Bridging the Gap between Algebraic Specification and
Object-Oriented Generic Programming

Isabel Nunes, Anténia Lopes, and Vasco T. Vasconcelos

Faculty of Sciences, University of Lisbon,
Campo Grande, 1749-016 Lisboa, Portugal
{in,mal,vv}@edi.fc.ul.pt

Abstract. Although generics became quite popular in mainstream object-
oriented languages and several specification languages exist that support the de-
scription of generic components, conformance relations between object-oriented
programs and formal specifications that have been established so far do not ad-
dress genericity. In this paper we propose a notion of refinement mapping that al-
lows to define correspondences between parameterized specifications and generic
Java classes. Based on such mappings, we put forward a conformance notion use-
ful for the extension of CONGU, a tool-based approach we have been develop-
ing to support runtime conformance checking of Java programs against algebraic
specifications, so that it becomes applicable to a more comprehensive range of
situations, namely those that appear in the context of a typical Algorithms and
Data Structures course.

1 Introduction

Many approaches have been developed for runtime checking the conformance of object-
oriented programs with formal specifications. A limitation of existing approaches,
including our own work [20], is the lack of support to check generic components.
Despite the popularity of generics in mainstream object-oriented languages, available
approaches, such as [1441702418I51228]], are not applicable to programs that include
generic classes.

At the specification side, the description of programs that include generic elements is
not a problem. In particular, in the case of algebraic specification, languages s.a. CASL
[6] support the description of parameterized specifications as well as the definition of
specifications through instantiation of parameterized ones. What is lacking is to bridge
the gap between parameterized specifications and generic classes.The conformance re-
lations of specifications with object-oriented programs that have been established so far
(e.g. [2U1201U110419122]) only consider simple, non-parameterized, specifications.

In our own previous work on runtime conformance checking between algebraic spec-
ifications and Java programs — the CONGU approach [20] — we have also considered
simple specifications only. However, since generics are available in Java, the fact that
generic specifications are not supported by CONGU has become a severe drawback. The
CONGU tool [10] is intensively used by our undergraduated students in the context of a
course on algorithms and data structures. They use the tool to analyze their implemen-
tations of ADTs with respect to specifications. Given that generics became extremely

S. Bensalem and D. Peled (Eds.): RV 2009, LNCS 5779, pp. 1151131 2009.
(© Springer-Verlag Berlin Heidelberg 2009

116 I. Nunes, A. Lopes, and V.T. Vasconcelos

useful and popular in the implementation of ADTs in Java, in particular those that are
traditionally covered in this course, it is crutial to extend CONGU in order to support
parameterized specifications and generic classes.

The extension of the CONGU approach requires (i) finding an appropriate mecha-
nism for expressing correspondences between parameterized specifications and generic
classes, (ii) defining a more comprehensive notion of conformance between specifica-
tions and Java programs, and (iii) extending the CONGU tool, which is based on the
generation of annotated classes with monitorable contracts written in JML [13]], to cope
with this broader notion of conformance.

This paper mainly focuses on the first two aspects, considering not only generic
specifications, but also specifications that make use of subsorting. In the developed
approach, subsorting revealed to be a very useful construct, fundamental to cope with
the range of situations that appear in the algorithms and data structures course.

To our knowledge, our work is the first to tackle the problem of bridging the gap
between algebraic specifications and generic object-oriented programming (a problem
that does not arise in the context of other approaches to verification that were extended
to handle generics in Java, namely in [21] that is focused on the proof of functional
properties of programs). Our contributions are twofold. On the one hand, we propose
a way of describing the modular structure of reusable libraries that use generics, s.a.
the Java Collections Framework (generics are especially common in this context). We
believe our proposal can be easily understood by Java programers in general and our
students in particular. This is because, as we will show, there exists a straightforward
correspondence between the key concepts at the specification and programming lev-
els. On the other hand, we put forward a notion that allows to express correspon-
dences between specifications and Java programs and a conformance notion that paves
the way for the extension of application of runtime checking to a more comprehen-
sive range of situations, namely to APIs that use generics and code that uses these
APIs.

The remainder of the paper is organised as follows. Section 2l presents the structure
of specification modules and the adopted specification language which includes sub-
sorting and parameterization. Then, in Section[3, we propose an interpretation of those
modules in terms of Java programs and, in Section] we put forward a notion of confor-
mance. The solution envisaged for extending the CONGU tool is addressed in Section[5]
and Section [6] concludes the paper. We illustrate our approach to runtime conformance
checking of generic Java programs against parameterized data types with two typical
examples: sorted sets and (closed) intervals.

2 Specifications and Modules

As specifications we take essentially a subset of the set of specifications that can be
defined in CASL [6], considered a standard for algebraic specification. However, for
the sake of simplicity, we adopt a different concrete syntax. This section introduces our
specifications in three steps: simple, with subsorting and parameterized specifications.
These are the building blocks of modules, introduced at the end of the section.

