
allp=>ao B Blla—= Bl

To prove that Isb is still a congruence in this extended language it suffices to show that the parallel composition operator
preserves Isb.

Proposition 3.4 (Preservation of Isb by ||). The parallel composition operator preserves lIsb.

Proof. It is easy to see that the relation R d:d{(a | B,a’ || B) | @ ~a’} is a bisimulation, and thus that || preserves ~. We
proceed by transition induction.
Take (o || B, o’ || B) € R and let « || B 2 8. We have two cases to consider:

Case ¢ X> o1 and § =1 || B.
By hypothesis, o ~ o/, thus there is an o/ such that o LN o) and a1 ~af;
hence, by induction hypothesis, (a1 || B, || B) € R.

Case 8 X B and s =« || B1.
Then, by rule LPAR, « || 8 2 o || 1 and obviously, also o’ || 8 2> o’ || B1;
hence, by induction hypothesis, (« || 81, @’ || B1) € R.

By symmetry we conclude that R is an Ish. O

74 A. Ravara et al. / Information and Computation 212 (2012) 64-91

Corollary 3.5 (Congruence). Isb is a congruence relation on 7.
As in the previous section, a result like Proposition 2.6 is convenient for some proofs.

Proposition 3.6 (Label-strong bisimilarity). Types o and 8 are bisimilar, if, and only if,
1 o l@, implies 38', B (B LN g and o' ~ B'B);
2. o = o' implies 3B’ (B = B’ and o’ = B’).

It is useful to characterise active types, i.e. types that are not bisimilar to 0. Syntactically, one can do it with a two-level
grammar. Semantically, one uses the following lemma.

Lemma 3.7 (Active types). o % 0 if and only if 3, j@) ¢« = o’ LGNy

Proof. Straightforward. O

The contrapositive of the lemma above is also interesting, as it characterises strictly blocked types: they are equivalent
to 0.
The following results make use of the notion of depth of a type, which we refine.

Definition 3.8 (Depth of a type). The rules of Definition 2.11, together with the rule below inductively define the depth of
a type.

depth(w || 8) = depth(a) + depth(B).
The subsequent proofs use the notion of normal form of a type.
Definition 3.9 (Normal forms of concurrent finite types).

1. A type « is saturated if « == o implies o 2> o’
2. A type « is a normal form if it is saturated, and furthermore, one of the following conditions holds:
(@) a=0; or
(b) & =3 ;. v.o; and each «; is a normal form; or
(c) @ =Y 1i(@).cr; and each component of each «;@; is a normal form; or
(d) o =0 || a2, where o1 and o are respectively as in (b) and (c) above, with o1 % 0.

We show now that all types have equivalent normal forms. We need an auxiliary result, a second v-law.

Lemma 3.10 (Law U2). v.(Y ;g v | e, mi(Bp-Bi) = v.(Cig vati | Xy mjBp-B) + v.(ar | e mj(By)-Bj), with
kel

Proof. It is straightforward to build the respective bisimulation. O
Lemma 3.11 (Normal form lemma). For all « there exists a normal form «’ such that - a = o, with depth(a’) < depth(a).

Proof. By induction on the depth of «.

Base case: depth(c) = 0; by definition of depth, @ =0, a normal form by definition.

Induction step: « is now either a sum or a parallel composition. Let us consider first the former case.

Case o =) ;. 7j.ctj; then, by induction hypothesis, for each «; there exists a normal form «; such that - a; = «;, with
depth(c}) < depth(e;). The prefix can be of two forms.

1. Case m; =1;(@;), for all i.
Since the types @; also have normal forms &/, we conclude that -a =", ;(@)).«], as clearly, depth(}_;; li(@)).a)) <
depth(x).

2. Case mj = v, for all i.
We only have to guarantee saturation. Thus, for each i such that] Y, either:
(1) there is a J; # @ such that &/ =), v.«tj; for each j € J; we then have a =) v.otf == aj;
by idempotency and law U1, we conclude -}, v.of = }";; v.af + v.«aj; therefore, using these laws for all such o;
we thus obtain a normal form of e, since the resulting type is saturated, whose depth clearly equals that of), v.a;;

A. Ravara et al. / Information and Computation 212 (2012) 64-91 75

(2) or af= (e, v-ap) |l B, with B=3" 1 Ik(Br)-Bx and Ji, K; # ; for each j € J; we have Y, v.a =% aj || B
by U2, we conclude

FY vaj=) val+v.a; | p).
iel iel
Notice that (¢ |) may not be a normal form (e.g., if aj =0), but since clearly depth(c; ||) < depth(c), thus by
induction hypothesis, there is a normal form y such that -«; || 8 =y, hence

FY vaj=) vaj+uy.

iel iel

We still have to saturate v.y. If it is a blocked sum, using U1 we obtain a saturated form y’; if it is a parallel compo-
sition we use U2 to obtain y’. So,

I—Zv.a{:Zv.a{—i—y/.

iel iel

Repeatedly applying U2 in the same way to all «; of this form, and applying U1 as in the proof of Theorem 2.12, we
attain a normal form of &, whose depth obviously does not exceed that of), v.a.

Case o =y || y2; we use the commutative monoid laws and the expansion laws to rewrite ¢ either as a blocked sum,
a labelled-prefixed sum, or a parallel composition of the previous two with I, J # ¢, and without increasing the depth of
the types. The first two cases are treated as above, and in the parallel composition case we apply the same reasoning to
each sum separately, obtaining - o = a1 || a3, where 7 and o, are respectively a blocked sum and a labelled-prefixed sum,
both normal forms. If - a7 =0 then + o4 || @y = y; otherwise, by definition, o1 || & is a normal form. Moreover, notice
that depth(a1) < depth(Q_;; v.oi) and depth(ap) < depth(zjej lj(,gj).,Bj). Therefore, depth(cvq || a2) < depth(e). O

An auxiliary useful result for some proofs ahead is the following.
Proposition 3.12. If o =) ;_; v.«; is a normal form, then no «; is a parallel composition.

Proof. Let, for some [€], o) = Zjeji v || ZkeKi I (@) .a, which is a normal form.

For some j € J;, one may infer that o 2 oj || Zkel@ 1 (@).ct, and since « is saturated, it is also the case that o 2>
o 11 D ek e (@) -k

Therefore, for some i e I, a; =« || Zke,(i Ix(Cik).ctg. But then «; is blocked since o is a normal form, and furthermore,
aj % 0; hence, by Lemma 3.7, «; has a derivative which is a labelled sum.

Since the types are finite, applying repeatedly this procedure leads to, for some i€ I, o; = ZmeMi I (Gm) . ||
> ke Ki I (k) .ct, which is not a normal form, and we attain a contradiction. O

The following result is also useful, and builds on the previous one.
Proposition 3.13. Let «, 8, and y be types such that o and 8 are labelled sums, y is a blocked sum, and o ~ § || y. Then y ~ 0.

Proof. By induction on the depth of the types (i.e., on depth(c) 4+ depth(B)), considering the three types in normal form
(otherwise, use Lemma 3.11).
Base case: depth(cw) + depth(8) =0. Then o ~ 8 ~ 0, hence 0~ 0 | v, and since 0 || y &~ y, by transitivity we conclude
that y =~ 0.
1@)

Induction step. If « —— o’ then, since by hypothesis « ~ 8 | ¥ and y is a blocked sum, we have 38’, E B LON B’ and
o' ~ B | y). We perform now a case analysis on the form of «’'.

Case o is again a labelled sum, so is B’ since o’ ~ 8/ || ¥ and y is a blocked sum; as clearly we have depth(cr)’ +
depth(B)’ < depth(o) + depth(B), we conclude using the induction hypothesis that y ~ 0.

Case o’ is a blocked sum, so is 8’ since o’ ~ 8’ || y. If &’ ~ 0 then also 8’ || y ~ 0, and we conclude y ~ 0. So, consider
now o % 0; by Lemma 3.7, there is an v-derivative «” of «’ which, by Proposition 3.12, is also a labelled sum; since
o' =~ B’ || y, there is an v-derivative § of 8’ || y which is a parallel composition of a labelled sum and a blocked sum. We
have two cases to consider: either § = 8” || y with g” being a labelled sum, and we conclude by induction that y ~ 0,
or §=p" |y’ with y’ being a labelled sum. The latter situation is however impossible: let g || y < 8|’ LON 8; then

o @, o such that oy ~ § (hence oy is a labelled sum), and again as o ~ g || ¥ by hypothesis, also 8 || ¥ 1@, Billy

with B being a labelled sum; but now we conclude by induction that y &~ 0, attaining a contradiction. 0O

76 A. Ravara et al. / Information and Computation 212 (2012) 64-91

3.3. Algebraic characterisation

We extend the axiomatic system .Ag with laws regarding the parallel composition operator, and show that the resulting
axiomatic system is sound and complete. Notice that we need two expansion laws, since the syntax of finite types does
not allow mixing labels and v in sums, e.g., as in L.o + v.8. Moreover, we further need an extra v-law which allows us to
saturate blocked parallel types that do not expand.

Prop/Definition 3.14 (Axiomatisation). The laws of Prop/Definition 2.8, together with the following laws, sound with respect to lIsb,
inductively define the axiomatic system As.

