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Abstract

We propose a process algebra, the Algebra of Behavioural Types. A type is a higher-order
labelled transition system that characterises all possible life cycles of a concurrent object.
States represent interfaces of objects; state transitions model the dynamic change of object
interfaces. Moreover, a type provides an internal view of the objects that inhabit it: a
synchronous one, since transitions correspond to message reception. To capture this internal
view of objects we define a notion of bisimulation, strong on labels and weak on silent actions.
We study several algebraic laws and obtain completeness results for finite types.

1 Introduction

In a name-passing calculus such as TyCO, processes denote the behaviour of a community of
interacting objects, where each object has a location identified by a name [24]. The processes
determine an assignment of types to names that reflects a discipline for communication. The usual
types-as-records paradigm gives each name a static type that contains information about all the
methods of the object, regardless of whether they are enabled or not [25]. However, concurrent
objects can offer services non-uniformly, according to synchronisation constraints, making the
availability of a service depend on the state of the system [17]. Objects with methods enabled or
disabled according to their internal state are very common in object-oriented programming (e.g.
a stack, a finite buffer, an ftp server, a bank account, an automatic cash machine). Non-uniform
concurrent objects, and types able to cope with them, constitute the object of study of several
authors [3, 10, 16, 17, 19, 21]. These types reflect a dependency of the interface of an object on
its internal state, conveying information about dynamic properties of objects. The aim is to build
type systems capable of ensuring not only the usual safety properties like subject-reduction, but
also more complex properties, like the absence of some deadlocks.

Herein we propose an Algebra of Behavioural Types, ABT, where a type is basically a collection
of enabled methods (an interface), and a behavioural type is dynamic in the sense that the execu-
tion of a method can change the type. Therefore, the type of an object is a partial representation
of its behaviour modelled as a labelled transition system. We assume that objects communicate
via asynchronous message-passing; nevertheless, types, as defined in this paper, essentially corre-
spond to a notion of object behaviour as it would be perceived by an internal observer located
within an object (the object’s private “gnome”). This observer can see methods being invoked and
it can detect whether the object is blocked, even though its methods may be internally enabled.
Hence, this notion of behaviour is synchronous, as the gnome can detect refusals of methods. The
action of unblocking an object, denoted by υ, cannot be directly observed by the gnome because
it corresponds to an invocation of some method in another object. Thus, this action is similar to
CCS’s τ since it is hidden, but it is external rather than internal [13]. Therefore, we reach a set of
laws different from Milner’s τ -laws. ABT is similar to the Basic Parallel Processes, BPP, a frag-
ment of CCS proposed by Christensen where communication is not present (parallel composition
is simply a merge) [5].
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The purpose of this paper is the study of semantic foundations of types for non-uniform concur-
rent objects. In particular, we discuss on a notion of equivalence and study its algebraic properties.
The use of ABT as syntactic types for a calculus of concurrent objects, with a static type system
enjoying the subject reduction property, is already in progress [22].

We build ABT gradually. Section 2 presents finite types, with a non-deterministic labelled sum
and a blocking operator, defines the operational semantics, an equivalence notion, and a complete
axiomatisation for that equivalence. In Section 3 we add a parallel composition operator that is a
merge of processes without communication, and show that an extension of the previous axiomatic
system (with expansion laws and a saturation law) is still complete. Section 4 finally presents
the full algebra, with dynamic types obtained by adding a constructor for recursion. The axiom
system has two recursion laws that we prove sound, and we conjecture that it is also complete.

2 Non-Deterministic Finite Types

We start by presenting an algebra of non-deterministic sequential finite types. The basic term is an
object type, a finite collection of methods denoted by labelled sums standing for an interface of an
object. As we allow the same label to appear more than once (possibly with different continuations
under the prefix), the sum is non-deterministic. This fact makes possible the definition of an
expansion law later on when we introduce a parallel composition operator.

We construct unavailable, i.e., blocked object types by means of a blocking operator – denoted
by υ – that prefixes object types. A sum of blocked object types is a sum of possible types of
an object, depending on the state of the system. Hence, the release of the blocked type is an
inter-object choice that makes available one of the types in the sum.

Syntax. Consider a countable set of method names l,m, possibly subscripted.

Definition 2.1. The grammar defines the set Tsf of sequential finite types.

α ::=
∑
i∈I

li(α̃i).αi |
∑
i∈I

υ.αi

where I is a finite indexing set, and each α̃i is a finite sequence of types.

We call a term such as l(α̃).α a method type. The label l in the prefix stands for the name of
the method, which has parameters of type α̃; the type α prescribes the behaviour of the object
after the execution of the method with parameters of type α̃. The term υ.l(α̃).α is a blocked type,
the type of an unavailable method.

The only type composition operator of the algebra is the sum, ‘
∑

’, which has two uses:

1. it puts various method types together to form the type of an object that offers the corre-
sponding collection of methods: the labelled sum

∑
i∈I li(α̃i).αi;

2. associates various blocked types in the (blocked) sum
∑
i∈I υ.αi; after being released the

object behaves according to one of the types αi.

Notation 2.2.

1. We define the following abbreviations:

(a) 0 denotes the empty type (sum with empty indexing set), we omit the sum symbol if
the indexing set is singular, and we use the plus (‘+’) to denote binary sums of types;

(b) l(α̃) denotes l(α̃).0, and l denotes l().

2. We write α ≡ β when the types α and β are syntactically identical.
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Operational semantics. We define a structural operational semantics for finite types via a
labelled transition relation on types.

Definition 2.3. The grammar defines the set of labels: π ::= υ | l(α̃).

The label υ denotes a silent transition that releases a blocked object; a label l(α̃) denotes a
transition corresponding to the invocation of method l with actual parameters of types α̃.

Definition 2.4. The labelled transition relation is defined by the following rule.

Act

∑
i∈I

πi.αi
πj−→ αj (j∈I)

Act is in fact an axiom-schema that captures two cases:

1. the basic transition is the invocation of a method with name l and parameters of types α̃,
yielding the type of the object in the method’s body;

2. a silent transition υ (unblocking) releases a blocked type.