Bridging the Gap between Algebraic Specification 117

specification TOTAL.ORDER
sorts
Orderable
observers
geq: Orderable Orderable;
axioms
E, F, G: Orderable;
E = F if geq(E, F) and geq(F ,E);
geq(E, E);
geq(E, F) if not geq(F, E);
geq(E, G) if geq(E ,F) and geq(F, G);
end specification

Fig. 1. A specification of a total order

2.1 Specifications

Simple specifications are those currently supported by CONGU, described in detail
in [20]. A specification defines exactly one sort and introduces a set of operations and
predicates. The first argument of every operation and predicate is required to be of
that sort. Operations declared with —? may be partial, i.e., can be interpreted by par-
tial functions. Operations can be classified as constructors corresponding to the usual
(loose) datatype constructors; in this case, they may have no arguments. Furthermore,
the language imposes some restrictions on the form of axioms, namely the separation,
under the keyword domains, of the domain conditions of operations, that is, the condi-
tions in which operations have to be defined]]

Figure[Tlpresents an example of a simple specification — TOTAL ORDER. This spec-
ification is self-contained, i.e., it does not include external symbols. However, simple
specifications may refer to sorts, operations and predicates defined elsewhere. For in-
stance, for specifying a total order that, additionally, has a correspondence with a set
of natural numbers, we would have to refer to a sort Nat, say, defined in a different
specification.

Specifications can be more complex, namely making use of subsorting. More pre-
cisely, a specification may introduce a new sort that is declared to be a subsort of one or
more sorts introduced elsewhere. Following [6]], this means that the values of the sub-
sort have to be understood as a special case of those of the supersort. Figure 2] presents
an example of a specification of a total order with a successor operation, achieved by
defining elements of this data type (values of sort Successorable) as special cases of
elements of a total order.

Similarly to CASL, an operation or predicate defined in the supersort s > s’ can
receive a term of sort s’ as argument wherever an element of sort s is expected. For in-
stance, in our example, this justifies why the formula geq(suc(E),E) with
E:Successorable is well-formed.

The third kind of specifications are parameterized specifications. They have one
or more specifications as parameters, and introduce one compound sort of the form
namel[sort, . .., sort;| where sort; is the name of the sort introduced in the ith param-
eter of the specification. Figure Bl presents a specification of the data type Sorted Set. It

! These restrictions are related with the way CONGU supports runtime conformance checking,
that involves the automated generation of monitorable contracts from the specified properties.

118 I. Nunes, A. Lopes, and V.T. Vasconcelos

specification TOTAL.ORDER_WITH_SUC
sorts
Successorable < Orderable
constructors
suc: Successorable — Successorable;
axioms
E, F: Successorable;
geq(suc(E), E);
geq(E, suc(F)) if geq(E,F) and not (E = F);
E = F if suc(E) = E and suc(F) = F;
end specification

Fig. 2. A specification of a total order with a successor operation

specification SORTED_SET[TOTAL ORDER]

sorts
SortedSet[Orderable]

constructors
empty: — SortedSet[Orderable];
insert: SortedSet[Orderable] Orderable — SortedSet[Orderable];

observers
isEmpty: SortedSet[Orderable];
isln: SortedSet[Orderable] Orderable;
largest: SortedSet[Orderable] —? Orderable;

domains
S: SortedSet[Orderable];
largest(S) if not isEmpty(S);

axioms
E, F: Orderable; S: SortedSet[Orderable];
isEmpty (empty ());
not isEmpty(insert(S, E));
not |sln(empty(), E)
isln(insert(S,E), F) iff E =F or isIn(S, F);
Iargest(msert(S, E)) = E if isEmpty(S);
largest(insert(S, E)) E if not isEmpty(S) and geq(E, largest(S));
largest(insert(S, E)
insert(insert(S, E),
insert(insert(S, E),

end specification

; largest(S) if not isEmpty(S) and not geq(E, largest(S));
F) = insert(S, E) if E = F;
F) = insert(insert(S, F), E);

Fig. 3. A specification of a sorted set

is an example of a parameterized specification with one single parameter — the speci-
fication TOTAL ORDER — that introduces the compound sort SortedSet[Orderable].

Parameterized specifications are usually used as a means to support reuse at the spec-
ification level, through the instantiation of their parameters with different specifications.
In this work, however, we are mainly interested in parameterized specifications as a
means of specifying generic data types. Specifications defined through instantiation of
parameterized specifications are not first-order, in the sense that they cannot be used
as elements of specification modules (introduced below). Still, these specifications are
useful as they introduce sorts and operations that can be used in other specifications.

The parameterized specification INTERVAL presented in Figure H] illustrates this
situation. Intervals are defined as pairs of elements of a total order with a successor
operation. The operation elements, that calculates the set of elements of an interval,
returns elements of sort SortedSet[Successorable]. This sort is defined by the specifica-
tion SORTED SET[[TOTAL ORDER WITH SUC]] — the specification that results from
the instantiation of the parameter of SORTED SET with TOTAL ORDER WITH SUC.
Moreover, the specification INTERVAL uses the operation and the predicate

Bridging the Gap between Algebraic Specification 119

specification INTERVAL[TOTAL.ORDER.WITH_.SUC]

sorts
Interval [Successorable]
constructors

interval: Successorable Successorable —? Interval[Successorable];
observers

max: Interval[Successorable] — Successorable;

min: Interval [Successorable] — Successorable;

before: Interval[Successorable] Interval[Successorable];

elements: Interval [Successorable] — SortedSet[Successorable]
domains

E, F: Successorable;

interval (E,F) if geq(F,E);
axioms

E,F: Successorable;

,J: Interval [Successorable];

max(interval (E, F)) = F;

min(interval (E, F)) = E

before(l, J) iff geq(min(J), max(l));

elements (1) = insert(empty(), min(1)) if max(l) = min(l);

elements(l) = insert(elements(interval (suc(min(l)), max(l))), min(l))
if not (max(l) = min(1));

end specification

Fig. 4. A specification of an interval

insert : SortedSet[Successorable] Successorable — SortedSet[Successorable]
empty: SortedSet[Successorable]

also defined in this specification.