CM (7¢/ =, ||, 0) is a commutative monoid;

EXP1), ,v.o; | Zie] v.Bj= ~Zi€, v.(a || Zje] v.Bj) +ZJE] U~£Ziel v.a; | Bj; B

EXP2 3 li(@i).ci |l 3o i mi(B)-Bj =D ier li@i)-(cti | 22y mi(Bi)-Bi) + X jeymi(B)-(i li (i) .cxi |l Bj);
Ul v} v =) i Ui _ N

U2 v.Q i vaill Yo jeymi(Bj)-Bj) = v.(Xic -t | D jeymi(Bj)-Bj) + vl || X e, mj(B))-Bj), withk € 1.
Proof. It is straightforward to build the respective bisimulations. O

Theorem 3.15 (Soundness of A¢). If - a = B thena ~ B.

Proof. A consequence of Propositions 2.7, 3.4, and of Prop/Definition 3.14. O

To obtain a system that is provably complete, there are three alternatives.
1. Allow arbitrary prefixed sums, i.e. mixing labels and v in sums, and having a single (CCS like) expansion law; the proof

of completeness is standard. Notice that the other laws still hold.
2. Add a new inference rule to the equational logic and proceed as usual.

If VierJkek <|— & =P, i=my, and o | Y v.aj=p| ZUﬂl)

jej leL

and Vickiel <F G =P li=my, and o || Y v = fil Zv.ﬁz>

je]j leL
and Ve Je (F D L@ llaj=> " m(Bo.Brl m)
iel keK
and Ve 3je; (F > h@.ailloj =Y m(Bo)-A | m),
iel keK
then > L@).ill Yy vaj=Y m(Bo.Bcll Y v.A. (1)
iel jel keK leL

3. Keep the proof system and use induction directly.

The first alternative is somewhat unnatural, since labelled sums represent interfaces of objects (i.e., collections of enabled
method names), and thus an arbitrary sum does not represent a valid object interface.? Moreover, the problem of axioma-
tising an equivalence notion without eliminating the parallel composition operator is also interesting from a mathematical
point of view: we are not aware of any axiomatic system for a process algebra where the parallel is not reduced to sum.
Hence, we rule out mixed sums.

For the last two alternatives, normal forms include a parallel composition, as there is no expansion law for the parallel
composition of a labelled sum and a blocked sum; thus the proofs of the normal form lemma and of the completeness
theorem are different from those for CCS.

The third alternative (using only induction) turns out to be quite difficult, due to the highly combinatorial nature of the
problem. The proof requires that the converse of the congruence result for the parallel operator holds for normal forms: if
ap | az ~af || o) then oy ~] and a ~). We did not prove (nor disprove) this result, but succeeded for a particular
case—the new inference rule.

9 Cf. Example 3.2.

A. Ravara et al. / Information and Computation 212 (2012) 64-91 77

Therefore, we proceed now according to the second alternative listed above. First we have to show that the new inference
rule is sound.

Lemma 3.16 (Soundness of the new inference rule). The inference rule (1) is sound.

Proof. Let oo = ;; li(0i).i || qu vejand =) ok me(Bi)-Bre |l > leL V-Bi. We proceed by induction on the depth of
the types (i.e., on depth(c) + depth(8)), and conduct a case analysis of the possible immediate transitions of « and fS.
1. Case o LON oi || Y i vaj.
jel J
Since by hypothesis there is a k € K such that l; = my, and since by induction hypothesis &; ~ ,Ek, as by hypothesis
 &; = By, then we also have

B B 1> v

leL
Moreover, «; || Y jeg v~ il > 1L V-B1, again by induction hypothesis and because by hypothesis we have

Faill Y vaj=pcll) v.h.

jel leL

2. Case a > Y i li@). || oj.

Let B Y ek my(By)-Bx || B for some [€ L.
Using again the hypotheses and the soundness the axiomatic system, it follows that

Y L@ llaj~ Y mBo)-Bell B

iel keK

By symmetry we conclude that « ~ 8. O
Again, we show a completeness result for the axiomatic system, with respect to Isb.
Theorem 3.17 (Completeness of Ass). If ¢ ~ B then o = B.

Proof. By induction on the sum of the depths of the types « and B8 (assumed to be normal forms, by Lemma 3.11).
Taking into account the proof of Theorem 2.12, we only have one case to consider.

Case =Y i(@).cti | ¥ voorj and B=Y e mi(Bi)-Bi | Yyep v-Bre
We examine the indexing sets:

1. If I # @, then obviously also K # @, as o ~ B.
2. Note that | # @ and also L # @, since clause 3 of the definition of normal forms demands Zje] v.oj % 0 and thus also

Yl VB #0.

3. Thus, considez I, J, K, L #@. The proof analyses the possible transitions of «. There are two cases to consider:
(a) Case o LICIN o || Zjej v.aj.

Since, by hypothesis, o ~ B, then there exists a k € K such that [; = my, &; ~ Ek, and 8 B, Br | D e v-Br, with
i [l 2o ey vo ~ B ll Yoie V-Bre
By induction hypothesis it follows that - &; = B, and thus,

Faill) vap=gcl) v.p.
jel leL
(b) Case a > Y i, li(@i).i || «j.
If g == > kek mk(ﬁk).ﬁk || B then, as B is saturated, thus
B m(Bo-Be Il A
keK

the proof proceeds similarly to the previous case.
Otherwise, D i li(@i).ati || &j ~ Y e Mk(Bi)-Br || Y1 v-Ai With the sum of their depths being lesser than the sum
of the original depths, and we can again use the induction hypothesis.

The result for the case we are examining follows by the inference rule 1.

As there are no more cases, the proof is complete. 0O

78 A. Ravara et al. / Information and Computation 212 (2012) 64-91

4. Behavioural types

Finally, we present the Algebra of Behavioural Types, ABT for short. We obtain it by extending the algebra of concurrent
finite types with a recursive operator u to denote infinite types. A type ut.oc denotes a solution to the equation t = «.
Recursive types allow us to characterise the behaviour of persistent objects, as well as that of (possibly non-persistent)
objects, created when executing methods of persistent objects.

In this section, we present the syntax and operational semantics of ABT, add to the axiomatic system of the previous
section three new laws regarding the behaviour of recursive types, laws that we prove correct. Note that these axioms are
different from those of CCS. The next section shows that the axiomatic system—simpler than that of CCS because of absence
of mixed sums in ABT—is complete for image-finite types. The result holds in a setting more general than that of CCS, as
we do not require processes to be sequential.

4.1. Syntax

Assume a countable set of variables, denoted by t, possibly subscripted, disjoint from the set of method names considered
in the previous sections.

Definition 4.1 (Behavioural types). The grammar below defines the set 7 of behavioural types.

o pu=) @i | Y vai | @|B)|t] pta
iel iel

where [is a finite, possibly empty, indexing set, each @; is a finite sequence of types.
The recursive operator w allows the definition of possibly infinite types, as in the next example.

Example 4.2. We refine again the specification of the ATM, allowing recurrent behaviour.

ATM &f (show || ut.welcome(int, int).v.(v.sorry.t + v.Menu)), where

Menu d:efbalance.t + deposit(int).t + withdraw(int).t.

This version of the ATM has now a “kind” behaviour, allowing a user to perform several operations.
Since types may have type variables, we define when a type variable occurs free in a type, and when it occurs bound.

Definition 4.3 (Free and bound variables). An occurrence of the variable t in the type « is bound if it occurs in a part ut.«
of o; otherwise the occurrence of t in « is free.

Alpha-conversion in a type ut.« is defined as usual. Henceforth we consider only contractive types, i.e., terms where, in
any subexpression of the form (ut.(utq.... (uty.«))) (with n > 0), the body « is not t.

Notation. For simplicity, we use the following conventions.
1. Assume a variable convention like in Barendregt [3], and assume types equal up-to alpha-conversion. Moreover, fv(c)
denotes the set of variables that occur free in type « and var(«) denotes the set of all variables (free or bound) in «.
2. The type «{p/t} denotes the result of the substitution in o of B for the free occurrences of t. Furthermore, the type
a{B/t} denotes the simultaneous substitution'® of g for the free occurrences of f in .
3. Let {t} denote the set of the elements, and |t| the length, of the sequence t.
4, For simplicity, we sometimes write «(8) instead of a{B/t}.
Terminology. The following concepts will be useful to prove the subsequent results.
Definition 4.4 (Guarded variables and guarded types).
1. A type without free variables is said closed; otherwise it is open.

2. A free variable t is guarded in « if all its occurrences are within some label-prefixed part of «.
3. A type « is guarded if all its free variables are guarded. Otherwise, we say « is unguarded.

Example 4.5. The variable t is guarded in I(t).«, in [(&).t, and in [(v.t).0, but not in v.t.

10 standard notion (see, for instance, Barendregt [3]).

A. Ravara et al. / Information and Computation 212 (2012) 64-91 79

Table 1
The labelled transition relation of the Algebra of Behavioural Types.

o

Act Zm.ai—1>a1 (Jebh
iel

RPAR al o al o a{uta/t} 5 o

a5 a || Bla® Bla pt.a o> of

4.2. Operational semantics

Assume the set of labels specified by Definition 2.4. We define the operational semantics of ABT by adding a new rule
to the labelled transition relation defined in Definition 3.3. Table 1 presents all the rules together.

Definition 4.6 (Labelled transition relation). The axiom schema of Definition 2.4 together with the two rules of Definition 3.3
and with the axiom and the rule below inductively define the labelled transition relation of the Algebra of Behavioural Types.

a{ut.a/ty S o
REC %
ut.o = o’
The definition of Isb that we have been using (Definition 2.5 in p. 70), only applies to closed terms. Following the usual

approach (see, e.g. [58]), we extend it to open terms by requiring them to be bisimilar if all their closed instantiations are
bisimilar.

