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ABSTRACT
Design by contract (DBC) is among the most popular tech-
niques that are taught in introductory programming courses
aiming at helping students to learn how to construct correct
and robust software. Although we recognize the important
role played by formal design as supported by DBC tech-
niques, we have experienced for several years the frustration
of not being able to guide students in writing contracts, both
that fully specify all the relevant properties, and are moni-
torable. The fact that students are left with very poor spec-
ifications leads them to perceive contracts as unnecessary
and even irrelevant, discouraging the further application of
DBC. We addressed these problems through the adoption
of property-driven algebraic specifications for the descrip-
tion of the observable behavior of programs. Our approach
comprises a tool-assisted refinement process that supports
the run-time checking of implementations against specifica-
tions. In this paper we present the approach and report on
our experience of using it.
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1. INTRODUCTION
Teaching object-oriented software development at the Uni-
versity of Lisbon comprises a three-semester programme, ac-
cording to the objects-first approach of the ACM Computer
Science Computing Curricula [17], where students learn ba-
sic skills of OO programming, specification, analysis and
design, which they will further use in other courses of their
BsC. The first course gives students early exposure to the
concept of object and class, client and supplier, while in-
troducing more traditional control structures. The second
course covers algorithms and fundamental data structures,
while the third focus on software engineering topics, includ-
ing OO development using design patterns.

This programme is based on the methodology of design by
contract (DBC) in the sense that students are taught to
built responsible client and supplier classes — client classes
invoke methods only when their pre-conditions are met, and
supplier classes provide results according to method post-
conditions.

Difficulties arise in the use of the design by contract method-
ology, namely with i) contract extension in inheriting classes,
ii) increase of class coupling when writing contracts for meth-
ods in presence of clientship transitivity, and iii) writing fully
monitorable contracts that express all the desirable prop-
erties. We identified and proposed solutions for the first
two problems [9, 10]. The third one was identified in the
evaluation of the aforementioned three-semester course [11].
This paper presents our approach to surpassing this prob-
lem, which arises when students start writing and imple-
menting specifications of abstract data types.

The rest of the paper is organized as follows. Section 2
describes the problems that arise when adopting a design
by contract approach to data type specification and imple-
mentation. It also describes the use of model-based alge-
braic approaches to specification and points its limitations
within the context of a second semester course. Section 3
describes the framework we developed for writing, imple-
menting, and checking property-driven specifications, and
that we currently apply in the second course. Section 4
reports on our experience in using the framework. It also
describes benefits and limitations of our approach as well as
topics that need further work.

2. MOTIVATION
When following the design by contract methodology [14] we
experienced the frustration of not being able to guide stu-
dents in writing contracts, both that fully specify all the
relevant properties, and that, at the same time, are moni-
torable.

Contracts are built from boolean assertions, thus any method
invoked within an assertion must return a value. Further-
more, contracts should refer only to the public features of
the class because client classes must be able not only to un-
derstand contracts, but also to invoke operations that are
referred to in them — e.g., clients must be able to test pre-
conditions.

It is important that students test their classes, in particular



against contract violations. To be monitorable, a contract
cannot have side effects, thus it cannot invoke methods that
modify the state.

These restrictions bring severe limitations to the kind of
properties we can express directly through contracts. Un-
less we define a number of, otherwise dispensable, additional
methods, we are left with very poor specifications that dis-
courage the further application of DBC. Furthermore, as
argued by Barnett and Schulte [3], contract specifications
do not allow the level of abstraction to vary and do not sup-
port the specification of components independently of the
implementation language and its data structures.

 

Figure 1: Java implementation of an integer stack.

As an example, let us analyze the support given by DBC to
the specification of an integer stack through the integration
of assertions in the class ArrayStack in Figure 1. Following
Meyer [14], and using Java and JML [13] rather than Eiffel,
this could be achieved by adding the following assertions.