Usually, specification instantiation is defined if the argument specification provides
symbols corresponding to those required by the corresponding parameter, and the prop-
erties required by the parameter hold. For the sake of simplicity, we decided not to
support the explicit definition of fitting morphisms and so instantiation is restricted to
situations in which this correspondence can be left implicit, being established by an ob-
vious injection. For instance, in the example of the specification SORTED SET[[TOTAL
ORDER WITH SUCI], the injection is indeed obvious as sort Successorable was defined
to be a subsort of Orderable.

2.2 Specification Modules

In the previous subsection, in order to intuitively provide the meaning for different
specification constructs, we have always considered there was a well known context
for dereferencing external symbols — the set of specifications previously presented.
Specification modules provide a means for establishing this context. The meaning of
external symbols is only defined when the specification is integrated in a specification
module, together with other specifications that define those external symbols.

As shown before, the specification of a generic data type may involve much more
than two specifications. For instance, in the case of Interval, we used four: TOTAL
ORDER WITH SUC, TOTAL ORDER, SORTED SET and INTERVAL. Clearly, the role
of the first two specifications is different from the last two. Specifications SORTED SET
and INTERVAL define data types that have to be implemented (they are the core of the
module), while the role of the other two specifications is simply to impose constraints
over their admissible instantiations. Specification modules, defined as pairs of sets of
specifications, explicitly identify the nature of each specification.

120 I. Nunes, A. Lopes, and V.T. Vasconcelos

More concretely, a specification module is a pair (core, param) of sets of specifica-
tions s.t.:

the intersection of core and param is empty and all sorts are different;

the param set contains every specification used as parameter;

both core and param sets are closed under the supersort relation;

all external symbols —parameters, sorts, operations and predicates— are resolved.

With the specifications introduced in the previous subsection, we can build different
modules. Three examples are presented below, ranging from a very simple module TO
with a single core specification to the module ITV that specifies two generic data types.

TO = <{TOTAL ORDERY}, {}>
SS = <{SORTED SET},{TOTAL ORDER}>
ITV = <{SORTED SET,INTERVAL},{TOTAL ORDER, TOTAL ORDER WITH SUC}>

Specification modules play a role that, to some extent, is similar to that of architec-
tural specifications [7]] in CASL. In both cases, it is prescribed the intended structure
of implementations, that is to say, the implementation units that have to be developed.
The difference is that architectural specifications additionally describe how units, once
developed, are put together to produce the overall result. However, since the opera-
tors used for combining units in architectural specifications are not available in object-
oriented languages s.a. Java, this aspect of architectural specifications is not useful in
this context.

3 Interpreting Modules in Terms of Java Programs

The standard interpretation of algebraic specifications in terms of algebras has proved
very important, namely to understand ADTs. However, as pointed out in [3]], this in-
terpretation only provides us with an indirect connection with the abstractly described
programs. For a broader use of specifications, namely in the context of runtime confor-
mance checking, a direct connection between specifications and programs is needed.

In this paper we propose an interpretation of specification modules in terms of sets
of Java classes and interfaces. This is presented in two steps. In this section, we charac-
terise the Java programs appropriate for interpreting a specification module, taking into
account the structural constraints, while in the next section, we define the class of Java
programs that correctly realize the specified requirements. These programs are said to
be conforming with the specification module.

3.1 Constraints over the Structure of Programs

Let us take the perspective of a Java developer that has to implement a collection of
ADTs, described in terms of a specification module. Each core specification of the mod-
ule abstractly describes a Java class. This class has to be generic if the specification is
parameterized. Moreover, in the presence of specifications that make use of subsorting,
the induced type hierarchy must be enforced by the implementations.

Bridging the Gap between Algebraic Specification 121

More specifically, a Java program, regarded as a set C of classes and interfaces, is
appropriate for interpreting a specification module {(core, param) only if there exists
a correspondence from every core specification to a Java type in C. Additionally, the
following conditions also need to be fulfilled:

— the sort introduced by each simple specification in core corresponds to a non-
generic type 1" in C;

— the generic sort introduced by each parameterized specification in core corresponds
to a Java generic type in C with the same arity (i.e., the same number of parameters);

- the sort s < s’ introduced by each subsorting specification in core corresponds to a
type T in C, and T is subtype of the type that corresponds to s’.

As an example consider again the module ITV. According to the constraints just de-
scribed, an implementation of this module in Java has to include two generic classes,
one implementing SORTED SET and the other implementing INTERVAL.

3.2 Constraints over the Structure of Classes and Interfaces

Method signatures. The signature of a specification S introducing a sort s imposes
constraints over the methods that need to be available in the corresponding Java type T'.
Every operation and predicate declared in a specification .S must correspond to a public
method of T" with a “matching” signature in terms of arity and return and parameter
types. More precisely:

— Arity: (i) every (n+1)-ary operation or predicate corresponds to an n-ary method —
this is due to the fact that the object that corresponds to the first parameter of every
operation is the current object (this); (ii) every zero-ary operation corresponds to
a constructor of the corresponding class.

— Return type: (i) every predicate corresponds to a boolean method; (ii) every op-
eration with result sort s’ # s corresponds to a method with return type 77, if s’
corresponds to Java type T”; (iii) every operation with result sort s corresponds to
a method with any return type, void included.