Definition 4.7 (Bisimilarity on open types). Let fv(a) Ufv(8) C {f}. Then, o ~ g if, for all sequences of closed types 7, we have
a{y/t) ~ By /).

It is straightforward to verify that this new definition of Isb is an equivalence relation and a fix point.

An important property is substitutivity: according to Rensink [58], a relation is substitutive if it is preserved by insertion—
substituting equivalent types for variables do not change the behaviour of a type—and by instantiation—replacing a closed
type for a variable in equivalent types result in equivalent types. Since preservation by instantiation is built into the new
definition of Isb, it suffices to prove that Isb is preserved by insertion.

Proposition 4.8 (Substitutive). If 1 ~ o then a{a1/t} ~ a{oy /t}.
Proof. It is easy to show that the relation {(a{o1/t}, a{aa/t}) |1 ® o} is anIsb. O

It is necessary to verify that Isb is still a congruence—an expected result, but since we conduct the proof on recursive
terms rather than on equations, it turns out to be simpler (in particular, a bisimulation suffices, whereas for equations one
needs to establish a bisimulation up to).

An important auxiliary result is a consequence of the rule Rec: folding or unfolding a recursive term does not change its
behaviour, since ut.c and o{ut.cc/t} have the same transitions, and thus one expects them to be bisimilar.

Lemma 4.9 (Unfolding). ut.c ~ a{ut.a/t}.
Proof. Immediate. O
We prove now that the operator t preserves Isb and hence, that our notion of equivalence is still a congruence.
Proposition 4.10 (Preservation of Isb by recursion). The recursive operator preserves label-strong bisimulation.
Proof. We show that the relation {(ut.«, ut.8) | @ &~ B} is an Isb, and thus, that ut preserves ~. The proof is by transition

induction. The base case is trivial, as the definition of Isb implies that if ® ~ 8 and o =t then g =t. There are two cases
to consider in the induction step.

1. Let ut.a M y. By a shorter derivation (see rule Rec) also o (ut.«)

have

L@Wte), o, Since by hypothesis o ~ 8, we

a(ut.a) ~ B(ut.o) Bwta), B (ut.o) ~ o' (ut.a) =y,

as there are E such that & (ut.o) ~ E(,ut.oz).

80 A. Ravara et al. / Information and Computation 212 (2012) 64-91

Therefore, pt.8 has an I-transition, hence also B(ut.B8) LGN

hypothesis o’ (ut.or) ~ B'(ut.p) and & (ut.cr) ~ B(ut.p).
2. Let ut.o 2> «’. The proof is as in the first case, except that we do not need to worry about the parameters in the
prefixes.

B’(ut.B), and the result follows as by induction

The proof is complete. O
Therefore, Isb in ABT is a congruence.
4.3. Axiomatic system
We present an axiomatisation of the equivalence notion, adding three recursion rules to the previous axiomatic system,
and show its soundness. Completeness will be the topic of the next section. The axiomatisation of Isb requires three more
laws:
1. unfolding recursive types preserves Isb;
2. equalities involving recursive types have unique solutions up to Isb;

3. allow the saturation of recursive types.

Notice that the absence of mixed sums in ABT leads to a simpler axiomatic system than that of CCS.

Prop/Definition 4.11 (Axiomatic system). The laws of Prop/Definition 3.14, together with the following recursion laws, inductively
define an axiomatic system.

R1 uput.o =a{ut.a/t};
R2 if B = a{B/t} then B = ut.a, provided that o is guarded,;
R3 put.(t+Y i v.ai) =ut. Y ;o v.a;.

Remark. Laws R3 and R5 of CCS'! have no correspondence in this setting, as ABT does not have binary sums. Thus, our
law R3 corresponds to (is an instance of) the CCS’s R4 law. Soundness of the above axioms is not a trivial result. To prove
it, one has first to ensure that the equations have unique solutions, i.e.,

if B is guarded, o1 ~ S{w1/t}, and oy ~ B{oy/t} then o =~ .

The next subsection is dedicated to the proof of that result. Once we establish it, the proof of the soundness of the
axioms follows.

Proof of Prop/Definition 4.11. The Unfolding Lemma 4.9 states that law R1 is sound. Law R2 of Prop/Definition 4.11 is
a corollary of the uniqueness of the solutions of equations (Theorem 4.16 in p. 81) and of law R1. To prove law R3, one
simply has to build the appropriate bisimulation. O

4.4. Unique solutions
The proof follows a method analogous to that used for CCS, but we attain a more general result, since we do not require

the type to be sequential. The method was set up by Milner; Ying has a simpler proof that we follow here [70].
We need the auxiliary notion of Isb up to ~.

Definition 4.12 (Lsb up to ~). An Isb up to ~ is a symmetric binary relation R on types such that, whenever « R 8 then

1 a9, implies 35 5 B LN g’ and &'@ ~ R~ B'f, and

2. o = o’ implies 3p f = B’ and o’ ~ R~ .
We show that Isb up to ~ is still a label-strong bisimulation.

Proposition 4.13 (Lsb up to ~ is a bisimulation). Let R be an Isb up to ~. Then:

1. ~ R ~isanlsb.
2. RC~.

11 CCS’ recursion laws: ut.(t +o) = ut.a (R3), put.(t.t +a) = jut.7.o (R4), and pt.(t.(t +) + B) = ut.(t.t + o + B) (R5).

A. Ravara et al. / Information and Computation 212 (2012) 64-91 81

Proof. Similar to the proof for weak bisimulation up to weak bisimilarity in [36]. O

Remark. The definition of Isb up to = is slightly different from that of Ishb: with -~ instead of = in the antecedent
of the second condition of Definition 4.12, the previous proposition would not hold, as the example R = {(v.v.a.0, v.0)}
shows.!?

Two technical lemmas are necessary to prove the result. We present and prove them below, and proceed to the main
result: equations have unique solutions (up to Isbh).

Lemma 4.14. Let « be guarded, and consider all its free variables in {t}.

1L If w(B) 2> (y) y then there exist o’ and & with free variables in T such that y = o’(B) and ¥ = &(B), and, for all B,

(@) O, o @),
2. Ifa(,B) s y then there exists o’ with free variables in t such that y = a’(ﬁ) and, for all E’, we have a(ﬁ’) N a’(g’). Further-
more, o’ is guarded.

Proof. By transition induction.!®> There are two cases to consider, depending on the transition performed.

1. Let a(ﬂ) L2 y. The base case is simple: let ¢ =) ;;I; (al) o;. Then a(,B) =3 i li@; B).ai(B), 1Y) = li(@; (B)), and

Y =« (ﬂ) for some i € I. The result follows from taking o’ = «; and & = @;.
For the induction step, we have two different cases to consider, according to the possible forms of .
(a) Case a =1 || p.

Then a(ﬁ) = (E) | a2 (E) There are two sub-cases to consider:

i. either y =1 || a2(B), with o (/3) D, 71,

ii. ory = ozl(ﬁ) | 2, with az(ﬁ) —> y2, by a shorter derivation.
Without loss of generality, assume the first case. Since « is guarded, so is o1, and thus, by induction hypothesis, it
follows that y; = (B) and Yy =0 (B). The result follows from taking o’ = o) ||z and & = d;.
(b) Case o = ut.p.
Then «(B) = ut.B(B), where the free variables of 8 are taken from t and . The variables f must be guarded in g,

otherwise they would not be guarded in «. If ut. ﬁ(ﬂ) (y) y then g{ut. ,B(ﬂ)/t} ()/) Y, by a shorter derivation.
But the variables of t are guarded in B{ut.8/t}, and thus, by induction hypothesis, we conclude that y = «’(8) and
y=d(p).

2. Let a(B) > y. The proof is as in the first case, except that we need not worry about parameters in prefixes. The main
difference is that we must also prove that o’ is guarded. The base case is trivial. Case o =) ;; v.«;, all the o; must be
guarded because « is, and thus o' is guarded. In the remaining cases, the conclusion is a consequence of the induction
hypothesis.

The proof is complete. O

Lemma 4.15. Let o be guarded, and consider all its free variables in tIf O((E) = y then there exists o’ with free variables in t such
that y = o’ (B) and, for all B/, we have a(8') = o/ (B).

Proof. Let a(/f?) = y and let n be the actual number of v’s in the transition. The proof follows easily from the previous
lemma, by induction on n. 0O

We are finally in a position to prove the uniqueness of the solutions of equations, the result that leads to the correctness
of the axiom system.

Theorem 4.16 (Unique solutions of equations). Let B be guarded, &1 ~ B (&) and & ~ B(&2). Then & ~ &,.

Proof. Let R be the relation {(y (&1), ¥ (&2)) | var(y) C f}. We will show that:

1. y(dr) (—1)> o implies Elaz,gz Y (02) ’(8—2)> o> and al(gl) ~R %az(gz);

2. y(d1) = «a implies Jay y(d2) = a3 and a1 & R~ 3.

