
Session Typing for a Featherweight Erlang

Dimitris Mostrous and Vasco T. Vasconcelos

LaSIGE, Faculty of Sciences, University of Lisbon

Abstract. As software tends to be increasingly concurrent, the
paradigm of message passing is becoming more prominent in computing.
The language Erlang offers an intuitive and industry-tested implementa-
tion of process-oriented programming, combining pattern-matching with
message mailboxes, resulting in concise, elegant programs. However, it
lacks a successful static verification mechanism that ensures safety and
determinism of communications with respect to well-defined specifica-
tions. We present a session typing system for a featherweight Erlang
calculus that encompasses the main communication abilities of the lan-
guage. In this system, structured types are used to govern the interaction
of Erlang processes, ensuring that their behaviour is safe with respect
to a defined protocol. The expected properties of subject reduction and
type safety are established.

1 Introduction

In the age of web services, distributed systems and multicore processors, the
paradigm of message passing is becoming increasingly prominent in computing.
The functional-declarative language Erlang is widely used for process-oriented
software, utilising pattern-matching to extract messages from mailboxes, and
resulting in concise, elegant programs. However, it lacks a static verification
mechanism that can ensure safety and determinism of communications with
respect to well-defined protocol specifications. Such verification is highly useful
but also very challenging, since the language is dynamically typed, and any
type system has to work on top of the existing semantics of its communication
primitives.

In this work we present the first typing system for the concurrent fragment
of Erlang, based on session types, and distilled in a featherweight calculus. To
overcome the uncontrolled nature of process identifiers, which address the unique
mailbox owned by each process (thread), we make extensive use of the ability
of the language to generate unique references (fresh names), created with the
built-in function make ref(). By carefully controlling the use of references, and
by including them in messages where they play the role of uniquely identifying
(correlating) conversations, we can guarantee properties about the fine-grained
structure of communications between pairs of processes. For example we ensure
that messages are always of the expected type and that sending and receiving
follows a prescribed pattern respected by both sides.

The programming style required in our methodology may seem cumbersome
for simple programs with protocols consisting of a single message exchange, but

without references it is difficult to ensure message correlation even for simple
request–response: using just process identity (e.g., the unique mailbox of the
sender) is not enough, as any process can “impersonate” another just by knowing
its identity which it can attach to a message [2]. Thus, make ref() seems to be the
only means to “get concurrency right.” Yet, an ad-hoc use of make ref() may lead
to applications that suffer from interference, race conditions, or even that fail
from delivering the expected results. Our system provides for a methodology that
governs its use, while statically guaranteeing that programs behave according to
the plan. We have only addressed a tiny part of the language, a language that is
untyped in nature. Scaling our proposal to a larger subset of Erlang constitutes
an interesting challenge. Moreover, our contribution can be viewed also as a type
system for an important pattern of concurrent behavior, a pattern that goes
well beyond what conventional session types currently allow, while presenting
ideas that may be incorporated in future message passing, buffered, concurrent
languages where receivers may inspect a mailbox picking appropriate messages.

Core Erlang [4], a canonical format for Erlang programs, is used internally
by the Erlang compiler, and also by many verification tools, most notably Dia-
lyzer which is part of the Erlang distribution. Dialyzer detects errors by infering
types based on Success Typings [9]. However, until now the type-based methods
developed for Erlang focus entirely on the functional part of the language, and
are therefore irrelevant in verifying the properties of concurrent message-passing
programs.

More recently, in [5], an analysis method was implemented that can statically
detect definite communication errors in Erlang programs, based on a topological
synthesis of communication primitive usages. Such properties include the case
where sent messages cannot be matched by a receive, however, it has a differ-
ent approach than ours: it does not check programs against types, but rather
analyses them against each other, detecting undesirable compositions of send-
ing and receiving. On the other hand, this method is automated and has been
implemented on top of the Dialyzer tool.

The rest of the paper is structured as follows. The next section presents our
language via an example. Then, Section 3 formally introduces the syntax and
reduction semantics of the language. Section 4 presents the type assignment
system and its main results. Section 5 concludes the paper.

2 A motivating example

Consider the classical readers-writer problem. A given resource can be written
by (exactly) one writer when no readers are reading; it can be simultaneously
read by a bounded number or readers while no writer is writing. A controller
protecting accesses to such a resource provides for two distinct operations (or
services): read and write. Given the constraints enumerated above, each of these
services is associated with a little protocol.