Terminology. Some terminology regarding the transition relation will make some proofs clearer.

1. If α
l(α̃)−−→ α′ or α υ−→ α′ then α′ is a derivative of α. In the first case it is an l-derivative and

the second an υ-derivative;
2. types that are not of the form

∑
i∈I υ.αi are unblocked. Furthermore, α is strictly blocked

(respectively strictly unblocked) if I 6=∅ (respectively if α has an l-derivative).

Notation 2.5. 1. Let =⇒ denote υ−→∗;
2. in a labelled sum α ≡

∑
i∈I li(α̃i).αi the set {li(α̃i)}i∈I is the interface of the object, denoted

by int(α). Note that the interface of a blocked type is empty.

Equivalence notion. We want two types to be equivalent if they have the same interface and
if after each transition they continue to be equivalent, in a bisimulation style. Furthermore, from
the point of view of each type, transitions of other types can be regarded as hidden transitions,
which would suggest weak bisimulation as the right notion of equivalence for our types, with υ
playing the role of Milner’s τ , but representing external interaction rather than internal. However,
we want types to distinguish an object that immediately makes available a method from one that
makes it available only after being unblocked by another object. This is because, although υ is
supposed to be unobservable, we assume that from the point of view of an internal observer – the
object’s gnome – it is detectable that the object is blocked. Hence, we would expect υ.l to be
different from l, since all the internal observer can see is that the object is blocked, and after being
released it can eventually execute the method l. This discards weak bisimulation as a candidate
for type equivalence. However, we want υ.l and υ.υ.l to be equivalent because the number of
unblockings cannot be counted from within the object as they correspond to transitions on other
objects, which discards strong bisimulation [13] and progressing bisimulation [15]. We also want to
distinguish l.υ.m from l.m on the grounds that for the latter a blocking after l cannot be observed,
and thus observational congruence [13] and rooted bisimulation [1] are unsuitable. Also, notice
that in a sense all the above mentioned equivalences, with the exception of weak bisimulation, are
stronger than necessary because they are congruences with respect to binary sums, as in CCS [13],
whereas in this paper we stick to prefixed sums.

These considerations lead to the choice of a notion of equivalence that we call label-strong
bisimulation, or lsb. It is a higher-order strong bisimulation on labels and a weak bisimulation on
unblockings. We require that if α and β are bisimilar then:

1. if α offers a particular method then also β offers that method, and the parameters and the
bodies of the methods are pairwise bisimilar;

2. if α offers a hidden transition then β can offer zero or more hidden transitions.
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Definition 2.6 (Bisimilarity on types).

1. A symmetric binary relation R ⊆ Tsf×Tsf is a label-strong bisimulation if whenever αRβ

(a) α
l(α̃)−−→ α′ implies ∃β′, β̃ (β

l(β̃)−−→ β′ and α′α̃Rβ′β̃);1

(b) α
υ−→ α′ implies ∃β′ (β =⇒ β′ and α′Rβ′);

2. Two types α and β are label-strong bisimilar, or simply bisimilar, and we write α≈β, if there
is a label-strong bisimulation R such that αRβ.

The usual properties of bisimilarities hold, namely ≈ is an equivalence relation and a fixed point,
in the sense that α≈β holds if, and only if,

1. α
l(α̃)−−→ α′ implies ∃β′, β̃ (β

l(β̃)−−→ β′ and α′α̃≈β′β̃);

2. α υ−→ α′ implies ∃β′ (β =⇒ β′ and α′≈β′).

Also, it is simple to verify that α≈β holds if, and only if,

1. α
l(α̃)−−→ α′ implies ∃β′, β̃ (β

l(β̃)−−→ β′ and α′α̃≈β′β̃);
2. α =⇒ α′ implies ∃β′ (β =⇒ β′ and α′≈β′).

Two types are not bisimilar if they have different interfaces or after some matching transitions
there derivatives have different interfaces.

The sum of method types and the sum of blocked types preserve bisimilarity. This result is
simple to verify, since the sum is guarded.

Proposition 2.1. Let α̃i ≈ β̃i and αi ≈ βi for all i in some indexing set I.

1.
∑
i∈I li(α̃i).αi ≈

∑
i∈I li(β̃i).βi, and

2.
∑
i∈I υ.αi ≈

∑
i∈I υ.βi.

[Briefly, ≈ is a (higher-order) congruence relation with respect to prefixing and summation.]

Proof. Proving that labelled sums and blocked sums preserve ≈ is a direct application of Defini-
tion 2.6, and the fixed point property of ≈.

Algebraic characterisation. We present an axiomatisation of the equivalence notion and show
that it is sound and complete. The proof technique for completeness is standard: a definition of a
normal form for the types, a lemma ensuring that for all types their exists an equivalent normal
form, and finally the completeness theorem says that for all pairs of equivalent normal forms their
exists a derivation of there equality using the rules of the axiomatic system.

Prop/Definition 2.7. The Axiom System Asf.

Commutativity . . .+ π1.α1 + π2.α2 + . . . ≈ . . .+ π2.α2 + π1.α1 + . . . ;
Idempotence π.α+ π.α+ . . . ≈ π.α+ . . . ;
υ-law υ.

∑
i∈I υ.αi ≈

∑
i∈I υ.αi.

Proof. Straightforward.

Remark 2.8.

1. We write `α=β when we can prove α≈β using the laws above and the usual rules of equa-
tional logic, together with the additional one: if `α=β and ` α̃=β̃ then ` l(α̃).α=l(β̃).β.

2. An interesting instance of the υ-law is α≈0 if α is a blocked sum with all its derivatives
being also blocked sums (i.e., α is a tree where all branches have label υ).