In method void clear() the post-condition
ensures size() == 0;

In method void push(int i) the post-condition
ensures top() == i && size() == \old(size()+1);

In method void pop() the pre-condition
requires !isEmpty();

and the post-condition
ensures size() == \old(size()-1);

In method int top() the pre-condition
requires !isEmpty();

In method boolean isEmpty() the post-condition
ensures result <==> size() == 0;

We cannot find suitable post-conditions to express and mon-
itor the property that says that popping a stack right after
having pushed an integer, leaves the stack unmodified. The
inclusion of a post-condition in method push with the flavor
of pop().equals(\old(clone())) would not work because
pop is a void method. Unless we have methods that allow to
inspect the whole structure of the data type elements with-
out modifying it (for instance a method int element(int i)

for inspecting the i-th element of the stack), we are not
capable of writing complete monitorable post-conditions.
These inspection methods are, in general, artificial, and even
against the nature of the type itself and, hence, they are not
a solution to the problem. This example shows that, when-

ever a specification is implemented by a mutable type, there
are properties that can not be expressed as monitorable con-
tracts of the class.

Algebraic specification [2, 4, 7] is another well-known ap-
proach to the specification of software systems that supports
specification at a higher-level of abstraction. Algebraic ap-
proaches can be divided into two classes: model-oriented and
property-driven specifications.

Model-oriented approaches to specification, like the ones fol-
lowed by users of Z [16], Larch [8], JML [13] and AsmL [3],
definitely prevail within the OO community. In most of
these approaches, the behavior of a class is specified through
a very abstract implementation based on primitive, but not
necessarily basic, elements available in the adopted speci-
fication language. Implementations can be tested against
specifications by means of runtime assertion-checking tools,
but this requires that an abstraction function be explicitly
provided. In JML, for instance, a concrete implementation
is expected to include JML code defining the relation be-
tween concrete and abstract states.

For example, the abstract class UnboundedStack, a model-
based specification of stacks taken from the JML distribu-
tion [1], relies on sequences (more concretely on objects of
type JMLObjectSequence, a class belonging to the distri-
bution of JML). The following two annotations are part of
UnboundedStack abstract class:

public model JMLObjectSequence theStack;
public initially theStack != null &&

theStack.isEmpty ();

The JMLObjectSequence class defines immutable sequences,
including a series of methods for sequence manipulation
from which the methods trailer(), insertFront(), that
are used in this specification, are examples. The model un-
derlying JMLObjectSequence is a finite sequence of elements.
The post-conditions

theStack.equals(\old(theStack.trailer()));

theStack.equals(\old(theStack.insertFront(x)));

belong to UnboundedStack methods pop() and push(...),
respectively.

When a specific implementation of UnboundedStack is de-
fined, it is necessary to explicitly describe the relation be-
tween the JMLObjectSequence theStack and the structure
that is chosen to store the stack elements. This relation is
known as the abstraction function. Figure 2 exemplifies the
definition of this relation as in [1].

Although we recognize the important role played by model-
based approaches in general, we believe that these kind of
specifications are difficult to a first grade student to un-
derstand and master. They involve additional data types
that she has to learn to use. Moreover, the definition of the
appropriate abstraction mapping from concrete implemen-
tations to the specification can be rather difficult to obtain
to most of our students.

3. OUR APPROACH



 

Figure 2: Partial view of an implementation of
UnboundedStack.

Contrasting with the above, property-driven specifications [4,
6] can be very simple and concise for certain classes of types,
in particular for Abstract Data Types (ADTs). In this case,
the observable behavior of a program is specified simply in
terms of a set of abstract properties. The simplicity and ex-
pressive power of property-driven specifications on the one
hand, and the necessity for students to test their classes
against specifications on the other hand, led us to the de-
velopment of a framework for creating and testing property-
driven specifications against implementations.

In this framework, students proceed as follows.

1. Build algebraic specifications — structured as a specifi-
cation module — to abstractly specify their data types.

2. Input the specifications to a Specification Analyzer to
obtain feedback on syntax and type correctness.

3. Build Java interfaces from the above specifications; si-
multaneously, write a refinement mapping that relates
i) each interface with the sort it implements, and ii)
each interface method with the specification operation
it implements.