— Parameter type: given a method m corresponding to operation/predicate op, the
i-th parameter of m has the type corresponding to (i+1)-th parameter sort of op.

This is similar to what we defined in [20]. However, the underlying correspon-
dence of types, in addition to what was defined before, has to satisfy the following
condition:

— the occurrence of a sort of the form s'[s1, ..., $,,], defined by an instantiation of a pa-
rameterized specification, must correspond to 1) an instantiation 77(T7,, T,,), if
the specifications defining every s; belong to core; 2) a generic type T(E1, ..., E,,),
if the specifications defining every s; belong to param.

As an example let us consider the module SS introduced before and a Java program
containing the class TreeSet and the interface Torderable (see Figure[3). If we con-
sider that the sort SortedSet{Orderable] corresponds to the type TreeSet(E), then it
is easy to see that every operation and predicate in specification SORTED SET has

122 I. Nunes, A. Lopes, and V.T. Vasconcelos

interface IOrderable(E){
boolean greaterEg(E e);

}

public class TreeSet(E extends IOrderable(E)){
public TreeSet(E) (){...}
public void insert (E e) {.
public boolean lsEmpty(){
public boolean isIn(E e){.)
public E largest () { .}

Fig. 5. An excerpt of a Java implementation of a sorted set

a corresponding method in the class TreeSet with a matching signature. For exam-
ple, the operation insert : SortedSet[Orderable] Orderable — SortedSet[Orderable] cor-
responds to void insert(E e), the predicate isln:SortedSet[Orderable] Orderable
corresponds to boolean isIn(E e) and the operation largest:SortedSet{Orderable]
— Orderable corresponds to E largest ().

Parameters of Java generic classes. Other type of constraints imposed over the struc-
ture of classes concerns the way parameters of generic classes are bound. For every
parameterized specification, the instantiation of the parameter type of the correspond-
ing generic class has to be limited to types that have a method for every operation and
predicate in the corresponding parameter specification, with a signature that matches
that of the operation/predicate. More concretely, if a Java class K can be used to instan-
tiate a given generic Java type T'(E) that corresponds to a generic specification S[S’],
then every operation and predicate of S’ must correspond to a method of K with a
matching signature considering that the sort s’ corresponds to type K.

Going back to the example discussed before, we see that the instantiation of the
type parameter in TreeSet is limited to classes K that implement I0rderable(K)
and hence, it is ensured that they have the method boolean greaterEq(X e). The
signature of this method clearly matches with the declaration geq:Orderable Orderable
in specification SORTED SET considering that sort Orderable corresponds to type K.

3.3 Refinement Mappings

The correspondence between specifications and Java types as well as between opera-
tions/predicates and methods canbe described in terms of what we have called a refinement
mapping.In order to support the analysis of a Java program with respect to a specification
module, it is crucial that a correspondence between them be explicitly defined.

A refinement mapping from a specification module M to a set C of Java types con-
sists of a set V' of type variables equipped with a pre-order, and an injective refinement
function R that maps:

— each core simple specification to a non-generic type defined by a Java class;

— each core parameterized specification to a generic type, with the same arity, defined
by a Java class;

— each core specification that defines a sort s < s, to a subtype of R(S’), where S’
is the specification defining s';

Bridging the Gap between Algebraic Specification 123

refinement <E>
SORTED.SET[TOTAL.ORDER] is TreeSet<E> {
empty: — SortedSet[Orderable] is TreeSet<E>();
insert: SortedSet[Orderable] e:Orderable — SortedSet is void insert(E e);
isEmpty: SortedSet[Orderable] is boolean isEmpty();
isIn: SortedSet[Orderable] e:Orderable is boolean isln(E e);
largest: SortedSet[Orderable] —? Orderable is E largest ();

}
TOTAL.ORDER is E {
geq: Orderable e:Orderable is boolean greaterEq(E e);

end refinement

Fig. 6. A refinement for a sorted set

each parameter specification to a type variable in V;

each operation/predicate of a core specification to a method of the corresponding
Java type with a matching signature;

each operation/predicate of a parameter specification S to the signature of a method.

Additionally:

— if a parameter specification S’ defines a subsort of the sort defined in another pa-
rameter specification S, then it must be the case that R(S") < R(S) holds (recall
that the set V' of type variables is equipped with a pre-order);

- if S is a parameterized specification with parameter S’, it must be possible to ensure
that any type K that can be used to instantiate the corresponding parameter of the
generic type R(S) possesses all methods op defined by R for type variable R(S’)
after appropriate renaming — the replacement of all instances of the type variable
R(S”) by K (among these methods are the methods defined by R for any type
variable V' s.t. R(S") < V).

In Figure |6l we present an example of a refinement mapping between the module SS
and the java types {TreeSet(E), IOrderable(E)}, using a concrete syntax that ex-
tends the one that is currently supported by CONGU. In order to check that the de-
scribed function indeed defines a refinement mapping we have to confirm that the last
condition above holds (the first one is vacuously true as TOTAL ORDER does not de-
fine a subsort). This can be ensured by inspecting in the class TreeSet whether any
bounds are declared for its parameter E, and whether those bounds are consistent with
the methods that were associated to parameter type E by the refinement mapping —
boolean greaterEg(E e). This is indeed the case: the parameter E of TreeSet is
bounded to extend IOrderable(E), which, in turn, declares the method
boolean greaterEg(E e).