1Let α′α̃Rβ′β̃ denote α′Rβ′, α1Rβ1, . . . , and αnRβn, where n is the length of the sequences α̃ and β̃.
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3. One can easily recognise particular instances of the τ -laws of CCS that hold in this setting.
For example, the υ-law corresponds to an instance of the τ -law α.τ.P=α.P , where α≡τ , and
it is possible to derive instances of the second and third τ -laws, namely:
(a) τ.P + τ.τ.P = τ.τ.P , since τ.τ.P = τ.P ;
(b) τ.(τ.P + τ.Q) = τ.(τ.P + τ.Q) + τ.Q;

use first the υ-law, then idempotence, and then again the υ-law.
However, the laws do not hold in general; for instance, in this setting the third one does not
hold: l.(υ.α+υ.β) 6=l.(υ.α+υ.β)+l.β.

Definition 2.9 (Normal forms of sequential types).

1. A type α is saturated if α υ=⇒ α′ implies α υ−→ α′.
2. A type α is a normal form if it is saturated and furthermore one of the following conditions

holds:

(a) α ≡ 0;
(b) α ≡

∑
i∈I υ.αi and each αi is a normal form;

(c) α ≡
∑
i∈I li(α̃i).αi, where each component of each sequence αiα̃i is a normal form.

Definition 2.10 (Depth of a Type).

The depth of a type is inductively defined as follows:

depth(0) = 0,
depth(

∑
i∈I υ.α) = 1 + max{depth(αi) | i ∈ I}, and

depth(
∑
i∈I li(α̃i).αi) = 1 + max{depth(α̃i) + depth(αi) | i ∈ I},

where depth(α̃i) = max{depth(β) | β ∈ α̃i}.

We prove now that all types have equivalent normal forms, a crucial lemma to achieve complete-
ness.

Lemma 2.2 (Normal Forms).

For all types α there exists a normal form α′ such that `α=α′, with depth(α′)≤depth(α).

Proof. By induction on the depth of α.
If α≡0 then it is a normal form by definition. Otherwise, if α ≡

∑
i∈I πi.αi then, by induction hy-

pothesis, for each αi there exists a normal form α′i such that `αi=α′i, with depth(α′i)≤depth(αi).
The prefix can be of two forms:

1. πi ≡ li(α̃i), for all i. Since the types α̃i also have normal forms α̃′i, and as clearly,
depth(

∑
i∈I li(α̃′i).α

′
i) ≤ depth(α), we conclude that

`α =
∑
i∈I li(α̃′i).α

′
i.

2. πi ≡ υ, for all i. We have to guarantee saturation. For each i such that α′i
υ−→, there is a Ji 6=∅

such that α′i ≡
∑
j∈Ji υ.αj and, for each j∈Ji we have

∑
i∈I υ.α

′
i
υ.υ−→ αj . By idempotence

and the υ-law, we have

`
∑
i∈I υ.α

′
i =

∑
i∈I υ.α

′
i + υ.αj . We can add υ.αj to

∑
i∈I υ.α

′
i for all such αj and thus

obtain a normal form of α whose depth clearly equals that of
∑
i∈I υ.α

′
i.

We are now in a position to prove the main result of this section: the completeness of the axioma-
tisation with respect to the equivalence notion.

Theorem 2.3. α ≈ β if, and only if, `α=β.

Proof. The ‘if’ direction (soundness) is a consequence of Proposition 2.1 and of Prop/Definition 2.7.
In particular, Proposition 2.1 ensures that the inference rule of Remark 2.8 is sound. The ‘only-if’
direction (completeness) is done by induction on the sum of the depths of the types α and β
(assumed to be normal forms, by Lemma 2.2).
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3 Concurrent Finite Types

Now we extend the algebra of non-deterministic sequential finite types with concurrent types, via
a parallel composition operator. Since the algebra does not have communication this operator is
simply a merge of types.

Syntax. Take the set of method names assumed in the previous section.

Definition 3.1. The grammar defines the set Tf of concurrent finite types.

α ::=
∑
i∈I

li(α̃i).αi |
∑
i∈I

υ.αi | α ‖α

where I is a finite indexing set, and each α̃i is a finite sequence of types.

The parallel composition (‘‖’) of types denotes the existence of several objects located at
the same name in parallel (interpreted as different copies of the same object, possibly several
in different states). Consider that the prefixes bind tighter than the parallel constructor, i.e.,
l.m ‖n is (l.m) ‖n.

Notice that unblocked types are now not only labelled sums, but also parallel compositions
involving (at least) a labelled sum. Therefore, if α is an unblocked type, its interface is the union
of the interfaces of the labelled sums that are elements of the parallel composition.

Definition 3.2 (Interface of a Type).

The interface of a type is inductively defined by the following rules:

int(
∑
i∈I υ.α) = ∅

int(
∑
i∈I li(α̃i).αi) = {li(α̃i)}i∈I
int(α1 ‖α2) = int(α1) ∪ int(α2)

Definition 3.3 (Labelled transition relation).

The axiom schema of Definition 2.4 together with the two rules below inductively define the
labelled transition relation of the algebra of concurrent finite types.

Rpar
α

π−→ α′

α ‖β π−→ α′ ‖β
Lpar

α
π−→ α′

β ‖α π−→ β ‖α′

Proposition 3.1. The parallel composition operator preserves the bisimilarity relation (cf. Def-
inition 2.6).

Proof. It is easy to see that the relation {(α ‖β, α′ ‖β′) | α≈α′ and β≈β′} is a bisimulation, and
thus, ‖ preserves ≈.

Algebraic characterisation. We extend the axiom system Asf with laws regarding the parallel
composition operator, and show that the resulting axiom system is sound and complete. Notice
that we have two expansion laws, since the syntax of finite types does not allow mixing labels
and υ in sums, e.g., as in l.α+υ.β. Moreover, we have an extra υ-law which allows us to saturate
blocked parallel types that do not expand.
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Prop/Definition 3.4. The Axiom System Af.
The axiom system Af is composed by the laws of Prop/Definition 2.7 together with the following
laws2.