4. Input the specifications, the refinement mapping, and
the interfaces to a Refinement Mapping Analyzer to
obtain feedback on their coherence.

5. Build classes that implement the above interfaces.

6. Input the specifications, the classes and the refinement
mapping to a Contract Generator that automatically
wraps the provided classes so that, when executed,
the behavior of each class is checked against the cor-
responding specification.

Through the rest of this section we briefly describe signifi-
cant details about each of the above steps.

Specifications and Modules
The specification language is, to some extent, similar to
many existing specification languages. In general terms, it
supports the description of partial specifications with con-
ditional axioms. It has, however, some specific features,
including the classification of operations in different cate-
gories, and strong restrictions on the form of the axioms.
Figures 3 and 4 present two examples.

 

Figure 3: Specification of integer stacks.

 
Figure 4: Specification of integers.

A specification defines exactly one sort — the main sort,
and the first argument of every operation and predicate in
the specification must have that sort. Furthermore, opera-
tions are classified as constructors, observers or derived.
These categories comprise, respectively, the operations with
which all values of the type can be obtained, the operations
that provide fundamental information about the values of
the type, and the operations where the provided information
can be obtained through the remainder operations. Predi-
cates can only be classified as either observers or derived.

Specifications are partial because operation symbols declared



with →? can be interpreted by partial functions. In the sec-
tion domains, we describe the conditions under which inter-
pretations of these operations are required to be defined. For
instance, in the specification of integer stacks, both top and
pop are declared as partial operations. They are, however,
required to be defined for all non empty stacks.

As usual in property-driven specifications, properties of op-
erations and predicates can be expressed through axioms,
which in our case are closed formulæ of first-order logic re-
stricted to some specific forms [15]. Essentially, we have
axioms i) that relate constructors, ii) that define the result
of observers on constructors, iii) that describe derived op-
erations/predicates results on generic instances of the sort,
and iv) that pertain to sort equality.

Notice that, because operations may be interpreted by par-
tial functions, a term may not have a value. The equality
symbol used in the axioms represents strong equality, that
is to say, either both sides are defined and are equal, or both
sides are undefined.

Specifications may declare, under the import section, refer-
ences to other specifications, and may use external symbols,
i.e., sorts, operations and predicates that are not locally
declared. For instance, the specification of integer stacks
imports IntegerSpec and uses sort Integer and operation
symbols zero and suc, which are external symbols. Notice
that the specification of integers in Figure 4is self-contained
since it does not contains any external symbol. We call it a
closed specification.

The meaning of external symbols is only fixed when the
specification is embedded, as a component, in a module.
A module is simply a surjective function from a set N (of
names) to a set of specifications, such that, for every spec-
ification: (i) the referenced specification names belong to
N , and (ii) the external symbols are provided by the cor-
responding specifications in the module. The set N defines
the set of components of the module. For instance, by nam-
ing the two specifications presented in Figures 3 and 4 as
IntStackSpec and IntegerSpec, respectively, we obtain a
module IntegerStack.

Students are provided with the following guidelines for build-
ing specifications [18]:

1. Identify your sort. Below, let it be S.

2. Identify the operations and predicates and define their
signatures. The first parameter of each signature should
be S.

3. Classify the operations according to the three cate-
gories.

• Start with the constructors. Candidates are op-
erations with signatures of the form op: S, ... →S.
Do we need them all? For each of them, check
whether it produces an intrinsically new value of
sort S. If the resulting value can be obtained oth-
erwise, then the operation is not a constructor.

• Move to the observers. Candidates are all the
remaining operations (and predicates). Does each

of them allow to observe a different facet of the
values of the sort? Or can you obtain one of them
by using the remaining operators?

• The remaining operations are derived.

