
A Multi-Threaded Asynchronous Language

Hervé Paulino1, Pedro Marques2, Lúıs Lopes2,
Vasco Vasconcelos3, and Fernando Silva2

1 Department of Informatics, New University of Lisbon, Portugal
herve@di.fct.unl.pt

2 Department of Computer Science, University of Oporto, Portugal
pmarques@med.up.pt, {lblopes, fds}@ncc.up.pt

3 Department of Informatics, University of Lisbon, Portugal
vv@di.fc.ul.pt

Abstract. We describe a reference implementation of a multi-threaded
run-time system for a core programming language based on a process
calculus. The core language features processes running in parallel and
communicating through asynchronous messages as the fundamental ab-
stractions. The programming style is fully declarative, focusing on the
interaction patterns between processes. The parallelism, implicit in the
syntax of the programs, is effectively extracted by the language compiler
and explored by the run-time system.

1 Introduction

Dataflow architectures represent an alternative to the mainstream von Neumann
architectures. In von Neumann architectures, the order in which the instructions
in a program are executed is established at compile time, when the executable is
produced. A special purpose register, the program counter, keeps track of the flow
of execution. In a dataflow architecture, in contrast, instructions are executed as
soon as their arguments are available (the so called firing rule) and regardless of
any pre-established order. This makes the model totally asynchronous and the
instructions self scheduling.

Multi-threaded architectures attempt to improve the performance of classic
von Neumann architectures by introducing some features from dataflow architec-
tures such as out-of-order execution and fine grained context switching, usually
supported by the microprocessor hardware. These additions aim to provide high
processor utilization in the presence of large memory or interprocessor commu-
nication latency.

The current generation of superscalar microprocessors requires great amounts
of fine grained parallelism to fully explore their aggressive dynamic dispatch
capabilities, multiple functional units and, in some cases, rather long pipelines. In
this context, support for multi-threading at the hardware level may help to avoid
pipeline hazards in current von Neumman implementations, thus eliminating the
need for complex forwarding and branch prediction logic.

Despite these interesting possibilities, single-thread performance in multi-
threaded architectures is typically low, and this has a negative impact on the

performance of individual applications. The ideal situation would call for applica-
tions themselves to be partitioned into several fine grained threads by a compiler.
A multi-threaded microprocessor would then overlap the multiple threads from
that single application, improving performance. In particular, languages that al-
low efficient compilation from high-level constructs into low-level, fine grained,
code blocks, easily mapped into threads at run-time, may potentially profit from
multi-threaded hardware.

Programming languages with compiler support for parallel execution have
been extensively researched in the past, namely for dataflow architectures [1, 2, 5]
However, the recent introduction of process calculi [3, 11] as the reference models
for parallel computations provides an interesting alternative. In fact, process
calculi are, in a way, a natural choice since they model systems with processes
running in parallel and communicating through message passing. Their compact
formal definition and well understood semantics may potentially diminish the
usual gap between the semantics of a programming language and that of the
corresponding implementations.

In this paper, we describe a multi-threaded run-time system for a program-
ming language based on the TyCO (Typed Concurrent Objects) process calcu-
lus [6]. The run-time system is based on a specification previously proposed by
the authors and formally demonstrated to be sound relative to the base process
calculus [4].

The remainder of the paper is organized as follows. Section 2 presents the core
programming language. In section 3 we present the specification and describe
the implementation of the language’s multi-threaded run-time system. Finally,
in section 4, we discuss some issues for future research.

2 The TyCO Programming Language

Our source programming language is called TyCO [6]. The language is based
on a process calculus in the lines of the asynchronous π-calculus. The main
abstractions are communication channels, objects (collections of methods that
wait for incoming messages at channels) and asynchronous messages (method
invocations targeted at channels). It is also possible to define process templates,
parameterized on a series of variables, that may be instantiated anywhere in
the program (this allows for unbounded behavior). The syntax for the language
kernel is as follows:

P ::= 0 terminated process
| P | P concurrent composition
| new x P new local variable
| x!l[ẽ] asynchronous message
| x?{l1(x̃1) = P1, . . . , ln(x̃n) = Pn} object
| def X1(x̃1) = P1 . . . Xn(x̃n) = Pn in P definition
| X[ẽ] instantiation
| if e then P else Q conditional

where x represents a variable, e an expression over integers, booleans, strings or
channels [7], X an identifier for a process template, and l a method name.