At a first glance, it may look strange that, the definition of refinement mapping,
does not require instead that the parameter specification TOTAL ORDER be mapped
directly to T0rderable(E), the bound associated to E. This would be simpler to write
but it would be much too restrictive, without practical interest. In our example, this
notion would only be applicable if boolean greaterEg(E e) in IOrderable(E)
was replaced by boolean greaterEq(IOrderable(E)e). This would require that
any two objects of any two classes that can be used to instantiate E in TreeSet can be
compared which is, clearly, much stronger than what is necessary.

124 I. Nunes, A. Lopes, and V.T. Vasconcelos

refinement <E, F extends E>
SORTED_SET[TOTAL.ORDER] is TreeSet<E> {
empty: — SortedSet[Orderable] is TreeSet<E>();
insert: SortedSet[Orderable] e:Orderable — SortedSet is void add(E e);
isEmpty: SortedSet[Orderable] is boolean isEmpty();
isIn: SortedSet[Orderable] e:Orderable is boolean isln(E e);
largest: SortedSet[Orderable] —? Orderable is E greatest();

}
INTERVAL[TOTAL.ORDER.WITH.SUC] is Mylnterval<F> {
interval: el:Successorable e2:Successorable —? Interval[Successorable] is
Mylinterval<F>(F el,F e2);
max: Interval[Successorable] — Sucessorable is F fst ()
min: Interval [Successorable] — Sucessorable is F snd()
before: Interval[Successorable] e: Interval[Successorabl
boolean before (Mylnterval<F> e);
elements: Interval[Successorable] — SortedSet[Successorable] is
TreeSet<F> elems ();

e] is

b
TOTALORDER is E
geq: Orderable e:Orderable is boolean greaterEq(E e);

TOTAL.ORDER.WITH.SUC is F {
suc: Successorable — Successorable is F suc();

}

end refinement

Fig.7. A refinement for an interval

interface ISuccessorable(E) extends IOrderable(E) {
E suc();
}

public class MyInterval(E extends ISuccessorable(E)) {
public MyInterval(E) (E el, E e2){...}
public E fst(){...}
public E snd(){...}
public before (MyInterval(E) i) {...}
public TreeSet(E) elems(){...}

Fig. 8. An excerpt of a Java implementation of an interval

A more complex and interesting example that shows the full potential of our notion of
refinement mapping is presented in Figure[7] It describes a refinement mapping between
the module ITV and the java types TreeSet(E), I0rderable(E) and MyInterval(E),
ISuccessorable(E). Figure [§ partially shows how the last two types were defined.
Notice that, in this case, because F' < F, in order to check that the described func-
tion defines a refinement mapping we have to confirm that any K that can be used
to instantiate E in MyInterval possesses methods boolean greaterEg(K e) and
K suc (). This is indeed the case as the parameter E of MyInterval is bounded to ex-
tend ISuccessorable(E), which, in turn, declares boolean greaterEg(E e) and
inherits from I0rderable(E) the method boolean greaterEq(E e).

In order to check the expressive power of the proposed notion, we have additionally
considered a large number of examples that appear in the context of a typical Algo-
rithms and Data Structure Course.

Bridging the Gap between Algebraic Specification 125

4 Conformance between Modules and Java Programs

In the previous section, we characterised the class of Java programs that are appropriate
for interpreting a specification module. In this section, we characterise the programs
that are in conformity with the module, i.e., those that correctly realize the specified
requirements. In what follows, we consider a set C of Java types that is appropriate
for interpreting a module M with the refinement mapping R. For illustration pur-
poses we use the refinement mapping presented in Figure [6| between the module SS
and C={TreeSet(E), I0rderable(E)}.

Specifications introduced in Section [2] define two types of properties: axioms and
domain conditions. In the first paragraphs we address these two types of properties
when they are defined in the context of core specifications. Finally, in the last paragraph,
we address properties of parameter specifications.

4.1 Constraints Imposed by Axioms of Core Specifications

The axioms included in a core specification S impose constraints over the behaviour
of the corresponding class, R(S). More concretely, the axioms specified in a non-
parameterized specification .S must be fulfilled by every object of type R(S). Notice
that in the case of specifications that make use of subsorting, the above condition im-
plies that the axioms defined for values of the supersort are also fulfilled by the values
of the subsort. This is a simple consequence of the type system: if an object has type
T < T, then it also has type T”. In case S is a parameterized specification, the ax-
ioms must be fulfilled by every object of any type 7' that can be obtained through the
instantiation of R(.S), which in this case is a Java generic type.

From the point of view of an object, the properties described by axioms are invariants
— they should hold in all client visible-states, i.e., they must be true when control is
not inside the object’s methods. In particular, they must be true at the end of each
constructor’s execution, and at the beginning and end of all methods [13116].

It remains to define which object invariants are specified by axioms. Consider for
instance the following two axioms, included in SORTED SET:

E, F: Orderable; S: SortedSet[Orderable];

largest(insert(S, E)) = E if isEmpty(S);

isln(insert(S,E),F) iff E=F or isIn(S,F);
The translation of these axioms to properties of an object ts:TreeSet(K), for some
type K that implements I0rderable(K), has to take into account that method insert
is void. In what concerns the first axiom, ts has to satisfy the following property:

In all client visible-states, for all k: K,
— if ts.isEmpty () holds then, immediately after the executionof ts. insert (k),
the expression ts.largest () .equals (k) evaluates to true.