4. Check the domain of each operation. Are there oper-
ations that are not defined in the whole extension of
its domain? Are there particular values that make no
sense as parameters to the operation? Record the situ-
ations for which the operation is required to be defined
in the domains section, using expressions of the form
op(X, Y) if .... For instance,

pop (S) if not isEmpty (S);

5. Write the axioms.

• Prepare one axiom for each pair observer-constructor.
Exceptions are the pairs ruled-out by domain con-
ditions. For each constructor c: S T →S, and
each observer o: S U →V, use an axiom whose
left hand side is of the form o (c (X, Y), Z)

where X has sort S, Y has sort T, and Z has sort U.
Example:

pop (push (S, E)) = S;

• For each derived operation d: S T →U (or predi-
cate d: S T) write an axiom whose left hand side
is of the form d(X,Y). Example:

isEmpty (S) if size (S) = 0;

• Add the axioms that pertain directly to sort equal-
ity. For example, in a specification for rational
numbers, one may want an axiom of the form:

F = G if
num(F)*den(G) = num(G)*den(F);

• Prepare the axioms that relate constructors. For
example, for sets, we can have:

add(add(A, X), Y) = add(add(A, Y), X);

6. Did not succeed in writing the axioms? Perhaps you
need a different classification in step 3, or even a dif-
ferent choice of operations in step 2.

Specification Analyzer
The Specification Analyzer tool verifies the syntactic and se-
mantic correctness of a specification module. A specification
must conform to rules related to the signatures, domains,
axioms, and external names of the specification, as follows.

Signatures are such that

• The first parameter of a signature must have the
sort under specification (the main sort);

• The result of any constructor operation must have
the main sort (therefore a predicate cannot be a
constructor).

Domains are of the form

f(x1, . . . , xn) if φ

where f is an operation (not predicate), x1, . . . , nn are
variables, and φ is a formula.



Axioms must have one of the following four basic struc-
tures:

f(t1, . . . , tn) = t if φ (1)

p(t1, . . . , tn) if φ (2)

not p(t1, . . . , tn) if φ (3)

x1 = x2 if φ (4)

where f is an operation, p is a predicate, t is a term,
x is a variable, and φ is a formula. In either case the
condition if φ is optional. The following restrictions
apply to these four structures.

• In (1) if f is a constructor than t1 must be either
a variable or a constructor applied to variables;
the remaining arguments, t2 to tn, must all be
variables.

• In (1), (2) and (3) if f or p are observers than t1
must be a constructor applied to variables.

• In (1), (2) and (3) if f or p are derived than all
its arguments, t1 to tn, must be variables.

• In (4) x1 and x2 must be variables of the main
sort.

External Names. Any external name, be it a sort which
is not the main sort, be it an operation that is not
defined in the signatures part of the specification, must
be specified by some of the imported specification in
the same module.

Refinement Mappings
For each specification in a module, we choose a Java type (in-
terface or primitive) for its representation. In this process,
we build a refinement mapping R between the module and
the collection of Java types. This mapping also describes
the correspondence between the operations and predicates
in the specifications and the methods in the interfaces. Fur-
thermore, for specifications that are mapped into primitive
types, the mapping defines how operations and predicates
are expressed in terms of built-in Java operations. Only
closed specifications can be implemented by primitive types.

An admissible refinement mapping for the IntegerStack

module is presented in Figure 5. It says that specification
IntStackSpec is mapped into type ArrayStack, whereas the
sort Integer is implemented by the Java primitive type int.

The following are the guidelines given to students to build
refinement mappings. For each class involved (ArrayStack
in Figure 5):

1. Choose the nature of the interface. Will it describe
imperative (mutable) objects, or immutable objects?
Does pushing a value into a stack yields a new stack,
or, on the contrary, changes the state of the target
object?

2. Provide a mapping for each operation in the specifi-
cation. Ignore the first parameter in each operation.
When the resulting sort of an operation is the sort
under refinement, choose between an immutable or
an imperative method. For example, choose between
Stack push() and void push().

 

Figure 5: An example of a refinement mapping.