CM 〈Tf/≈, ‖,0〉 is a commutative monoid;

EXP1 (
∑
i∈I υ.αi) ‖ (

∑
j∈J υ.βj) ≈∑

i∈I υ.(αi ‖
∑
j∈J υ.βj) +

∑
j∈J υ.(

∑
i∈I υ.αi ‖ βj);

EXP2 (
∑
i∈I li(α̃i).αi) ‖ (

∑
j∈J mj(β̃j).βj) ≈∑

i∈I li(α̃i).(αi ‖
∑
j∈J mj(β̃j).βj) +

∑
j∈J mj(β̃j).(

∑
i∈I li(α̃i).αi ‖ βj);

U1 υ.
∑
i∈I υ.αi ≈

∑
i∈I υ.αi;

U2 υ.(
∑
i∈I υ.αi ‖

∑
j∈J mj(β̃j).βj) ≈

υ.(
∑
i∈I υ.αi ‖

∑
j∈J mj(β̃j).βj) + υ.(αk ‖

∑
j∈J mj(β̃j).βj), with k∈I.

Proof. Straightforward.

To prove the completeness of the axiom system with respect to the equivalence notion we have
three alternatives:

1. allow arbitrary labelled sums, i.e., mixing labels and υ in sums, and having a single expansion
law; the proof of completeness is standard;

2. add a new inference rule in the equational logic:

if ` α1‖α2=β1‖β2 and ` α̃=β̃ then ` l(α̃).α1‖α2=l(β̃).β1‖β2;
3. use only induction.

The first alternative is, somehow, unnatural, since labelled sums represent interfaces of objects,
and an arbitrary labelled sum does not represent an interface. Hence, we do not follow this path.
Notice that, for the last two alternatives, normal forms include a parallel composition, as there is
no expansion law for the parallel composition of a labelled sum and a blocked type; thus the proofs
of the normal form lemma and of the completeness theorem are different from those for CCS. We
proceed now according to the second alternative.

Definition 3.5 (Normal forms of concurrent types).

A type α is a normal form if it is saturated (cf. Definition 2.9), and furthermore, one of the
following conditions holds:

1. α ≡ 0;
2. α ≡

∑
i∈I υ.αi and each αi is a normal form;

3. α ≡
∑
i∈I li(α̃i).αi and each component of each αiα̃i is a normal form;

4. α ≡ α1 ‖α2, where α1 and α2 are respectively as in 2 and 3 above, with α1, α2 6≈0
and I, J 6=∅.

Definition 3.6 (Depth of a Type).

The depth of a process is inductively defined by the rules of Definition 2.10, together with the
rule depth(α ‖β) = depth(α) + depth(β).

Lemma 3.2 (Normal Forms).

For all object types α there exists a normal form α′ such that `α=α′, with depth(α′)≤depth(α).

Proof. By induction on the depth of α. The proof is similar to the one of Proposition 2.2; see the
appendix for details.

A non-trivial consequence of the normal form lemma is the following result.
2Notice that the υ-law is now law U1.
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Lemma 3.3. If α ≡
∑
i∈I υ.αi is a normal form then no αi is a parallel composition.

Proof. Assume that α1 ≡
∑
j∈Ji υ.αj ‖

∑
k∈Ki lk(α̃k).αk, which is a normal form. By law U2,

` α = α+υ.(αj ‖
∑
k∈Ki lk(α̃k).αk), for some j ∈ Ji, and αj is an υ-sum since α is a normal form.

Applying repeatedly law U2, and as the types are finite, we conclude that
∑
j∈Ji υ.αj ≈ 0, what is

an absurd, since α is a normal form. Whence, no derivative of α can be a parallel composition.

Theorem 3.4. α ≈ β if, and only if, `α=β.

Proof. The ‘if’ direction (soundness) is a consequence of Proposition 2.1 and of Prop/Definition 3.4.
The ‘only-if’ direction (completeness) is done by induction on the sum of the depths of the types
α and β (assumed to be normal forms, by Lemma 3.2); see the Appendix A for details.

To be able to prove the completeness result by a simple induction, the third of the alternatives
discussed above, we need the following auxiliary lemmas. However, Lemmas 3.6 and 3.7 are still
conjectures. See the second appendix for a detailed discussion.

Lemma 3.5. Let α, β and γ be types, α a labelled sum and γ blocked, such that α ≈ β‖γ.
Then γ≈0.

Proof. By induction on the depth of α.

Lemma 3.6. Let α, β and γ be normal forms such that α ‖ β and α ‖ γ are also normal forms.
Then α ‖ β ≈ α ‖ γ implies β ≈ γ.

Lemma 3.7. Consider types α and β normal forms, and let α ≡ α1 ‖α2 and β ≡ β1 ‖β2, with α1

and β1 labelled sums, and α2 and β2 blocked.
Then α ≈ β if, and only if, α1 ≈ β1 and α2 ≈ β2.

Theorem 3.8. α ≈ β if, and only if, `α=β.

Proof. The ‘if’ direction (soundness) is a consequence of Proposition 2.1 and of Prop/Definition 3.4.
The ‘only-if’ direction (completeness) is done by induction on the sum of the depths of the types
α and β (assumed to be normal forms, by Lemma 3.2), using Lemmas 3.5 and 3.7; see Appendix B
for details.

4 Dynamic Types

We finally present the Algebra of Behavioural Types. We obtain it by extending the algebra of
concurrent finite types with a recursive operator µ to denote infinite types, which enables us to
characterise the behaviour of persistent objects.

Syntax. Assume a countable set of variables, denoted by t and possibly subscripted or primed,
disjoint from the set of method names considered in the previous sections.

Definition 4.1. The grammar below defines the set T of behavioural types.

α ::=
∑
i∈I

li(α̃i).αi |
∑
i∈I

υ.αi | α‖α | t | µt.α

where I is a finite indexing set, and α̃ is a finite sequence of types.

Definition 4.2.

1. An occurrence of the variable t in the part α of the type µt.α is bound ; otherwise the
occurrence of t is free. Moreover, fv(α) is the set of variables that occur free in α.