From an operational point of view, TyCO computations evolve for two rea-
sons: object-message reduction (i.e., the execution of a method in an object
in response to the reception of a message) and, template instantiation. These
actions can be described more precisely as follows (where v is the result of the
evaluation of an expression e, either an integer, a boolean, a string or a channel):

x?{. . . , l(x̃) = P, . . . } | x!l[ṽ] → {ṽ/x̃}P

The message x!l[ṽ] targeted to channel x, invokes the method l in an object
x?{. . . , l(x̃) = P, . . . } at channel x. The result is the body of the method P
running with the parameters x̃ replaced by the arguments ṽ. For instantiations
we have something similar:

def . . . X(x̃) = P . . . in X[ṽ] | Q → def . . . X(x̃) = P . . . in {ṽ/x̃}P | Q

A new instance X[ṽ] of the template process bound to X is created. The result
is a new process with the same body as the definition but with the parameters
x̃ replaced by the arguments ṽ given in the instantiation.

This kernel language constitutes a kind of assembly language upon which
higher level programming abstractions can be implemented as derived constructs.
In the example below, we use two such constructs for sequential execution of pro-
cesses (;) and for synchronous method calls (let/in) as defined in [8]. The pro-
gramming example illustrates the use of these primitives and derived constructs.
We begin by defining a simple template for a bank account, and creating an ac-
count with 100 euro.

def Account(self, balance) =
self ? {

deposit(amount,replyto) =
replyto![] | Account[self, balance+amount]

balance(replyto) =
replyto![balance] | Account[self, balance]

withdraw(amount, replyto) =
if amount >= balance then

replyto!overdraft[] | Account[self, balance]
else

replyto!dispense[] | Account[self, balance-amount]
}

in new myAccount Account[myAccount, 100]

To deposit a further 100 euro and then get our account balance place the fol-
lowing processes running in parallel with the above code:

myAccount!deposit[100] ;
let x = myAccount!balance[] in

io!puts[“your account balance is:”] ; io!printi[x]

The let/in construct calls the method balance at channel myAccount and waits
for a reply value. On arrival, the reply triggers the execution of the process after
the in keyword and prints the current value of the balance attribute.

3 The Virtual Machine

The TyCO source code is compiled into a small and compact language, the
TyCO Intermediate Language (TyCOIL) [9], that is given as input to the TyCO’s
runtime system. This language features simple and fast instructions, thus sharing
the advantages of RISC machines.

3.1 The TyCO Intermediate Language

The TyCO virtual machine uses a variable number of general purpose registers
(r0, . . . , rn−1), where n, the number of registers, is specified by the TyCOIL
directive registers. A thread’s execution begins by placing its activation record in
register r0. Registers may contain integers (primitive types integer and boolean)
or heap references (for strings and channels).

TyCOIL Program

registers 9

string string#1 ”your account balance is:”

code main code {
– code for def Account
– code for new myAccount
– code for Account[myAccount, 100]
– code for myAccount!deposit[100]
– code for first semicolon

}
code Account code {

– code for self ? {
– deposit . . .
– balance . . .
– withdraw . . .

– }
}
data self table {

self deposit code
self balance code
self withdraw code

}

code self deposit code {
– code for replyto![]
– code for Account[self, balance + amount]

}
code self balance code {

– code for replyto![balance]
– code for Account[self, balance]

}
code self withdraw code {

– code for if amount >= balance . . .
}
code continuation for let {

– code for io!puts[string#1]
– code for second semicolon

}
code continuation for first semicolon {

– code for let x = . . .
}
code continuation for second semicolon {

– code for io!printi[x]
}

Fig. 1. A sketch of a TyCOIL program

TyCOIL programs are composed of three kinds of labeled fragments: code,
data, and string. code is a sequence of instructions terminated by schedule, also
referred to as a thread. data fragments describe initialized data that may be used,
for example, for method tables. string fragments are used to hold string constants.
Figure 1 illustrates the structure of the TyCOIL program corresponding to the
TyCO example in section 2.