The translation of the second axiom is more complex because it is an equivalence. In
this case, the property that ts has to satisfy is the following:

In all client visible-states, for all k, k’ : K,

126 I. Nunes, A. Lopes, and V.T. Vasconcelos

— if k.equals(k’) or ts.isIn (k') is true then, immediately after the execu-
tion of ts.insert (k), the expression ts.isIn(k’) evaluates to true;

— if, immediately after the execution of the invocation ts. insert (k) , the expres-
sion ts.isIn (k') evaluates to true,thenk.equals(k’) orts.isIn(k’) is
true.

Space limitation prevents us from presenting the translation function induced by a refine-
ment mapping R. For modules composed of simple specifications only, this translation
was not only formally defined but also encoded in the form of a runtime conformance
tool in the context of CONGU (see [[19] for details). As the example shows, generics and
subsorting do not raise any additional difficulty in the translation process.

4.2 Constraints Imposed by Domain Conditions of Core Specifications

The domain conditions included in a core specification S impose constraints over the
behaviour of the corresponding class, R(S), as well as over all classes in C that are
clients of R(.5).

Let ¢ be a domain condition of an operation op in a non-parameterized (resp. param-
eterized) specification S. On the one hand, the implementation of method R (op) must
be such that, for every object o of type R(S) (resp. for every object o of a type that re-
sults from the instantiation of R(S)), in all client visible-states, if the property ¢ holds,
then a call of R(op) terminates normally (i.e., no exception is raised) [16]. Notice that
operations that are not declared to be partial, implicitly have the domain condition true
and, hence, corresponding methods must always return normally. On the other hand, ¢
defines a pre-condition for method R (op). That is to say, ¢ must hold at the time the
method is invoked. Hence, ¢ defines a constraint over the behaviour of all classes in C
that are clients of R(.S) and use method R(op). These classes cannot call R(op) if ¢
does not hold.

As an example, let us consider the domain condition of largest included in specifi-
cation SORTED SET. Let k be a class that implements T0rderable(K). For any object
ts:TreeSet(K) in a client-visible state in which !ts.isEmpty () holds, the call of
largest must return normally. Because C does not contain any client of TreeSet, no
more restrictions are imposed by this domain condition.

4.3 Constraints Imposed by Parameter Specifications

Axioms and domain conditions described in parameter specifications of a module im-
pose constraints similar to those defined in previous sections for core specifications.
The difference lies on the target of these constraints only. The axioms included in a
parameter specification .S impose constraints over the behaviour of the types of C that
are used to instantiate the corresponding generic type. More precisely, if S’ is a pa-
rameterized specification with parameter S, then every object of a type K used in C to
instantiate the Java parameter type variable R(S) of R(S’) must fulfil the axioms of S.
In the case of domain conditions, there are also constraints that apply to the clients of
these classes.

Bridging the Gap between Algebraic Specification 127

In order to illustrate these ideas, consider a Java program C’ that, in addition to
TreeSet(E) and IOrderable(E), includes classes Date, Card and Main. Suppose
also the last class is a client of TreeSet(Date), TreeSet(Card), Date and Card. Be-
cause C’ is a superset of C, the mapping R is also a refinement mapping between SS
and C’. The program C’ is in conformity with SS only if (1) Both Date and card
behave according to the properties described in TOTAL ORDER; (2) Main respects
the domain conditions defined in SORTED SET for operation largest, when invok-
ing the corresponding method either over an object of TreeSet(Card) or an object
of TreeSet(Date).

5 Extending the ConGu Tool

The CONGU tool [[10] supports the runtime checking of Java classes against algebraic
specifications. The input to the tool are specification modules and refinement map-
pings, and of course, Java programs, in the form of byfecode. Running a program under
CONGU may produce exceptions due to domain condition violations or to axiom viola-
tions. The first case is a manifestation of a ill-behaved client, i.e., a client that invokes a
method in a situation in which the method should not be invoked. The second case is a
manifestation of a faulty supplier class: one of the classes under test is failing to ensure
at least one of the specified properties.

The approach to runtime checking used in CONGU involves replacing the original
classes and generating further classes annotated with monitorable contracts, presently
written in JML [13]. The generated pre and post-conditions allow to check if the con-
straints imposed by axioms and domain conditions hold at specific execution points.
The approach is applicable even if the specified operations are implemented as void
methods or methods with side effects. Roughly speaking, this is achieved as follows.

For every specification S in the module, considering that R(.S) is the class MyT:

— Rename bytecode MyT to MyT_Original;

— Generate a static class MyT_Contract annotated with contracts automatically gen-
erated from the axioms and domain conditions specified in S. This class is a sort of
functional version of the original class My T. For instance, if classMyT_Original has

the method voidm(...), then class MyT_ Contract has a static method
MyT_Originalm(MyT_Original o, ...) thatstartsbyexecuting co=o.clone ()
and then returns co after the executionof co.m(. . .) . Notice that the usage of clones

in all methods of MyT_Contract ensures that the methods are pure (i.e., without
side effects) and, hence, can be used in contracts. This step also generates classes to
describe state-value pairs and ranges to be used in forall contracts;

— Generate a proxy class MyT with exactly the same interface as the original one. This
is a wrapper class in the sense that it intercepts all method invocations coming from
clients of the original class and forwards these invocations to the corresponding
method of MyT_Contract. In this way, contracts corresponding to axioms and
domain conditions are monitored.