2. The type α[β/t] denotes the substitution in α of the free occurrences of t by β.

Notation 4.3. For simplicity we sometimes write t=α instead of µt.α.
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Operational semantics. Assume the set of labels defined in Definition 2.4. A labelled transition
relation defines the operational semantics of the algebra. It is obtained from the one of the previous
section by adding a new rule:

Rec
α[µt.α/t] π−→ α′

µt.α
π−→ α′

It is simple to verify, using standard techniques, that lsb is still a congruence, i.e., the recursive
operator preserves label-strong bisimulation.

Algebraic laws. We present an axiomatization of the equivalence notion, adding two recursion
rules to the previous axiom system, and show its soundness.

Definition 4.4. A free variable t is guarded in α if all its occurrences are within some label-
prefixed subexpression of α. We say α is guarded if all its free variables are guarded.

Example 4.5. The variable t is guarded in l(t).α, l(α̃).t, and in l(υ.t).0, but not in υ.t.

Prop/Definition 4.6. The Axiom System A.
The axiom system A is composed by the laws of Prop/Definition 3.4 together with the following
recursion laws.

R1 µt.α ≈ α[µt.α/t];
R2 if β ≈ α[β/t] then β ≈ µt.α, provided that α is guarded.

To prove the soundness of the axiom system A we have to ensure that equations have u-
nique solutions, i.e., if β is guarded, α1≈β[α1/t], and α2≈β[α2/t] then α1≈α2. Law R2 of
Prop/Definition 4.6 is a corollary of this result and of law R1 (which has a straightforward proof).
The proof follows a method analogous to the one used for CCS, and it can be found in the third
appendix.

5 Further Issues

On Bisimulation. An alternative notion of bisimulation is below.

Definition 5.1.

1. A symmetric binary relation R ⊆ T ×T is a label-semi-strong bisimulation, (lssb) if whenever
αRβ then

(a) α
l(α̃)−−→ α′ implies ∃β′, β̃, γ (β

l(β̃)−−→ γ =⇒ β′ and α′Rβ′ and α̃Rβ̃);

(b) α
υ−→ α′ implies ∃β′ (β =⇒ β′ and α′Rβ′);

2. Two types α and β are label-semi-strong bisimilar, or simply lssb, and we write α≈sβ, if
there is a label-semi-strong bisimulation R such that αRβ.

Again, ≈s is an equivalence relation and α ≈s β holds if and only if conditions 1(a) and 1(b)
of the previous definition hold with R replaced by ≈s. Furthermore, lssb is a congruence relation.

This notion differs from lsb by allowing unblockings after label execution (condition 1(a)). For
deterministic finite types the two notions coincide, as we previously shown [20]. However, as we
discussed in that paper, the notions do not coincide in more general transition systems, namely
in non-deterministic ones.
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Example 5.2 (Comparing lsb and lssb).

Take the types l.υ.l and l.υ.l+l.l;

�
l ��
•
υ ��
•
l ��
•

≈s

6≈

�
l ��

l

��????

•
υ ��

•
l��

•
l ��

•

•

In l.υ.l, the second l is only observable after the occurrence of the unblocking, which corresponds
to the execution of some action in another object. There is a causal dependency between the first l,
the action corresponding to the unblocking, and the second l. If the law l.υ.l=l.υ.l+l.l holds for
some equivalence notion then the notion does not capture causality between action execution in
different objects, and thus, is a local notion, whereas a notion that distinguishes the types in the
law is global (with respect to the community of objects).

We adopt lsb as the “right” notion of bisimulation, for it is global, and it is technically simpler.
Furthermore, it is finer than lssb. Notice that progressing bisimulation (pb) is, in this setting, finer
than the previous two since it distinguishes, e.g., l.υ.m from l.υ.υ.m (thus law U1 is not valid for
pb). However, if we define our notions of bisimulation in CCS they are incomparable to pb as,
e.g., P+τ.P 6= τ.P (it is easy to show that a+τ.a 6= τ.a).

On Completeness for infinite types. Having proved the uniqueness of solutions of equations,
we conjecture that the axiom system A of Prop/Definition 4.6 is complete for finite state types
and guarded recursion. Once again the proof is inspired by the one done by Milner for image-finite
CCS [14].

Completeness for infinite state types is a considerably more difficult problem. One cannot
hope for completeness of axiomatizations of equivalence notions in CCS for the calculus is compu-
tationally complete. Since the full computational power comes from the substitution mechanisms
(communication in this case), in calculi without communication it still makes sense to look for
completeness. The study of image-infinite (or infinite-state) systems is a lively area of concurrency
theory, with several important results established [4, 8, 12]. We focus our attention in two process
algebras: BPA and BPP. BPA is the class of Basic Process Algebra of Bergstra and Klop [2],
corresponding to the transition systems associated with Greibach Normal Form (GNF) context-
free grammars, in which only left-most derivations are allowed. BPP is the class of Basic Parallel
Processes of Christensen [5], which is the parallel counterpart of BPA but with arbitrary deriva-
tions. Strong bisimilarity is decidable for BPA [9] and BPP [6, 7]. However there is still no such
result for weak bisimilarity on full BPA and BPP, although the result is already established for
the totally normed subclasses [11], and a possible decision procedure for full BPP is NP-hard [23].
Nevertheless, we are looking for completeness, since decidability is stronger than what we need:
the existence of a proof for each equation suffices.

On Subtyping. The equivalence lsb is a symmetric simulation; the simulation itself is a subtyp-
ing relation, ≤, i.e., it is a partial order (reflexive, transitive, and anti-symmetric – any two types
which simulate each other are equivalent). Thus, if α′ simulates α, α′ ≤ α, α′ is also a subtype
of α. The simulation is a subtyping relation, and the partially ordered set (T ,≤) is a complete
lattice.