12 Notice the similarities with Exercise 5.14 in [36].
13 Induction on the length of the derivation of the transition.

82 A. Ravara et al. / Information and Computation 212 (2012) 64-91

1. So let us prove the first item: since ~ is a congruence,
y @)~y (B@) Ry (B@))~y@).

~ ~ ~ ~ ~ 3 ~ 15 o~ o~
Therefore, by hypothesis o1 ~ B(&1) and B(o2) =~ oz. Let y (orq) 1(5—1)> a1. Then, y(B(a1)) & ozg with §; ~ 83 and

a1 ~ of. By Lemma 4.14, there are ¥ and y’ such that 3; =y (@), af = y'(a1) and Y (B(@2)) 1) o =y (@),

which implies 7 @) ~22> ay, with 7(&,) ~ 3, and), ~ ay.
We conclude that 61 ~ R~ 6, and a1 & R ~ a3.
2. We prove 2 by similar reasoning, but using Lemma 4.15, instead of Lemma 4.14.

By the results we have seen before, and by symmetry, this establishes that R is a label-strong bisimulation up to label-strong
bisimilarity, and also that y (&1) &~ y (@) for all y, which includes the cases ay; ~ay; (y =t;), foralli=1,...,|f]. O

Note that from this result follows as a corollary that the recursive constructor preserves the equivalence notion (at least
for guarded types), as stated in Prop/Definition 4.11. We finally present the proof of that result.

Proof. If o ~ 8 and both are guarded, then since ut.o ~ o (ut.«), also ut.oe =~ g(ut.o), thus put.o ~ ut.g. 0O

5. Completeness of the axiom system for image-finite types

The presence of the recursive operator in the algebra allows us to define infinite types like wt.(l.t), a type that represents
an infinite sequence of Il-actions. It represents the behaviour of a persistent object that repeatedly offers a method I. This
is actually an image-finite type,1* but the recursive operator, together with the parallel composition operator, allows us
to define image-infinite types like wt.v.(l || t). This would be the type of an ephemeral object (usable only once) with a
method [that is created by a method of a persistent object.

Due to decidability issues in process algebra, the study of complete axiomatisations of equivalence notions is restricted
to languages generating only image-finite terms. Therefore, in this section we use a sublanguage of ABT, obtained by
removing the parallel composition operator from the grammar in Definition 4.1. The resulting language is image-finite
(van Glabbeek [65] proves that a language with action prefixes, choice, and recursion is image-finite).

The main result herein is the completeness of the axiom system of the previous section for this language of image-finite
types. The proof is not trivial, and so we dedicate to it this section. It follows the “standard” structure of that for image-finite
CCS [37], being significantly simpler, as ABT does not have communication.

5.1. Equational characterisation

The purpose of this first step of the completeness proof is to show an equational characterisation theorem showing that
all types satisfy some set of equations.

Terminology. Consider a set of variables T = {t1,...,t;} and a set of types A = {1, ..., oy} where fv(A) C T and n > 0. Let
S: t1=a1,...,thp = a, denote a system of (possibly mutually recursive) equations, and let var(S) = T. We use the following
abbreviations: t =t1,...,tn, & =1,...,0; and S: =& denotes a system of equations. Furthermore, & = B(&) stands
for a1 =p1(xq) and ... and F oy = By (), for some n > 0.

Then, Vi.1 <i<n,

1. we write t; = t, if 7.t is a summand of «;; N N
2. let a1 be a closed type; we write 1 IF S if, for any B it is the case that & = 8(Q);

v
3. we say the system S is: guarded, if V; t; =~ t;; saturated if t; ==t implies t; 2> t’; and standard, if a; = Zje] V.tri j)
or o = Zje] lfj(f/f(i,j))'tf(i,j)’ where E/f(i,j) - t.

The following lemma is crucial to prove that semantically equivalent types satisfying two different sets of equations also
satisfy a common set of equations (Theorem 5.2).

Lemma 5.1 (Saturation). Let e I+ S, with S standard and guarded. There is an S’ standard, guarded, and saturated such that o I+ S’.

Proof. From S obtain S’ saturated, by saturating each equation. Consider S: f =& and take t; = a1. It is now necessary to
perform a case analysis on the structure of «/q. Since S is standard, there are only two cases to be considered.

14 A type « is image-finite, if the collection {8 |« 2> B} is finite for each action 7.

A. Ravara et al. / Information and Computation 212 (2012) 64-91 83

1. Case oq is a labelled sum, it is already (trivially) saturated.
2. Case o is a blocked sum, as it is guarded by hypothesis, if t; +%> tj then j # 1. To saturate o1 proceed like in the
second case of the proof of Lemma 3.11, obtaining «.

Now in S substitute o} for o1 and repeat this process for the remaining equations. O

Theorem 5.2 (Common set of equations). Consider two systems of equations S: t =¥ and T: 1 = 8, standard and guarded, where
var(S) is disjoint from var(T). Let o I S, and B I+ T, and let « =~ . Then, there is a system U standard and guarded such that « I+ U
and BIF U.

Proof. By Lemma 5.1, assume S and T saturated. We construct the common set U as follows.
There are & and §, with oy =« and f; = B such that +& = y[a/f] and + B =68[B/ii]
Since by hypothesis @ ~ and S and T are saturated:

1) 1@’ ~/ . p.3n15.
1. t1 —> t; implies Elu @ (U1 ——uj and a;a’ = BB,

uy 2, uj implies 3, 3 (&1 10, ti and o;@ ~ B;B);

. t1 2> t; implies Ju; (U > uj and o; ~ B));
. u1 = uj implies 3y, (61 > t; and o ~ B)).

AW N

Consider the following bisimulation relation R:

. R € x 1 such that
It
(a) t
(b) u LU, implies 3, (t — t" and t't' Ru'l);
(c) t—>t 1mp11es (' Ru or 3, (u—>u and t' Ru'));

(d) u % v’ implies (tRu’ or 3y (t 2>t/ and t’ Ru'));
2. t1 Ruj.

1

1@’ - -
—— t’ implies 3, (u M0,y and ¢F R u't'y;

1)

We aim at U: v =¢, where v ={v;j | t; Ru;j}, and & = {¢j; | t; R u;}, with &;; being a sum with summands:

- e IE 1 . .
1 1@ vy, if t; 225 ¢, and uj 2 4, and 6 R w16
2. v.vy, if t; > t; and uj <> u; and t R u;.

To finally prove ‘o I- U’, with v11 being the leading variable, we must find ¢ such that ¢; =« and @ =&[@/V].
Let ¢;j = ;. Since t; ~ u; we have two cases to consider:
1) S

1. Case tj — ty, where t; Ru; and t’ R u.
Then ¢;; is a labelled sum with a summand [(V").vy, and «; has a summand I(c//, .. .).0;
thus &;;[¢/V] has a summand I(¢//, .. .).0t, and we conclude the equality.

2. Case t; 2> t; and t; R u;.
Then ¢g;; is a blocked sum with a summand v.vy;, and «; has a summand v.ay;
thus &;j[¢/V] has a summand v.«, with v.ty ~ v.u;, and we conclude the equality.

The proof is complete. O
We prove now that all types satisfy a standard and guarded set of equations.

Proposition 5.3 (Equational characterisation). For every image-finite type o with free variables t there is S standard and guarded
such that o I S, and var(S) C t. Moreover, if t is guarded in o, then t is guarded in S.

Proof. By induction on the structure of «. Construct the set S, standard and guarded, as in the proof of Theorem 4.1
in [37]. O

15 Consider subfamilies of types & and j’, corresponding respectively to ¢ and i’
16 Consider v}, the variable associated with t, x u},, e.g., v}, = vs if t, =t and uj =us.

84 A. Ravara et al. / Information and Computation 212 (2012) 64-91

5.2. Completeness for image-finite types

From the results in the previous subsection we establish the main result of this section: the axiom system .4 is complete
with respect to the equivalence notion for image-finite types, that is, types without the parallel composition operator.

We do this in two steps, as usual: first prove the completeness of the axiom system for image-finite guarded types, and
then show that every type has a provably equivalent guarded one, hence the axiomatisation is complete for all image-finite
types. The former step is the critical one.

So let us prove first that the types that satisfy a set of equations are unique up to bisimulation.

Theorem 5.4 (Unique solution of equations). If S is guarded with free variables t, then there is a type « such that « I S. Moreover, if
for some B with free variablest, B I S, then - o = B.

Proof. By induction on the cardinality of S.

The base case is immediate: consider the system S: t =4 with t guarded in §; making « def ut.8, rule R1 ensures
ut.8 |- S; moreover, if there is a 8 with free variables t such that g IF S, ie. = 8 =§8(8), then by rule R2, - 8 = ut.§, as
required. For the induction step proceed similarly to the proof of Theorem 4.2 in [37]. O

Theorem 5.5 (Completeness for image-finite guarded types). If @ and 8 are image-finite guarded types, and o ~ 8 then -« = 8.

Proof. Proposition 5.3 ensures that there is an S standard and guarded such that ¢ |- S and an S’ standard and guarded
such that B I S’. But then Theorem 5.2 guarantees that there is a single set of equations that they both satisfy, and hence
the result follows using Theorem 5.4. O

Proposition 5.6 (Reduction to guarded types). For every type « there is a guarded type 8 such that - o = 8.

Proof. One should perform a case analysis on the form of «, but since we consider only contractive types (i.e., o # ut.t), it
is enough to consider types of the form wt.cc. The difficulty is that ¢ may occur arbitrarily deep in ¢, possibly within other
recursions. Therefore, it is useful to prove a stronger result (according to the proof for CCS by Milner [37]):

For every type « such that if t € fv(a) then t # o there is a guarded type 8 for which:

1. tis guarded in g;
2. no free unguarded occurrence of any variable in B lies within a recursion in 8;
3. Fut.o = ut.g.