Code for Code for
replyto![balance] self ? {deposit . . . balance . . . withdraw . . . }

– channel replyto in register r3
– balance in register r4
r3.lock()
r1 := r3.getStatus()
if r1 <= 0 jump enqueue
r1 := r3.dequeue()
r1[2] := r4 – Fill arguments
launch r1
jump done

enqueue:
– Message frame at r1
r1 := malloc 3
r1[2] := r4 – Fill arguments
– End of message frame
r3.enqueueMsg(r1)

done:
r3.unlock()

– channel self in register r4
r4.lock()
r5 := r4.getStatus ()
if r5 >= 0 jump enqueue
r5 := r4.dequeue ()
r6 := r5 [1] – Get offset of the method
r6 := self table [r6]
r5 [1] := r6 – Fill address of thread code
r5 [2] := r3 – Fill closure
launch r5
jump done

enqueue:
– Object frame at r5
r5 := malloc 4
r5 [1] := self table – Fill code
r5 [2] := r3 – Fill closure
– End of object frame
r4.enqueueObj (r5)

done:
r4.unlock()

Fig. 2. TyCOIL code example

The TyCOIL instructions can be divided into six categories: memory allo-
cation, channel (communication queue) manipulation, thread manipulation, ex-
ternal service execution, arithmetic, and program flow. Since the last two are
common to most of the languages, we will focus our description on the other
instructions.

The memory allocation instruction malloc allocates a new, uninitialized,
frame in the heap. Frames that contain a thread’s execution environment (ac-
tivation records) are of a special kind: they must start with a slot (used by
the machine to enqueue the frame), followed by the address of the code to be
executed.

Another category of instructions manipulate channels: newChannel allocates
a frame from the heap to serve as a communication channel. enqueueObj and
enqueueMsg place a frame at the end of the channel’s queue, updating its status
accordingly. dequeue retrieves and removes a frame from the front of the channel’s
queue, updating the channel’s status. getStatus retrieves the channel’s current
status: zero for the empty queue, a negative number, -n, for a queue containing
n messages, a positive number, n, for a queue containing n objects.

The thread manipulation instructions operate on the virtual machine’s run-
queue: launch places a new task in the run-queue; and schedule frees the proces-
sor, allowing the machine to dequeue and execute a thread from the run-queue.

TyCO allows the definition of services external to the machine’s core fea-
tures. These are invoked through the external instruction that executes the ser-
vice synchronously. Examples of external services are input/output and string
operations.

Figure 2 shows a small example of the TyCOIL code corresponding to a
message and an object taken from the example in section 2.

The code for the message starts by querying the channel on r3 for its status.
If there are no objects on the queue, it jumps to enqueue to insert a newly created
frame, representing the message, in the channel’s queue. When the channel has
objects the code retrieves a frame from the queue, fills slots with message’s
argument, and launches the frame as a thread ready for execution, in the run-
queue.

The object’s code is symmetric, the main difference lies in the frame inserted
in the queue, that contains the code to execute if a reduction occurs, code-for-
io!prints[x], rather than the argument, as was the case with the code for the
message.

3.2 The Multi-Threaded Virtual Machine

The virtual machine’s implementation consists on a org.tyco.vm Java package,
that includes the following subpackages:

org.tyco.vm.core - the core virtual machine implementation;
org.tyco.vm.values - values assignable to a general purpose register;
org.tyco.vm.assemble - construction of a fragments table containing object

representations for each fragment in the TyCOIL program;
org.tyco.vm.externals - supplies the org.tyco.vm.externals.External Java class,

whose extension is required to implement services external to the machine.

The virtual machine is initialized with the program’s table of fragments, the
number of registers required to run the program, and an external services’ table.

The multi-threaded architecture, illustrated in figure 3, contains several con-
current threads. Each thread has its own set of general purpose registers, and a
program counter that points to the code fragment it is executing. The remainder
of the data structures are shared by all threads, namely: the tables for fragments
and external services; the heap, that stores all the frames and channels in current
use; and the run-queue holding the tasks ready to execute.

PCRegisters R2R1 Rn−1R3R0

PCRegisters R2R1 Rn−1R3R0

PCRegisters R2R1 Rn−1R3R0

Heap

PCRegisters R2 Rn−1R1 R3R0

Run−queue

Fragments

Fig. 3. The multi-thread virtual machine’s architecture

The heap is currently managed by the Java runtime itself, while the interac-
tions with the run-queue are performed through the org.tyco.vm.core.RunQueue
class, more explicitly, through its enqueue and dequeue methods.