In the rest of this section, we briefly discuss how this approach can be extended in
order to support the more comprehensive notion of conformance between specification
modules and Java programs presented in the previous section.

128 I. Nunes, A. Lopes, and V.T. Vasconcelos

From the point of view of the structure, there are two main extensions that CONGU
must suffer in order to deal with generic classes. One implies the creation of contract
classes for every Java type declared as the upper bound of parameters to generic classes.
For instance, in the implementation of the SORTED SET specification, in which we
have 10rderable(E) interface as the upper bound for the parameter of the generic class
TreeSet(E), CONGU must create a class I0rderable_Contract. In this class, the
method greaterEq(IOrderable el, IOrderable e2) uses dynamic dispatching
to invoke the correct greaterEg method over a clone of the el argument. Every con-
tract that needs to invoke the greaterEq method over some element of a TreeSet
(for example, the post-condition for the insert method in which two elements of the
TreeSet must be compared), must do so using the Torderable_Contract class.

Central to the implementation of CONGU is the ability to clone objects for contract
monitoring purposes. CONGU distinguishes Cloneable from non-Cloneable types,
cloning references of the former kind, calling contracts directly on the references of
latter form. Java types declared as upper bounds of parameters to generic classes must
be declared Cloneable in order to make it possible to create clones of its subtypes.
This is because all objects of classes that implement some upper bound T in the con-
text of a generic class instantiation, are statically used as T objects in contract classes.
For example, the T0rderable interface in Figure [5 must extend the marker interface
Cloneable (and announce the signature of method clone) if any of its implementa-
tions turns out to be mutable

Presently, CONGU generates JML contracts. At the time of this writing JML does not
support generic types in source code, hence CONGU generates only non-generic (Java
1.4) code. In order to continue using the existing framework, the generated JML-related
classes must be non-generic. Specifically, we generate non-generic contract classes
(TreeSet_Contract and I0rderable_Contract), together with the remaining aux-
iliary (pair and range) classes. JML then compiles these classes relying on the bytecode
for the program to be monitored (whose source code may contain generics that are not
reflected in the bytecode) to resolve dependencies.

The other main extension concerns classes arguments to generic classes. In order to
enforce the constraints imposed by parameter specifications of a module over a Java
program C, CONGU must first be capable of determining, for each generic specification
S and each of its parameter specifications S’, the set 7 (S, S”) of types that are used
in the program to instantiate the corresponding parameter of R(.S) (for instance, in the
program considered in the previous section, 7 (SORTED SET,TOTAL ORDER) consists
of classes Date and Card). Then, we can apply the methodology described before, and
generate a proxy for each type in this set, each referring to the same contract class
capturing the requirements specified in S’ (e.g., I0orderable_Contract).

The problem of determining the set 7 (.5,S") can only be completely solved if the
source code of the Java program is available, for such information is lost in the bytecode
generated by the Java compiler (through a bytecode inspection one can compute the set
of subtypes of the upper bound of R(S’) found in C, which is a superset of the required

2 One may wonder if forcing all subtypes of a parameter type to be of the same kind (cloneable
or non-cloneable) is over-restrictive. We note however that immutable classes can implement
method clone by simply returning this, if so desired.

Bridging the Gap between Algebraic Specification 129

7(S,5")). In the absence of the source code, a possible solution is to ask the user to
explicitly identify the classes that CONGU should monitor for each parameter.

The sets 7 (5, S") may include classes that do not correctly implement S”. If this
is the case for some class a, then the execution of program C under CONGU may be-
have in two different ways, depending on the nature of the violation. It may produce
an exception signalling the violation of an axiom of S’ in 2, or it may as well signal
the violation of an axiom of a generic specification that has S’ as a parameter. This
problem of imprecise blame assignment can be mitigated if, prior to executing C, we
execute some simpler programs under CONGU that do not involve clients of the generic
classes but, instead, involve direct clients of the classes in 7 (.S,.S”). In this way, only
the classes that correctly implement S” would be used to test the generic implementa-
tions R(.S) of generic specifications S that have S’ as a parameter. To some extent, this
problem is related with the problem of testing generic units independently of particular
instantiations addressed in [15]]. Herein, given that the set of all possible instantiations
is almost always infinite, it is suggested that a representative finite class of possible
parameter units be selected.

6 Conclusion and Further Work

The work presented in this paper contributes to bridging the gap between parameter-
ized specifications and Java generic classes, in the context of checking the conformance
of the latter against the former. By evolving the CONGU approach to cope with more
sophisticated specifications — involving parameters and subsorting — it becomes ap-
plicable to a more comprehensive range of situations, namely those that appear in the
context of a typical Algorithms and Data Structures course and in the context of reusable
libraries and frameworks.

Algebraic specifications are known to be especially appropriate for describing soft-
ware components that implement data abstractions. These components play an impor-
tant role in software development and are, today, an effective and popular way of sup-
porting reuse. Many ready-to-use components produced for libraries and frameworks
that support reuse of common data abstractions are generic. Given that generics are
known to be difficult to grasp, obtaining correct implementations becomes more chal-
lenging and, hence, automatic support for detection of errors becomes more relevant.