We prove this by induction on the depth of the nesting of recursions in «.

1. The first step is to remove from « free unguarded occurrences of variables occurring within recursions. By induction
hypothesis, for every ut’.y in o such that the recursion depth of y is smaller than that of «, there is a y’ for which
the result above holds. Thus, no free unguarded occurrence of any variable in y’[ut’.y /t'] lies within a recursion. Now
substitute in « every top-level ut’.y by y'[ut’.y /t'], obtaining a type o’ that fulfils the four required conditions.

2. Then, we only need to remove the remaining free unguarded occurrence of t in «’, which do not lie within recursions.
A case analysis on the structure of o’ leads to the conclusion o’ = ut.(v.t +) ;. ; v.ctj); applying rule R3 yields o' =
pt. Y ;e v.oj. Repeatedly applying this procedure yields the envisage type jt.B, and the result follows by transitivity.

Since we conclude the proof of the stronger result, we're done. O
Corollary 5.7 (Completeness for image-finite types). If « and B are image-finite types, and « ~ 8 then o = B.
Proof. Straightforward, using the previous proposition and Theorem 5.5. O

6. Final discussion

To represent with a type the behaviour of a (non-uniform, possibly distributed) concurrent object, a process algebra is
a natural idea. Since a type (partially) specifies an object, three are the basic requirements:

1. method calls are the basic actions; and thus,
2. the silent action is external rather than internal, as it corresponds to an action in another object (not directly observ-
able);

A. Ravara et al. / Information and Computation 212 (2012) 64-91 85

3. sums (records-as-objects) are either prefixed by method calls, representing objects’ interfaces, or by the silent action,
representing disabled—or blocked—objects; in short, there are neither free nor mixed sums.

Hence, actions are either method calls or the silent action, the basic process is the (possibly empty) action-prefixed sum,
and the composition operators are parallel composition and recursion.

No existing process algebra has all these characteristics together. BPP is similar to, but not exactly, what we need. For the
sake of simplicity and to avoid confusion we define ABT, a new process algebra. Furthermore, since the notion of observation
differs from the usual one in process algebra, it leads to a new, simple, and natural notion of equivalence, Isb, which has
a complete axiom system, at least for image-finite types. Moreover, the absence of mixed sums in ABT leads to a simpler
axiomatic system than that of CCS.

To conclude, we discuss three last questions:

1. Can the proof system be complete, when considering image-infinite types?
2. Why is Isb our notion of type equivalence?
3. What else remains to be done?

6.1. Completeness for image-infinite types

Completeness for infinite-state types is a considerably more difficult problem. One cannot hope for completeness of
axiomatisations of equivalence notions in process algebras like CCS, since the problem of checking weak notions of equiva-
lences like bisimulation is undecidable [35,60].

The study of image-infinite (or infinite-state) systems is a lively area of concurrency theory, with several important
results established [10,15,40]. Srba wrote a comprehensive survey on (un)decidability results of equivalence notions and
decision problems on infinite-state systems, which he keeps up-to-date [60].

We focus our attention in two process algebras: BPA and BPP. BPA is the class of Basic Process Algebra of Bergstra and
Klop [4], corresponding to the transition systems associated with Greibach Normal Form (GNF) context-free grammars, in
which only left-most derivations are allowed. BPP is the class of Basic Parallel Processes of Christensen [14], which is the
parallel counterpart of BPA but with arbitrary derivations. Strong bisimilarity is decidable for BPA [18] and for BPP [17,16].
However there is still no such result for weak bisimilarity on full BPA and BPP, although the result is already established
for the totally normed subclasses [27], and a possible decision procedure for full BPP is NP-hard [62]. Recent results are
reported by Kietinsky et al. [33]. It is thus an open problem if an equivalence notion like the one we propose herein is
decidable.

Nevertheless, even if ultimately decidability is an important result to ensure the applicability of our equivalence notion,
we are looking for completeness, since decidability is stronger than what we need: the existence of a proof for each equation
suffices.

6.2. The notion of bisimulation

Why is Isb our equivalence notion? Could it be different? Could we have used an existent notion? We now approach
these questions.

An alternative notion of bisimulation. Consider the following definition of a bisimulation relation.

Definition 6.1 (Label-semi-strong bisimilarity).

1. A symmetric binary relation R €7 x 7 is a label-semi-strong bisimulation, (Issb), if whenever « R 8 then
(a) a LGPV implies 38/, B, y (B LN y = B and '@ R B'B);
(b) o X5 o implies 38’ (8 = B’ and o’ R B').

2. Two types « and B are label-semi-strong bisimilar, and we write o ~ 8, if there is a label-semi-strong bisimulation R
such that o R 8.

Again, ~ is an equivalence relation and « ~s 8 holds if and only if conditions 1(a) and 1(b) of the previous definition
hold with R replaced by ~%. Furthermore, Issb is a congruence relation (the proofs of these results are very similar to those
done previously for Isb).

This notion differs from Isb by allowing unblockings after method calls (condition 1(a)). In the context of deterministic
finite types the two equivalences coincide, as we have previously shown [57]. However, as we discuss in that paper, the
notions do not coincide in more general transition systems, namely in non-deterministic ones.

Take the systems in Fig. 1. In L.v.l, the second [is only observable after the occurrence of the unblocking, which cor-
responds to the execution of some action in another object. There is a causal dependency between the first I, the action
corresponding to the unblocking, and the second . If the law l.v.l =l.v.l + LI holds for some equivalence notion then the

86 A. Ravara et al. / Information and Computation 212 (2012) 64-91

AN

Fig. 1. Isb vs. Issb: comparing l.v.l to Lv.l+ LI

notion does not capture causality between action execution in different objects, and thus it is a local notion, whereas a
notion that distinguishes the types in the law is global (with respect to the community of objects).

Theorem 6.2 (Comparing Isb and Issb). Label-strong bisimulation is finer than label-semi-strong bisimulation.

Proof. Clearly, a label-strong bisimulation is also a label-semi-strong bisimulation. The converse does not hold, as, e.g., the
systems in Fig. 1 show. O

We have adopted Isb as the “right” notion of bisimulation, for it is global, and it is technically simpler. Furthermore, it is
finer than Issb.

Relation to other notions. What is the position of Isb in the lattice of bisimulation equivalences? Since it is a bisimulation
it is above a large spectrum of equivalence notions [66]. Obviously, its relative position varies according to the characteristics
of the transition system in consideration. We focus now on CCS and ABT.

As with weak bisimulation (wb), Isb is not a congruence in CCS. However, one defines from Isb a congruence (let us
call it Isc) just by demanding that a silent action should be matched by at least one silent action (cf. the observational
congruence, oc). Hence, Isc is finer than oc (as Isb is finer than wb), since the laws of Isc are particular cases of the laws
of oc. In CCS, the coarsest bisimulation which is still a congruence is the progressing bisimulation (pb) [41]. Notice that Isc
is incomparable to pb, as, e.g.,, Lv.m #pp Lv.v.m but Lv.m ~c Lv.v.m, and | + 7.1 =y, 7.l but [4+ .15 T L

In ABT, wb is a congruence, as the sums are prefixed. Since this setting has no mixed sums, the v-laws are particular
cases of the laws holding for wb. Thus, wb is still coarser than Isb, but notice that pb is, in this setting, finer than the
previous two, since it distinguishes, e.g., l.v.m from l.v.v.m (hence, the law U1—valid for Isb and for weak bisimulation—is
not valid for pb).

6.3. Further work

The first priority is to find out if Isb is completely axiomatisable in the context of ABT. From there, apart from the deci-
sion procedure for Isb, two topics are interesting: a modal characterisation, to specify properties, and a notion of subtyping,
to allow program refinement.

Modal characterisation. To specify/verify properties of types it is useful to have a logical characterisation of the equivalence
notion. In the process algebra realm this is done with a modal action logic like the Hennessy-Milner logic [25,36]. In the
same way we define a modal logic for ABT.

Definition 6.3 (Syntax). The grammar below defines the set F of formulae of the logic.
P Y =T | =g | (@AY) | (Vg | (@)

The relation below defines when a type satisfies a formula.
Definition 6.4 (Semantics). The following rules inductively define the satisfaction relation =C 7T x F:

. =T, for any «;

. aE=—g, if not o =g;

oAy, ifal=@ and a =y

o= (U)g, if 3y (¢ =o' and &' = 9);
Ca = (@), if 3 (@ s o and o =@).

oD WN =

An equivalence relation rises naturally from the satisfaction relation.

Definition 6.5 (Logical equivalence). Types o and B are logically equivalent, o =g B, if, for all ¢, we have a =g, if, and only

if, BEo.

A. Ravara et al. / Information and Computation 212 (2012) 64-91 87

Logical equivalence is sound with respect to Ish. The converse direction is a conjecture. Usually, it requires assuming
image-finite systems, but — is not image-finite.

Theorem 6.6 (Soundness). If o =g B then a ~ B.
Proof. By induction on the structure of the formulae. O

We would like to extend this modal logic with recursion (in the lines of the modal w-calculus [32]), study our types as
logical formulae, and see how to specify and verify certain properties of systems of objects.