This is a semantic notion of subtyping. A syntactic notion comes from extra rules of the type
system, as for instance, in [18]. It is interesting to define those rules and study the relationship
among both notions, and we expect them to coincide.
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6 Concluding remarks

The approach of behavioural types in other works is done by using an existing process algebra as
types for a language or calculus. We took the inverse approach: we first define adequate types
for our setting – non-uniform objects – and then show that the types are a process algebra with
convenient properties.

The Algebra of Behavioural Types is a process algebra in the style of CCS. It is very similar
to its proper subclass BPP; in particular, communication is not present. There are two major
differences:

1. the actions have terms of the process algebra as parameters;
2. the silent action does not denote internal activity in the process, but rather captures external

activity, i.e., action execution in other processes.

The nature of the silent action induces an original equivalence notion, different from all other
equivalences known for process algebras. Naturally the set of axioms that characterises the equiv-
alence notion is also original. However, the proof techniques are basically the same, but some
crucial proofs are simpler. The interesting aspect is that normal forms include a parallel compo-
sition, as there is no expansion law for the parallel composition of a labelled sum and a blocked
type. Thus the proof of the normal form lemma and of the completeness theorem are different
from those for CCS.

Some of the ideas presented in this paper, namely regarding external silent actions and label-
(semi-)strong bisimulation, appeared first in [20], where however the algebra was much less
tractable (e.g., with non-associative sums) and no completeness results were obtained.

We are currently using ABT to type non-uniform concurrent objects in TyCO, where we
formalise a notion of process with a communication error that copes with non-uniform service
availability [22]. The type system assigns terms of the type algebra to processes, and ensures that
typable processes are not locally deadlocked, and do not run into errors.

We believe that ABT can be use to type other concurrent calculi with extensions for objects,
but also to type calculi with localities. To fully use its expressiveness one can define in its favourite
calculus functionalities like a method update that changes the type of the method, object extension
adding methods, distributed objects without uniqueness of objects’ identifiers, and non-uniform
objects.
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A Proof of Theorem 3.4

Proof. The ‘if’ direction (soundness) is a consequence of Proposition 2.1 and of Prop/Definition 3.4.
The ‘only-if’ direction is done by induction on the sum of the depths of the types α and β (assumed
to be normal forms, by Lemma 3.2). Taking into account the proof of Theorem 2.3 we only have
one case to consider.
Case α≡(

∑
i∈I li(α̃i).αi) ‖ (

∑
j∈J υ.αj) and β≡(

∑
k∈K mk(β̃k).βk) ‖ (

∑
l∈L υ.βl);

If I 6=∅ then obviously also I 6=∅ as α≈β. If J 6=∅ then, by Lemma 3.5, also L6=∅. Thus, consid-

er I, J,K,L6=∅, and consider the blocked sums not equivalent to 0. If α
li(α̃i)−−−→ αi‖

∑
j∈J υ.αj ,

and since, by hypothesis we have α≈β, then there exists a k∈K such that li=mk and β
mk(β̃k)−−−−→

βk‖
∑
l∈L υ.βl, with α̃i≈β̃k and αi‖

∑
j∈J υ.αj ≈ βk‖

∑
l∈L υ.βl. Now, αi is either a labelled sum

or a blocked sum. In the first case, the result follows by induction. In the second case we apply
EXP1 and the proof is similar to the corresponding case in the proof of Theorem 2.3, using the
inference rule. If α υ−→

∑
i∈I li(α̃i).αi) ‖ αi then we proceed similarly to the previous case, using

the corresponding case in the proof of Theorem 2.3.

B Proofs of Section 3

Lemma B.1 (Normal Forms).

For all object types α there exists a normal form α′ such that `α=α′, with depth(α′)≤depth(α).

Proof. By induction on the depth of α. The proof is similar to the one of Proposition 2.2, and we
omit the common cases. Hence, we only have two cases to consider.

Case α ≡
∑
i∈I υ.αi; by induction hypothesis, for each αi there exists a normal form α′i such that

`αi=α′i, with depth(α′i)≤depth(αi). The interesting case now is when α′i ≡ (
∑
j∈Ji υ.αj) ‖ β,

with β ≡
∑
k∈Ki lk(β̃k).βk and Ji,Ki 6=∅; then we have

∑
i∈I υ.α

′
i

υ.υ−−→ αj ‖β, and, by U2,
`
∑
i∈I υ.α

′
i =

∑
i∈I υ.α

′
i + υ.(αj ‖β).

Now (αj ‖β) may not be a normal form (e.g., if αj≡0), but depth(αj ‖β)<depth(α), and thus
by induction hypothesis there is a normal form γ such that `αj ‖β=γ; hence `

∑
i∈I υ.α

′
i =∑

i∈I υ.α
′
i+υ.γ. We still have to saturate υ.γ. If it is a blocked sum, using U1 we obtain a saturat-

ed form γ′; if it is a parallel composition we use U2 to obtain γ′. So, `
∑
i∈I υ.α

′
i =

∑
i∈I υ.α

′
i+γ

′.
Applying repeatedly U2 in the same way to all α′i of this form, and applying U1 as in the proof
of Theorem 2.3, we attain a normal form for α whose depth does not exceed that of

∑
i∈I υ.α

′
i.

Finally, if α≡γ1 ‖ γ2 we use the commutative monoid laws and the expansion laws to rewrite
α either as a blocked sum, a labelled-prefixed sum, or a parallel composition of the previous
two with I, J 6=∅ and without increasing the depth of the types. The first two cases are treat-
ed as above, and in the parallel composition case we apply the same reasoning to each sum
separately, obtaining `α=α1 ‖α2, where α1 and α2 are respectively a blocked sum and a labelled-
prefixed sum, both normal forms. If `α1=0 then `α1 ‖α2=α2; otherwise, α1 ‖α2 is a normal
form. Moreover, notice that depth(α1)≤depth(

∑
i∈I υ.αi) and depth(α2)≤depth(

∑
j∈J lj(β̃j).βj).

Whence depth(α1 ‖α2)≤depth(α).

Lemma B.2. Let α, β and γ be types, α a labelled sum and γ blocked, such that α ≈ β‖γ. Then
γ≈0.