The TyCO virtual machine starts by creating the run-queue and spawn-
ing a designated number of threads. Once thread execution is triggered, each
of them tries, concurrently, to retrieve a new task from the run-queue. This
concurrent behavior implies taking run-queue access control measures to in-
sure data consistency and to prevent race conditions. The code blocks of the
org.tyco.vm.core.Runqueue’s enqueue and dequeue methods are critical sections
as they can change the shared run-queue status. Access to these methods is
made mutually exclusive by declaring the methods synchronized.

Every time a thread executes a schedule instruction it tries to retrieve another
task from the run-queue. In order to avoid a polling loop, continuously checking
for new work when the run-queue is empty, a wait/notify mechanism is used
to control access to the run-queue. Thus, if the run-queue is empty, any eager
work-seeking thread is put on hold.

After a new task is added to the run-queue, waiting threads are notified
that work is available. The machine halts when the run-queue is empty and all
threads reach a waiting status.

As seen in the example in figure 2 a sequence of instructions is required to
retrieve or add a frame to a channel’s queue. This action consists of getting
or adding a new frame to the channel’s queue and setting the channel’s status
accordingly. On the multi-threaded virtual machine channels can be used by any
running thread. The need for exclusive channel access during this operations is
imperative. This is achieved by using the TyCOIL instructions lock and unlock

(bold in figure 2) that explicitly tell the virtual machine the limits of a critical
region.

4 Future Work

Work in the TyCO language and runtime system is ongoing. At the virtual
machine level we plan to experiment with hardware platforms supporting multi-
threading (e.g., Intel’s Pentium IV Hyper-threading feature) to evaluate the
system’s performance.

TyCO is also being used as the building block for the development of a lan-
guage for programming distributed systems with support for code mobility [10].
The development of the multi-threaded virtual machine is of great importance
as it provides the run-time for the nodes of such a system.

Acknowledgement. This work was supported by projects Mikado (IST2001-
32222) and MIMO (POSI/CHS/39789/2001), and the CITI research center.

References

1. Blumofe R. D. and Joerg C. F. et.al. Cilk: an efficient multithreaded runtime
system. ACM SigPlan Notices, 30(8):207–216, August 1995.

2. McGraw J. and Skedzielewski S. et.al. The SISAL Language Reference Manual –
Version 1.2, March 1985.

3. Honda K. and Tokoro M. An Object Calculus for Asynchronous Communication.
In European Conference on Object-Oriented Programming (ECOOP’91), volume
512 of LNCS, pages 141–162. Springer-Verlag, 1991.

4. Lopes L., Vasconcelos V., and Silva F. Fine grained multithreading with process
calculi. In International Conference on Parallel Architectures and Compilation
Techniques (PACT’00), pages 217–226. IEEE Computer Society Press, October
2000.

5. Nikhil R. The Parallel Programming Language Id and its Compilation for Parallel
Machines. International Journal of High Speed Computing, 5:171–223, 1993.

6. Vasconcelos V. Typed Concurrent Objects. In European Conference on Object-
Oriented Programming (ECOOP’94), volume 821 of LNCS, pages 100–117.
Springer-Verlag, July 1994.

7. Vasconcelos V. Core-TyCO, appendix to the language definition, yielding version
0.2. DI/FCUL TR 01–5, Departamento de Informática da Faculdade de Ciências
de Lisboa, July 2001.

8. Vasconcelos V. TyCO Gently. DI/FCUL TR 01–4, Departamento de Informática
da Faculdade de Ciências de Lisboa, July 2001.

9. Vasconcelos V. and Lopes L. The TyCO Intermediate Language. To appear.
10. Vasconcelos V., Lopes L., and Silva F. Distribution and Mobility with Lexical

Scoping in Process Calculi. In Workshop on High Level Programming Languages
(HLCL’98), volume 16(3) of ENTCS, pages 19–34. Elsevier Science, 1998.

11. Vasconcelos V. and Tokoro M. A Typing System for a Calculus of Objects. In Inter-
national Symposium on Object Technologies for Advanced Software (ISOTAS’93),
volume 742 of LNCS, pages 460–474. Springer-Verlag, November 1993.