Subtyping. Since types are partial specifications of the behaviour of objects, the subtyping relation gives us the possibility
of specifying that behaviour in more detail. In fact, the principle of substitutability!” states that “a type B is a subtype of a
type «, if B can safely be used in place of a” [34]. “Safely” means that the program is still typable and thus no run-time
error arises. Therefore, subtyping allows the substitution of: (1) a type for one with less methods (co-variant in width), as
it is safe to provide more than what is expected; and (2) a parameter type for one with more methods (contra-variant in
the arguments), as it is safe to assume that the argument has less behaviour than it really has.

Instead of defining the subtyping relation via typing rules, as for instance, in [49] we propose a semantic definition.
It would be interesting to define those rules and study the relationship among both notions; we leave that for future
work.

Definition 6.7 (Similarity on types).

1. A binary~ relation R €7 x 7 is a label-strong simulation, or simply a simulation, if whenever o R 8 we have:
(a) B LON B’ implies 3o/, & (« 1@ & and o' BR Ba);
(b) B8 2> g’ implies 38’ (¢ => a’ and o’ R B).

2. Type B is label-strong similar to type «, or « simulates 8, and we write o < 8, if there is a label-strong simulation R
such that o R 8.

A symmetric simulation is a label-strong bisimulation (Definition 2.5 in p. 70). The simulation is a subtyping relation,
since it is a pre-order (reflexive and transitive). Thus, if o simulates o/, we say that « is a subtype of «’, and write o < «’.

Example 6.8. Subtyping provides flexibility, allowing to change/update (parts of) a system without compromising the overall
behavioural and correctness. The following examples show, on the left-hand side, types specifying systems that can safely
replace those specified by the type on the right-hand side.

. (] l(m)) <I(m) and (n +1(m)) <I(m).
. Im) <I(m+n).

. I(m) < v.l(m).

. Recall Example 2.2 (p. 69) where

AW N -

Menu def balance + deposit(int) + withdraw(int).

It is possible to add a new functionality like money transfer without compromising the correctness of the system.
Let

Menu’ def balance + deposit(int) + withdraw(int) + transfer (int, int).

One easily checks that Menu’ < Menu.
The following result ensures that subtyping is a pre-order.

Proposition 6.9 ((7, <) is a pre-ordered set).

lL a<a.
2. Ifa<Band B <y thena < y.

Proof. Straightforward, simply using the definition O

17" AKA the Liskov substitution principle.

88 A. Ravara et al. / Information and Computation 212 (2012) 64-91

The operators of ABT, as well as Isb, preserve the simulation relation.

Proposition 6.10 (Congruence).

1. Similarity is a congruence relation.
2. Isb preserves similarity.

Proof. The proof of the first clause is standard. The proof of the second clause is trivial, since ~ implies <. O

This pre-order relation induces an equivalence relation (if « < 8 and 8 < « then « =) that is coarser than Isb, since
usually there are types that can simulate each other without being bisimilar. A simple example is the pair of types v.(a+b)
and v.(v.a+ v.(a+ b)).

We would like to define a syntactic notion of subtyping and develop a proof system via subtyping rules, sound and
possibly complete with respect to the semantic notion based on simulation that we just presented.

6.4. Related work

In sequential computational settings, since they were proposed, types have been interpreted as predicates, i.e., abstract
behavioural specifications of a program, and have thus formal semantic interpretations [26,61]. In the context of object-
oriented programming, types are used to statically guarantee semantic interoperability, capturing behavioural aspects of the
specified systems. Barbara Liskov’s substitution principle allows to safely replace objects of type T in a program with objects
of type S, if S is a subtype of T [34]. Oscar Nierstrasz noticed that objects may exhibit non-uniform method availability
(one cannot pop from an empty buffer—push should be called first), thus requiring types to represent possible sequences of
method calls [47].

Concurrency theory inspires dynamic notions of typing and subtyping, often called behavioural. These notions have (at
least) three different forms: types and effects, regular types, and processes as types. In the following paragraphs we briefly
present each approach and compare it to ours.

Types and effects. The type and effect discipline is a framework for principal typing reconstruction in implicitly typed poly-
morphic functional languages [46,64]. An effect system extends a type system to statically describe the dynamic behaviour
of a computation (its effect). Types describe what expressions compute (sets of values) and effects describe how expressions
compute (behaviour). In the context of polymorphic functional languages, these systems are used to control resource usage,
like memory manipulation. When such languages are concurrent, effects resemble processes, and the effect system is akin
to a labelled transition system [24]. Types and effects may decrease with computation. As effects (also called behaviours)
model communication, their decrease corresponds to consuming prefixes, which suggests an operational semantics. Thus,
behaviours look like process algebra terms, an abstraction of the semantics of the language. In the context of name-passing
process calculi, types and behaviours may be merged to become abstract specifications of systems behaviour. We give a de-
tailed account of this approach ahead, when presenting process types.

Behavioural typing. Several researchers are working on this track, developing behavioural notions of typing for concurrent
object calculi. We give herein a brief account of their work. Consider two main approaches:
Regular types: use a regular language as types for objects.

1. Nierstrasz characterises the traces of menus offered by (active) objects [47]. He proposes a notion of subtyping, request
substitutability, based on a generalisation of the Liskov substitution principle by Wegner and Zdonik [69], which states
that “services may be refined as long as the original promises are still upheld”. According to the extension relation of
Brinksma et al. [9], request substitutability is a transition relation, close to the failures model.

2. Colago et al. propose a calculus of actors based on an extended TyCO, supporting objects that dynamically change
behaviour [20-22]. The authors define a type system which aims at the detection of “orphan messages”, i.e. messages
that may never be accepted by any actor, either because the requested service is not available, or because, due to
dynamic changes in an actor’s interface, the requested service is no longer available. Types are interface-like, with
multiplicities (how often can a method be invoked), thus without dynamic information, and the type system requires
complex operations on a lattice of types. Nonetheless, they define a type inference algorithm based on set-constraints
resolution, a well-known technique widely used in functional languages.

3. Najm and Nimour propose a calculus of objects that features dynamically changing interfaces [42-44]. The authors
develop a typing system handling dynamic method offers in interfaces, and guaranteeing a liveness property: all pending
requests are treated. Types are sets of deterministic guarded parametric equations, equipped with a transition relation,
and representing infinite-state systems. A type inference algorithm is built on an equivalence relation, a compatibility
relation, and a subtyping relation on types, based on the simulation and on the bisimulation relations (strong versions,
thus decidable).

A. Ravara et al. / Information and Computation 212 (2012) 64-91 89

Process types. To capture with types behavioural aspects of a system, a natural idea, inspired by the effect analysis
techniques, is to consider processes as types. Approaches in the context of concurrency, namely in process calculi, where
mainly syntactical, but recently, through the combination of both type and model checking, semantic approaches have
emerged, leading to behavioural type systems: types are sound abstractions of the behaviour of processes, and the analysis
performed is akin to model checking. As the properties are checked on types, not on processes, they become decidable, and
thus this approach benefits from the advantages of both type and model checking. Some significant works are the following.

1. Boudol proposes a dynamic type system for the Blue Calculus, a variant of the m-calculus directly incorporating the
A-calculus [6]. Types are functional and assigned to terms, in the style of Curry simple types, and incorporate Hennessy-
Milner logic with recursion—modalities interpreted as resources of names. So, processes inhabit the types, and this
approach captures some causality in the usage of names in a process, ensuring that messages to a name will meet a
corresponding offer. Well-typed processes behave correctly, a property preserved under reduction.

2. Puntigam defines a calculus of active objects with process types that specify constraints on the ordering of messages [50,
52,51]. A static type inference system (with polynomial time complexity) ensures that all sequences of messages sent
to an object are acceptable, even if the set of acceptable messages changes dynamically. Objects are syntactically con-
strained to a unique identity and messages are received in the order they were sent and not suppressed by deadlocks,
as every object is associated with a FIFO queue. The expressiveness of types is that of a non-regular language, which is
equipped with a subtyping relation.

3. Kobayashi et al. have studied deadlock and livelock detection in mobile calculi [30,31]. Channel types have information
not only about their arity, but also about their usage (sequences of possible inputs and outputs), about when they
should be used, and if they must be used.

4. To avoid having a dedicated proof system, tailored to the specific target property, often with its own language of types,
Igarashi and Kobayashi proposed a generic framework to develop type systems to ensure various properties, the Generic
Type System [29]. The language of types is the restriction-free fragment of CCS, hence types are abstract representations
of a process’ behaviour. Particular type systems for concrete properties emerge as instances of the generic one: a given
property is captured by instantiating a general subtyping relation and by defining a consistency condition on types.
One needs to prove that reduction on types preserves consistency and that consistency on types implies the desired
condition on processes. This process works with safety properties (like simple arity-mismatch, race-freedom and even
deadlock-freedom), but not with liveness properties, which require model checking.

This line of work has been pursued by several authors [1,11,13,53].

Protocols types specify the sequence and form of messages passing over communication channels between a number of
parties, in distributed systems. Correctness of such systems implies that protocols are obeyed. Types are terms of a simple
process algebra that allows to describe one side of a communication process, like ABT. There are two main trends.

1. Session types allow the specification of a protocol to be expressed as a type [28,63]; when a communication channel is
created, a session type is associated with it; the two parties at each end of the channel have dual types. Such a type
specifies not only the data types of individual messages, but also the state transitions of the protocol and hence the
allowable sequences of messages. Static type checking makes possible to verify, at compile-time, that an agent using
the channel does so in accordance with the protocol.

Unlike ABT, session types distinguish incoming from outgoing actions, but do not have a parallel composition operator.
The purpose of session types is however rather different from that of ABT: to discipline communication protocols
running on private channels, instead of representing the behaviour of a distributed object.