Proof. If β is blocked then clearly α≈0, whence γ≈0. For the remainder of this proof let us assume
that β is unblocked. The proof follows by induction on depth(α). If depth(α)=1 then α≈β and
thus γ≈0. For the induction step we assume γ 6≈0 and we derive a contradiction, as follows. If

γ 6≈0 then γ =⇒ γ′
l(γ̃)−−→ γ′′ for some γ′, l, γ̃, and γ′′. Since α is unblocked and α ≈ β‖γ, we

have α ≈ β‖γ′ and α′ ≈ β‖γ′′ for some l-derivative α′ of α, where we are assuming that β is
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strictly unblocked and thus so is α′. Furthermore, since α ≈ β‖γ and γ is blocked, there is some l-
derivative β′ of β such that α′ ≈ β′‖γ, where β′ is strictly unblocked because α′ is and γ is blocked.
Finally, depth(α′)<depth(α), and thus by induction we conclude γ≈0, a contradiction.

Conjecture B.3. Let α, β, and γ be normal forms such that α ‖ β and α ‖ γ are also normal
forms. Then α ‖ β ≈ α ‖ γ implies β ≈ γ.

Discussion. Since α ‖ β and α ‖ γ are both normal forms, by the previous lemma, either α is a
blocked sum, and β and γ are both labelled sums, or vice-versa; moreover, α, β, γ 6≈0. We proceed
by induction ondepth(α)+ depth(β)+ depth(γ). The base cases are:

1. depth(α)+ depth(β)+ depth(γ) = 4 (α is a blocked sum with depth(α)=2, and β and γ are
labelled sums of depth 1); the result is immediate;

2. depth(α)+ depth(β)+ depth(γ) = 5 (α is a labelled sum with depth(α)=1, and β and γ are
blocked sums of depth 2); the result follows by the definition of the equivalence.

For the induction step we do a case analysis on the structure of the types:

1. case α is blocked (where all its derivatives are not parallel compositions, by Lemma 3.3); if
α

υ−→ αi then ∃αj α
υ−→ αj and αi ‖ β ≈ αj ‖ γ; if αi≈0 then, by the previous lemma, αj≈0

and the result follows immediatly; otherwise, if αi≈αj then the result follows by induction;
the remaining case (αi 6≈αj) should be impossible, but we still did not prove it;

2. case α is a labelled sum the proof is similar to the previous case.

Conjecture B.4. Consider types α and β normal forms.
Let α≡α1 ‖α2, with α1 ≡

∑
i∈I li(α̃i).αi and α2 ≡

∑
j∈J υ.αj , and let β≡β1 ‖β2, with β1 ≡∑

k∈K mk(β̃k).βk and β2 ≡
∑
l∈L υ.βl.

α≈β if, and only if, α1≈β1 and α2≈β2.

Discussion. The ‘if’ direction is a consequence of Proposition 2.1. For the ‘only-if’ direction
notice first that if α2≈0 (or β2), the result follows by the Lemma B.2. Notice that if we consider
α1≈β1 but α2 6≈β2 or vice-versa then by the contrapositive of the previous lemma we conclude
an absurd; moreover, clearly α1 6≈β2 and α2 6≈β1. ¿From here the proof follows by induction on
depth(α1)+ depth(β1). The base is depth(α1)= depth(β1)=0; we immediately obtain α1≈β1≈0
and thus, α2≈β2. For the induction step assume depth(α1)+ depth(β1)>0. Then α1 ‖α2 and
β1 ‖β2 are strictly unblocked (and in fact the sum of the depths is at least 2—if it is exactly 2 the
result follows immediately, therefore we consider it bigger than 2).

So, as α≈β, there are l-derivatives αi, βk 6≈0 of α1, β1 such that αi ‖α2 ≈ βk ‖β2 holds; case αi
and βk are bisimilar labelled sums, by induction we obtain α2≈β2, and thus, by Conjecture B.3,
also α1≈β1; case αi and βk are bisimilar blocked sums, again by Conjecture B.3, α2≈β2, and
α1≈β1.

It is also the case that there are υ-derivatives αj , βl of α2, β2, such that α1 ‖αj ≈ β1 ‖βl holds,
with α1 6≈β1 and α2 6≈β2; the proof follows similarly to the previous case.

Notice that the previous conjecture is false in general, as the following examples show: (υ.l ‖ υ.m) ‖ υ.n ≈
υ.l ‖ (υ.m ‖ υ.n), (l ‖m) ‖n ≈ l ‖ (m ‖n), and (l ‖ υ.m) ‖ υ.n ≈ l ‖ (υ.m ‖ υ.n).

Theorem B.5. α ≈ β if, and only if, `α=β.

The following ‘proof’ is only a proof if Conjecture B.4 holds. We strongly believe that indeed
it is the case.

Proof. The ‘if’ direction (soundness) is a consequence of Proposition 2.1 and of Prop/Definition 3.4.
The ‘only-if’ direction (completeness) is done by induction on the sum of the depths of the types
α and β (assumed to be normal forms, by Lemma B.1).
Taking into account the proof of Theorem 2.3 we only have one case to consider.
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Case α≡(
∑
i∈I li(α̃i).αi) ‖ (

∑
j∈J υ.αj) and β≡(

∑
k∈K mk(β̃k).βk) ‖ (

∑
l∈L υ.βl),

where I,K 6=∅. There are two cases to be considered:

1. if J=∅, L6=∅ then the result follows by Lemma B.2;

2. if J, L6=∅ then the result follows by Conjecture B.4.

C Proofs of Section 4

Definition C.1. An lsb up to ≈ is a symmetric binary relation R on types such that, whenev-
er αRβ then

1. α
l(α̃)−−→ α′ implies ∃β̃,β′(β

l(β̃)−−→ β′ and α′α̃ ≈R≈ β′β̃)

2. α =⇒ α′ implies ∃β′(β =⇒ β′ and α′ ≈R≈ β′)

Proposition C.1. Let R be an lsb up to ≈. Then,
1. ≈R≈ is an lsb.
2. R ⊆ ≈.