We presented a specific interpretation of specification modules in terms of sets of
Java classes and interfaces. This is useful if we take the perspective of a Java devel-
oper that has to implement a collection of units, described in terms of a specification
module. The interpretation rigourously defines what the module’s correct implementa-
tion in Java is and paves the way to the development of tools that support the runtime
conformance checking of Java programs. Using these tools increases the confidence
in the source code, and facilitates component-based implementation. The CONGU tool
already supports checking Java classes against simple specifications. A solution for ex-
tending it in order to cope with specifications using parameters and subsorting was also
presented.

We are currently implementing the sketched extension to CONGU tool. As for future
work, in order to increase the effectiveness of the monitoring process, while keeping

130 I. Nunes, A. Lopes, and V.T. Vasconcelos

it completely automated, we also intend to develop testing techniques based on the
specifications. Our aim is the automatic generation of unit and integration testing that
make use of runtime conformance checking. A black box approach to the reliability
analysis of Java generic components brings the challenge of not having any a priori
knowledge of which Java types are to be used to instantiate parameters. Therefore, tests
are harder to generate, because test data must be generated of types that are unknown
at testing time. Existing methods and techniques to automatically generate test suites
from property-driven specifications cannot be directly applied, and coverage criteria
and generation strategies of test cases in this new context needs also to be investigated.

References

1. Antoy, S., Gannon, J.: Using term rewriting to verify software. IEEE Transactions on Soft-
ware Engineering 4(20), 259-274 (1994)

2. Antoy, S., Hamlet, R.: Automatically checking an implementation against its formal specifi-
cation. IEEE Transactions on Software Engineering 26(1), 55-69 (2000)

3. Aspinall, D., Sannella, D.: From specifications to code in CASL. In: Kirchner, H., Ringeis-
sen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 1-14. Springer, Heidelberg (2002)

4. Barnett, M., Schulte, W.: Spying on components: A runtime verification technique. In: Proc.
Workshop on Specification and Verification of Component-Based Systems 2001 (2001)

5. Barnett, M., Schulte, W.: Runtime verification of. NET contracts. Journal of Systems and
Software 65(3), 199-208 (2003)

6. Bidoit, M., Mosses, P.: CASL User Manual. LNCS, vol. 2900. Springer, Heidelberg (2004)

7. Bidoit, M., Sannella, D., Tarlecki, A.: Architectural specifications in CASL. In: Haeberer,
AM. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 341-357. Springer, Heidelberg (1998)

8. Chen, F.,, Rosu, G.: Java-MOP: A monitoring oriented programming environment for Java.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 546-550. Springer,
Heidelberg (2005)

9. Chen, F,, Tillmann, N., Schulte, W.: Discovering specifications. Technical Report MSR-TR-
2005-146, Microsoft Research (2005)

10. Contract based system development, http://gloss.di.fc.ul.pt/congu/

11. Edwards, S., Shakir, G., Sitaraman, M., Weide, B., Hollingsworth, J.: A framework for de-
tecting interface violations in component-based software. In: Proc. International Conference
on Software Reuse (ICSR) 1998, pp. 46-55 (1998)

12. Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for Java container
classes. IEEE Transactions on Software Engineering 33(8), 526-543 (2007)

13. Leavens, G., Cheon, Y.: Design by contract with JML (2006),
http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf

14. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML ac-
commodates both runtime assertion checking and formal verification. Science of Computer
Programming 55(1-3), 185-208 (2005)

15. Machado, P.L., Sannella, D.: Unit testing for CASL architectural specifications. In: Diks, K.,
Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 506-518. Springer, Heidelberg (2002)

16. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall PTR, Englewood
Cliffs (1997)

17. Meyer, B.: Eiffel as a framework for verification. In: Meyer, B., Woodcock, J. (eds.) VSTTE
2005. LNCS, vol. 4171, pp. 301-307. Springer, Heidelberg (2008)

http://gloss.di.fc.ul.pt/congu/
http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf

18.

19.

20.

21.

22.

Bridging the Gap between Algebraic Specification 131

Nikolik, B., Hamlet, D.: Practical ultra-reliability for abstract data types. Software Testing,
Verification and Reliability 17(3), 183-203 (2007)

Nunes, 1., Lopes, A., Vasconcelos, V., Abreu, J., Reis, L.: Testing implementations of alge-
braic specifications with design-by-contract tools. DI/FCUL TR 05-22 (2005)

Nunes, L., Lopes, A., Vasconcelos, V.T., Abreu, J., Reis, L.S.: Checking the conformance of
Java classes against algebraic specifications. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 494-513. Springer, Heidelberg (2006)

Stenzel, K., Grandy, H., Reif, W.: Verification of java programs with generics. In: Meseguer,
J., Rosu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 315-329. Springer, Heidelberg
(2008)

Yu, B., King, L., Zhu, H., Zhou, B.: Testing Java components based on algebraic specifica-
tions. In: Proc. International Conference on Software Testing, Verification and Validation,
pp- 190-198. IEEE, Los Alamitos (2008)

	Bridging the Gap between Algebraic Specification and Object-Oriented Generic Programming
	Introduction
	Specifications and Modules
	Specifications
	Specification Modules

	Interpreting Modules in Terms of Java Programs
	Constraints over the Structure of Programs
	Constraints over the Structure of Classes and Interfaces
	Refinement Mappings

	Conformance between Modules and Java Programs
	Constraints Imposed by Axioms of Core Specifications
	Constraints Imposed by Domain Conditions of Core Specifications
	Constraints Imposed by Parameter Specifications

	Extending the ConGu Tool
	Conclusion and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