2. Conversation types capture the interactive behaviour of a service-based system, describing multiparty interactions [12].
The aim is to discipline the conversations between an unanticipated number of participants, ensuring at the same time
progress in the presence of several interleaved conversations.

ABT can be seen as a sublanguage of conversation types, which also uses both spatial and behavioural operators.

Concluding remarks. None of the works referred above study semantically the language of types or propose equivalence
notions, so in that respect our work is original. ABT serves well as a language for partial specification of object behaviour:
a term captures all the possible behaviour of a concurrent (possibly distributed) object. It may even be consider as a deno-
tation of a labelled transition system representing such behaviour. Some of the notions of process types presented before
are also suited for such representation. In particular, ABT is very similar to session types or to conversation types, thus the
work presented here may be applied to those languages.

7. Conclusions

The approach to behavioural types for a concurrent calculus in other works is done either by using an existing process
algebra as a language of types, or by designing a new language appropriate to a particular calculus. We instead propose a
simple and natural notion of types for a general setting—systems of (non-uniform) concurrent objects—and then show that
these types are adequate to the purpose, and are a process algebra with convenient properties.

90 A. Ravara et al. / Information and Computation 212 (2012) 64-91

The Algebra of Behavioural Types, ABT is a process algebra in the style of CCS. It is syntactically very similar to its proper
subclass BPP; in particular, communication is not present. The actions have terms of the process algebra as parameters. The
nature of the silent action induces an original equivalence notion, different from all other equivalences known for process
algebras. Naturally the set of axioms that characterises the equivalence notion is also original. However, the proof techniques
are basically the same, but some crucial proofs are simpler. The interesting aspect is that normal forms include a parallel
composition, as there is no expansion law for the parallel composition of a labelled sum and a blocked type. Thus the proof
of the normal form lemma and of the completeness theorem are different from those for CCS.

Some of the ideas presented in this paper, namely regarding external silent actions and label-(semi-)strong bisimula-
tion, appeared first in [57], where however the algebra was much less tractable (e.g., with non-associative sums) and no
completeness results were obtained. The developments presented here are part of the first author’s PhD thesis [54].

We use ABT to type non-uniform concurrent objects in TyCO, where we formalise a notion of process with a commu-
nication error that copes with non-uniform service availability [56]: we advocate that the right notion of communication
error in systems of concurrent objects is that no message should be forever not understood. Using ABT as the language
of types, we have developed for TyCO a static type system that assigns terms of ABT to TyCO processes, and enjoys the
subject-reduction property, ensuring that typable processes are not locally deadlocked, and do not run into errors [56,54].

We believe that ABT can be used not only to type other concurrent calculi with extensions for objects, but also to type
distribute calculi. To fully use its expressiveness one can define in its favourite calculus functionalities like a method update
that changes the type of the method, object extension adding methods, distributed objects without uniqueness of objects’
identifiers, and non-uniform objects.

Acknowledgments

Special thanks to Gérard Boudol, Ilaria Castellani, Silvano Dal Zilio, and Massimo Merro, for fruitful discussions and
careful reading of parts of this document. Several anonymous referees made useful comments.

References

[1] Lucia Acciai, Michele Boreale, Spatial and behavioural types in the pi-calculus, J. Inf. Comput. 208 (2010) 1118-1153.
[2] Jos C.M. Baeten, Jan A. Bergstra, Jan W. Klop, On the consistency of Koomen'’s fair abstraction rule, Theoret. Comput. Sci. 51 (1-2) (1987) 129-176.
[3] Henk Barendregt, The Lambda Calculus - Its Syntax and Semantics, first ed., revised 84, North-Holland, 1981.
[4] Jan A. Bergstra, Jan W. Klop, Algebra of communicating processes with abstraction, Theoret. Comput. Sci. 37 (1) (1985) 77-121.
[5] Eike Best (Ed.), 4th International Conference on Concurrency Theory (CONCUR), Hildesheim, Germany, Lecture Notes in Comput. Sci., vol. 1243,
Springer-Verlag, 1993.
[6] Gérard Boudol, Typing the use of resources in a concurrent calculus, in: R.K. Shyamasundar, Kazunori Ueda (Eds.), Proceedings of ASIAN’'97, in: Lecture
Notes in Comput. Sci., vol. 1345, Springer-Verlag, 1997, pp. 239-253.
[7] Gérard Boudol, The m-calculus in direct style, Higher-Order and Symbolic Computation 11 (1998) 177-208.
[8] Howard Bowman, John Derrick (Eds.), 2nd IFIP Conference on Formal Methods for Open Object-Based Distributed Systems, Canterbury, UK Chapman &
Hall, 1997.
[9] Ed Brinksma, Giuseppe Scollo, Chris Steenbergen, LOTOS specifications, their implementations and their tests, in: Protocol Specification, Testing and
Verification VI (IFIP), North-Holland, 1987, pp. 349-360.
[10] Olaf Burkart, Javier Esparza, More infinite results, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 62 (1997) 138-159.
[11] Luis Caires, Logical semantics of types for concurrency, in: Proceedings of the 2nd Conference on Algebra and Coalgebra in Computer Science
(CALCO’07), in: Lecture Notes in Comput. Sci., vol. 4624, Springer-Verlag, 2007, pp. 16-35.
[12] Luis Caires, Hugo T. Vieira, Conversation types, Theoret. Comput. Sci. 411 (51-52) (2010) 4399-4440.
[13] Sagar Chaki, Sriram K. Rajamani, Jakob Rehof, Types as models: model checking message-passing programs, in: Proceedings of the 29th ACM Sympo-
sium on Principles of Programming Languages (POPL), ACM Press, 2002, pp. 45-57.
[14] Seren Christensen, Decidability and decomposition in process algebras, PhD thesis, Laboratory for Foundations of Computer Science, University of
Edinburgh, UK, 1993.
[15] Seren Christensen, Hans Hiittel, Decidability issues for infinite-state processes—a survey, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 51 (1993) 156-166.
[16] Seren Christensen, Yoram Hirshfeld, Faron Moller, Bisimulation equivalence is decidable for basic parallel processes, in: Best [5], pp. 143-157.
[17] Seren Christensen, Yoram Hirshfeld, Faron Moller, Decomposability, decidability and axiomatisability for bisimulation equivalence on basic parallel
processes, in: Proceedings of LICS’93, IEEE, Computer Society Press, 1993, pp. 386-396.
[18] Seren Christensen, Hans Hiittel, Colin Stirling, Bisimulation equivalence is decidable for all context-free processes,]. Inf. Comput. 121 (2) (1995) 143-
148.
[19] Paolo Ciancarini, Alesandro Fantechi, Roberto Gorrieri (Eds.), 3rd IFIP Conference on Formal Methods for Open Object-Based Distributed Systems,
Florence, Italy, Kluwer Academic Publishers, 1999.
[20] Jean-Louis Colaco, Analyses Statiques d'un calcul d’acteurs par typage, Thése d'Etat, Institut National Polytechnique de Toulouse, France, 1997.
[21] Jean-Louis Colago, Mark Pantel, Patrick Sallé, A set constraint-based analyses of actors, in: Bowman and Derrick [8].
[22] Jean-Louis Colago, Mark Pantel, Fabien Dagnat, Patrick Sallé, Safety analysis for non-uniform service availability in actors, in: Ciancarini et al. [19].
[23] Simon]. Gay, Malcolm J. Hole, Types and subtypes for client-server interactions, in: Proceedings of the 8th European Symposium on Programming
(ESOP’99), in: Lecture Notes in Comput. Sci., vol. 1576, Springer-Verlag, 1999, pp. 74-90, full version available as Types and subtypes for correct
communication in client-server systems, Technical Report TR-2003-131, Department of Computing Science, University of Glasgow, February 2003.
[24] Chris Hankin, Flemming Nielson, Hanne Riis Nielson, Principles of Program Analysis, Springer, 1999.
[25] Matthew Hennessy, Robin Milner, Algebraic laws for nondeterminism and concurrency, J. ACM 32 (1) (1985) 137-161.
[26] Roger Hindley, Basic Simple Type Theory, Cambridge University Press, 1997.
[27] Yoram Hirshfeld, Bisimulation trees and the decidability of weak bisimulations, in: Proceedings of the International Workshop on the Verification of
Infinite-State Systems, in: Electron. Notes Theor. Comput. Sci. (ENTCS), vol. 5, Elsevier Science Publishers, 1997.

A. Ravara et al. / Information and Computation 212 (2012) 64-91 91

[28] Kohei Honda, Vasco T. Vasconcelos, Makoto Kubo, Language primitives and type discipline for structured communication-based programming, in: Chris
Hankin (Ed.), Proceedings of the 7th European Symposium on Programming (ESOP'98), in: Lecture Notes in Comput. Sci., vol. 1381, Springer-Verlag,
1998, pp. 122-138.

[29] Atsushi Igarashi, Naoki Kobayashi, Generic type system for the pi-calculus, Theoret. Comput. Sci. 311 (1-3) (2004) 121-163.

[30] Naoki Kobayashi, Type systems for concurrent processes: From deadlock-freedom to livelock-freedom, time-boundedness, in: Theoretical Computer
Science: Exploring New Frontiers of Theoretical Informatics, Proceedings of the International IFIP Conference TCS 2000, Sendai, Japan, in: Lecture Notes
in Comput. Sci., vol. 1872, IFIP, Springer-Verlag, 2000, pp. 365-389.