Notice that a refinement mapping may define a mapping
from two different components into the same type (interface
or primitive). This is extremely useful since it promotes
the writing of generic specifications that can be reused in
different situations, as illustrated in reference [15].

Refinement Mapping Analyzer
The Refinement Mapping Analyzer tool verifies the syntactic
and semantic coherence of a specification module, a refine-
ment mapping R, and a set of interfaces.

Mappings are subject to some constrains:

• Predicates must be bound to methods of type boolean.

• Only sorts defined in closed specifications can be bound
to primitive types.

• Every n + 1-ary operation or predicate f(s, s1, . . . , sn)
must be bound to an n-ary method m(t1, . . . , tn) such
that ti is the type that, according to R, implements
sort si.

Implementing the Interfaces
For building classes that implement the interfaces, students
must follow the following guidelines:

1. Name your class. A good choice is a compound name,
where the first part describes the implementation, while
the second is the name of the interface. Examples in-
clude IntFraction, and ArrayStack.

2. Choose the representation (the class’s attributes); write
a body for all the methods in the interface.

3. Write one or more Java constructors. For each one,
pick a constructor in the specification, and make sure
that the Java constructor leaves the object as pre-
scribed by the post-condition of the chosen specifica-
tion constructor. For example, an obvious choice for
a stack Java constructor is to pick the method clear,
and write:

public ArrayStack () { clear (); };



Checking Classes Against Specifications
The behavior of classes can be tested against the specifica-
tions they are supposed to implement, by using the Contract
Generator tool. When given a specification module, a re-
finement mapping, and the classes that are to be tested, the
tool creates:

• An immutable version of each original class — these
classes are equipped with contracts that result from
automatically translating the domains and axioms of
the corresponding specifications;

• A wrapper class for each original class — such wrap-
pers redirect every method call to the original class,
via the corresponding method in the immutable class.

Whenever a class, client to the original classes, is executed
within the context of the tool, every call to a method m

in any of those classes is monitored (that is, pre and post-
conditions of m are evaluated). Users are given feedback that
identifies the kind of violation: pre or post-condition.

All details, including the architectural model, and the rules
for contract generation are described elsewhere [15].

4. EXPERIENCE AND CONCLUSIONS
In 2002, we reported on our experience with the contract-
based objects-first approach, encompassing three semesters [11].
Here we concentrate on the second course — Algorithms and
Data Structures.

The approach described in this paper has been refined over
the years. Students are exposed to specifications to all the
data structures studied in the course [18]. They also de-
fine less common data structures in their course work, such
as a Video Disk (essentially a bonded capacity, index data
structure whose elements are of distinct sizes).

The introduction of the guidelines for building specifications
(Section 3) represented a major leap in the students abil-
ity to prepare meaningful and complete specifications. Stu-
dents not only have a method to attack the problem, but
they are also confident that they did not forget any axiom.
This confidence is reinforced by the possibility of checking
the coherence of their specification, using the Specification
Analyser tool.

This strongly contrasts with what used to happen before,
when students were taught to write contracts (first using
iContract [12] and later JML). Students were initially very
receptive to the idea of contract monitoring as a technique
that helped them to find bugs in their implementations, but
soon they realized that many of the important properties of
their types were impossible to express through monitorable
assertions.

The idea underlying the approach we developed, which en-
compasses automatic generation of contracts, was to gather
the possibility of building meaningful and complete specifi-
cations with the capacity of checking implementations.

Using the approach described in this paper, students are
able to monitor all the axioms in their specifications. One

of the remaining problems has to do with some difficulties
students now face in interpreting the feedback obtained by
monitoring the contracts, since this is given in terms of con-
tracts that they do not see, and that they would scarcely
understand even if they did. Students must interpret con-
tract violations in the context of properties they have defined
through algebraic specifications.

Further work addresses this difficulty by trying to present
contracts in such a way that is, on the one hand, under-
standable to students, and on the other, closely related to
the original specification that they wrote.
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