Proof. Similar to the proof for weak bisimulation up to weak bisimilarity
(see [13]).

Remark C.2. With υ−→ instead of =⇒ in the second condition of Definition C.1 the previous
proposition would not hold, as the example R = {(υ.υ.a, υ.υ.0)} shows.

Notation C.3. Let Vars(α) denote the set of type variables of the type α, and let {t̃} denote the
set of the elements of the sequence t̃.

Lemma C.2. Let α be guarded with free variables in t̃.

1. If α(β̃)
l(γ̃)−−→ γ then there exist α′ and α̃ with free variables in t̃ such that γ ≡ α′(β̃), γ̃ ≡ α̃(β̃)

and, for all β̃′, α(β̃′)
l(α̃(β̃′))−−−−−→ α′(β̃′).

2. If α(β̃) υ−→ γ then there exists α′ with free variables in t̃ such that γ ≡ α′(β̃) and, for all β̃′,
α(β̃′) υ−→ α′(β̃′). Furthermore, α′ is guarded.

Proof. 1. Let α(β̃)
l(γ̃)−−→ γ. The proof is by induction on the maximum length of the derivation

of the transition (i.e., by “transition induction”—see [13]). The base case is trivial.

Case α ≡
∑
j∈I lj(α̃j).αj . Then α(β̃) is

∑
j∈I lj(α̃j(β̃)).αj(β̃), and thus l(γ̃) is lj(α̃j(β̃)) and

γ is αj(β̃) for some j ∈ I. The result follows from taking α′ ≡ αj and α̃ ≡ α̃j .
Case α ≡ α1 ‖α2. Then α(β̃) ≡ α1(β̃) ‖α2(β̃). There are two cases: either γ ≡ γ1 ‖α2(β̃)

with α1(β̃)
l(γ̃)−−→ γ1 or γ ≡ α1(β̃) ‖ γ2 with α2(β̃)

l(γ̃)−−→ γ2, by a shorter derivation. Without
loss of generality, assume the first case. Since α is guarded so is α1, and thus by induction
hypothesis it follows that γ1 is of the form α′1(β̃) and γ̃ is of the form α̃1(β̃). The result
follows from taking α′ ≡ α′1 ‖α2 and α̃ ≡ α̃1.

Case α ≡ µt.β. Then α(β̃) ≡ µt.β(β̃), where the free variables of β are taken from t
and t̃. The variables t̃ must be guarded in β, otherwise they would not be guarded in α. If

µt.β(β̃)
l(γ̃)−−→ γ then β[µt.β(β̃)/t]

l(γ̃)−−→ γ, by a shorter derivation. But the variables of t̃ are
guarded in β[µt.β/t], and thus by induction hypothesis we conclude that γ is of the form
α′(β̃) and γ̃ of the form α̃(β̃).
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2. Let α(β̃) υ−→ γ. The proof is as in the first case, except that we need not worry about
parameters in prefixes. The main difference is that we must also prove that α′ is guarded.
The case α≡0 is trivial. Case α ≡

∑
j∈I υ.αj all the αj must be guarded because α is, and

thus α′ is guarded.

In the remaining cases the conclusion is a consequence of the induction hypothesis.

Lemma C.3. Let α be guarded with free variables in t̃. If α(β̃) =⇒ γ then there exists α′ with
free variables in t̃ such that γ ≡ α′(β̃) and, for all β̃′, α(β̃′) =⇒ α′(β̃′).

Proof. Let α(β̃) =⇒ γ and let n be the actual number of υ’s in the transition. The proof follows
easily from the previous lemma, by induction on n.

Now we simplify notation by writing, e.g. α(β̃) instead of α[β̃/t̃]. We are finally in a position
to prove the main result for infinite types: the theorem of the uniqueness of solutions of equations.

Theorem C.4. Let β̃ be guarded, α̃1 ≈ β̃(α̃1) and α̃2 ≈ β̃(α̃2). Then α̃1 ≈ α̃2.

Proof. Let R be the following relation.

R = {(γ(α̃1), γ(α̃2)) | Vars(γ)⊆t̃}

We will show that:

1. γ(α̃1)
l(δ̃1)−−−→ α1 implies ∃α2, δ̃2(γ(α̃2)

l(δ̃2)−−−→ α2 and α1(δ̃1) ≈R≈ α2(δ̃2));
2. γ(α̃1) =⇒ α1 implies ∃α2(γ(α̃2) =⇒ α2 and α1 ≈R≈ α2).

By the results we have seen before, and by symmetry, this establishes that R is a label-strong
bisimulation up to label-strong bisimilarity, and also that γ(α̃1) ≈ γ(α̃2) for all γ, which includes
the cases α1i ≈ α2i (γ ≡ ti).
So let us prove 1. We have γ(α̃1) ≈ γ(β̃(α̃1)) R γ(β̃(α̃2)) ≈ γ(α̃2) because ≈ is a congruence

and, by hypothesis, α̃1 ≈ β̃(α̃1) and β̃(α̃2) ≈ α̃2. If γ(α̃1)
l(δ̃1)−−−→ α1 then γ(β̃(α̃1))

l(δ̃′1)−−−→ α′1, with
δ̃1 ≈ δ̃′1 and α1 ≈ α′1. By Lemma C.2, there are γ̃ and γ′ such that δ̃′1 ≡ γ̃(α̃1), α′1 ≡ γ′(α1) and

γ(β̃(α̃2))
l(γ̃(α̃2))−−−−−→ α′2 ≡ γ′(α̃2), which implies γ̃(α̃2)

l(δ̃2)−−−→ α2, with γ̃(α̃2) ≈ δ̃2 and α′2 ≈ α2.

Hence, δ̃1 ≈R≈ δ̃2 and α1 ≈R≈ α2.
We prove 2 by a similar reasoning, but using Lemma C.3, instead of Lemma C.2.
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