[31] Naoki Kobayashi, Shin Saito, Eijiro Sumii, An implicitly-typed deadlock-free process calculus, in: Catuscia Palamidessi (Ed.), CONCUR 2000: Concurrency
Theory, 11th International Conference, University Park, PA, USA, in: Lecture Notes in Comput. Sci., vol. 1877, Springer-Verlag, 2000, pp. 489-503.

[32] Dexter Kozen, Results on the propositional mu-calculus, Theoret. Comput. Sci. 27 (3) (1983) 333-354.

[33] M. Kietinsky, V. Rehdk, J. Strejcek, Refining the undecidability border of weak bisimilarity, in: Proceedings of the 7th International Workshop on
Verification of Infinite-State Systems (INFINITY’05), in: Electron. Notes Theor. Comput. Sci., vol. 149, Elsevier Science Publishers, 2006, pp. 17-36.

[34] Barbara H. Liskov, Jeannette M. Wing, A behavioral notion of subtyping, ACM Trans. Program. Lang. Syst. (TOPLAS) 16 (6) (1994) 1811-1841.

[35] Richard Mayr, Process rewrite systems, J. Inf. Comput. 156 (1) (2000) 264-286.

[36] Robin Milner, Communication and Concurrency, Int. Ser. Comput. Sci., Prentice Hall, 1989.

[37] Robin Milner, A complete axiomatisation for observational congruence of finite-state behaviours,]J. Inf. Comput. 81 (2) (1989) 227-247.

[38] Robin Milner, The polyadic m-calculus: A tutorial, in: Friedrich L. Bauer, Wilfried Brauer, Helmut Schwichtenberg (Eds.), Logic and Algebra of Spec-
ification, Proceedings of the International NATO Summer School, Marktoberdorf, Germany, 1991, in: Ser. F, NATO ASI, vol. 94, Springer-Verlag, 1993,
available as Technical Report ECS-LFCS-91-180, University of Edinburgh, UK, 1991.

[39] Robin Milner, Joachim Parrow, David Walker, A calculus of mobile processes, part I/Il, J. Inf. Comput. 100 (1992) 1-77, available as Technical Reports
ECS-LFCS-89-85 and ECS-LFCS-89-86, University of Edinburgh, UK, 1989.

[40] Faron Moller, Infinite results, in: Ugo Montanari, Vladimiro Sassone (Eds.), Proceedings of CONCUR'96, in: Lecture Notes in Comput. Sci., vol. 1119,
Springer-Verlag, 1996, pp. 195-216.

[41] Ugo Montanari, Vladimiro Sassone, Dynamic congruence vs. progressing bisimulation for CCS, Fund. Inform. 16 (2) (1992) 171-199.

[42] Elie Najm, Abdelkrim Nimour, A calculus of object bindings, in: Bowman and Derrick [8].

[43] Elie Najm, Abdelkrim Nimour, Jean-Bernard Stefani, Guaranteeing liveness in an object calculus through behavioral typing, in: Proceedings of
FORTE/PSTV'99, Kluwer Academic Publishers, 1999.

[44] Elie Najm, Abdelkrim Nimour, Jean-Bernard Stefani, Infinite types for distributed objects interfaces, in: Ciancarini et al. [19].

[45] Uwe Nestmann, Anténio Ravara, Semantics of objects as processes (SOAP), in: Ana Moreira, Serge Demeyer (Eds.), ECOOP'99 Workshop Reader, in: Lec-
ture Notes in Comput. Sci., vol. 1743, Springer-Verlag, 1999, pp. 314-325, an introduction to, and summary of, the 2nd International SOAP-Workshop.

[46] Flemming Nielson, Hanne Riis Nielson, Type and effect systems, in: Correct System Design, 1999, pp. 114-136.

[47] Oscar Nierstrasz, Regular types for active objects, in: Object-Oriented Software Composition, Prentice Hall, 1995, pp. 99-121.

[48] Benjamin Pierce, Types and Programming Languages, The MIT Press, 2002.

[49] Benjamin C. Pierce, Davide Sangiorgi, Typing and subtyping for mobile processes, Math. Structures Comput. Sci. 6 (5) (1996) 409-454, an extended
abstract appeared in: Proceedings of LICS'93, pp. 376-385.

[50] Franz Puntigam, Strong types for coordinating active objects, Concurrency Comput. Pract. Exp. 13 (2001) 293-326.

[51] Franz Puntigam, State inference for dynamically changing interfaces, Comput. Lang. 27 (2002) 163-202.

[52] Franz Puntigam, Christof Peter, Types for active objects with static deadlock prevention, Fund. Inform. 49 (2001) 1-27.

[53] Sriram K. Rajamani, Jakob Rehof, A behavioral module system for the pi-calculus, in: Patrick Cousot (Ed.), Static Analysis: 8th International Symposium,
SAS 2001, in: Lecture Notes in Comput. Sci., vol. 2126, Springer-Verlag, 2001, pp. 375-394.

[54] Anténio Ravara, Typing non-uniform concurrent objects, PhD thesis, Instituto Superior Técnico, Technical University of Lisbon, Portugal, 2000.

[55] Anténio Ravara, Luis Lopes, Programming and implementation issues in non-uniform TyCO, Technical Report, Department of Computer Science, Faculty
of Sciences, University of Porto, 4150 Porto, Portugal, 1999, presented at the Workshop on Object-Oriented Specification Techniques for Distributed
Systems and Behaviours (O0SDS’99), Satellite event of the 1st Conference on Principles, Logics and Implementations of High-Level Programming
Languages (PLI'99), http://www.tec.informatik.uni-rostock.de/luK/congr/oosds99/program.htm.

[56] Anténio Ravara, Vasco T. Vasconcelos, Typing non-uniform concurrent objects, in: Catuscia Palamidessi (Ed.), CONCUR 2000: Concurrency Theory, 11th
International Conference, University Park, PA, USA, in: Lecture Notes in Comput. Sci., vol. 1877, Springer-Verlag, 2000, pp. 474-488, extended version
available as DM-IST Research Report 12/2000, Portugal.

[57] Anténio Ravara, Pedro Resende, Vasco T. Vasconcelos, Towards an algebra of dynamic object types, in: Semantics of Objects as Processes (SOAP), in:
BRICS Notes Ser., vol. NS-98-5, Danish Institute of Basic Research on Computer Science (BRICS), 1998, pp. 25-30.

[58] Arend Rensink, Bisimilarity of open terms, J. Inf. Comput. 156 (2000).

[59] Davide Sangiorgi, An interpretation of typed objects into typed m-calculus, J. Inf. Comput. 143 (1) (1998) 34-73, earlier version published as Rapport
de Recherche RR-3000, INRIA, August 1996.

[60] Jiri Sbrna, Roadmap of infinite results, 2008.

[61] Jonathan Seldin, The logic of church and curry, in: The Handbook of the History of Logic, vol. 5, Elsevier, 2008.

[62] Jitka Stfibrnd, Hardness results for weak bisimilarity of simple process algebras, in: Proceedings of MFCS'98 Workshop on Concurrency, in: Electron.
Notes Theor. Comput. Sci. (ENTCS), vol. 18, Elsevier Science Publishers, 1998.

[63] Kaku Takeuchi, Kohei Honda, Makoto Kubo, An interaction-based language and its typing system, in: Parallel Architectures and Languages Europe, in:
Lecture Notes in Comput. Sci., vol. 817, Springer-Verlag, 1994.

[64] Jean-Pierre Talpin, Pierre Jouvelot, The type and effect discipline, J. Inf. Comput. 111 (2) (1994) 245-296, an extended abstract appeared in: Proceedings
of LICS'92, pp. 162-173.

[65] Rob]. van Glabbeek, A complete axiomatization for branching bisimulation congruence of finite-state behaviours, in: Proceedings of the 18th Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS’93), in: Lecture Notes in Comput. Sci., vol. 711, Springer-Verlag, 1993,
pp. 473-484.

[66] Rob J. van Glabbeek, The linear time—branching time spectrum II (the semantics of sequential systems with silent moves), in: Best [5], pp. 66-80.

[67] Vasco T. Vasconcelos, Kohei Honda, Principal typing schemes in a polyadic 7 -calculus, in: Best [5], pp. 524-538.

[68] Vasco T. Vasconcelos, Mario Tokoro, A typing system for a calculus of objects, in: Proceedings of the 1st International Symposium on Object Technolo-
gies for Advanced Software, in: Lecture Notes in Comput. Sci., vol. 742, Springer-Verlag, 1993, pp. 460-474.

[69] Peter Wegner, Stanley B. Zdonik, Inheritance as an incremental modification mechanism or what like is and isn’t like, in: Proceedings of the 2nd
European Conference on Object-Oriented Programming (ECOOP), Oslo, Norway, in: Lecture Notes in Comput. Sci., vol. 322, Springer-Verlag, 1988,
pp. 55-77.

[70] Mingsheng Ying, A shorter proof to uniqueness of solutions of equations (note), Theoret. Comput. Sci. 216 (1999) 395-397.

[71] Nobuko Yoshida, Graph types for monadic mobile processes, in: Proceedings of the 16th Conference on Foundations of Software Technology and
Theoretical Computer Science (FST/TCS), in: Lecture Notes in Comput. Sci., vol. 1180, Springer-Verlag, 1996, pp. 371-386, extended version as Technical
Report ECS-LFCS-96-350, University of Edinburgh.