Upon invoking service write, writers receive one of two messages: welcome

meaning that no reader is reading, or reading meaning there is at least one

reader reading. In the first case, the protocol terminates (the writer may try
later, perhaps in a busy waiting manner); in the second case, the writer must
store its data and the protocol terminates. Readers, on the other hand, invoke
service read . Three things can happen: the reader is allowed in, there is one writer
writing, or the bound on the number of readers was exceeded. In the first case,
the reader receives a message welcome, after which it must store its data and the
protocol terminates. In the two other cases, the protocol terminates after the
reception of a writing or a full message.

The services and their associated protocols are captured by simple type ab-
stractions. To a resource we associate a record type describing the two services:

{write: Write, read : Read}

Each service is described by a session type. Session type Write is of the form:

⊕ [welcome: &[load : end], reading : end]

where type operator ⊕ means that the resource sends one of the two messages
welcome or reading , and operator & says that the resource accepts message load .
Type constructor end denotes the conclusion of the session. The session type
Read is similar, only that it starts with three options.

⊕ [welcome: &[store: end], writing : end, full : end]

We write the code for the resource monitor in an Erlang-like language. When
idle the monitor accepts any of the service requests, answers welcome in both cases
and proceeds appropriately. We could try writing our code as follows,

idle () = receive {write,Writer} →Writer!{welcome}, ...
{read ,Reader} →Reader!{welcome}, ...

Messages are selected from the monitor’s mailbox by a pattern matching mech-
anism. A pattern of the form {write,writer} matches an arbitrary message com-
posed of a label (an atom in the Erlang jargon) write and any value (the pro-
cess identifier—pid in short—of the writer) that becomes associated to variable
Writer. Term Writer!{welcome} sends a message {welcome} to the Writer’s mailbox.

Each interaction with the monitor is composed of a series (of two or three)
messages; we call a session the sequence of messages that pertain to the same run
of some protocol. When a monitor interacts with different clients, the client’s pid
is enough to distinguish to which session messages belong. For more elaborate
scenarios, where the same client constitutes two or more readers or writers, we
must resort to more complex protocols. A common method used to distinguish
different sessions running simultaneously, is to use correlation sets [3, 10].

A correlation set is a set of identifiers (references in the Erlang jargon) that
uniquely identifies a session. Clients create the required references and send
them in the service invocation message. For each session we need two correlation
references, one for the sending operations, the other for receiving. So here is
the revised version of the monitor, noting that ‘,’ denotes sequencing and ‘;’
separates alternative receive clauses, with ‘.’ marking the end:

idle () = receive {write,X,Y,Writer} →Writer!{welcome,Y}, write(X);
{read ,X,Y,Reader} →Reader!{welcome,Y}, readOne(X).

In the first line the monitor receives a message with two references and uses
the second, Y, for letting the writer know to which session does the welcome

message belong to. The writer, in turn, uses the first reference, X, to ‘sign’ the
subsequent messages in the session. In the write phase, the monitor may accept
messages from the just initiated session (we omit the actual data to be stored
at the resource).

write (X) = receive {store,X} →idle().

During this phase, readers invoking the read service would block waiting for the
server to go back to the idle state. Our language allows for more than this: the
server may as well answer immediately to clients (with a writing message), while
waiting from the writer’s store message. That is, our server is able to initiate new
services while running other services.

write (X) = receive {store,X} →idle();
{read , ,Z,Reader} →Reader!{writing ,Z}, write(X).

The code for the read phase should by now be easy to understand; for simplic-
ity we allow two simultaneous readers, max. And we never leave a client without
an answer.

readOne(X1) = receive {load ,X1} →idle();
{write, ,Z,Writer} →Writer!{reading ,Z}, readOne(X);
{read ,X2,Y2,Reader2} →Reader2!{welcome,Y2}, readTwo(X1,X2).

readTwo(X1,X2) = receive {load ,X1} →readOne(X2);
{load ,X2} →readOne(X1);
{write, ,Z,Writer} →Writer!{reading ,Z}, readTwo(X1,X2);
{read , ,Z,Reader} →Reader!{full ,Z}; readTwo(X1,X2).

In the readTwo phase we decided to honor all possible cases: continuing with the
two open sessions with both readers, opening new sessions with new readers and
writers. But that need not be the case, at any moment programmers may choose
which sessions to continue and which new service requests to accept.

To complete our example we write the code for a reader that tries to store
at the resource (and gives up if unable).

reader () = make ref X,Y for self ,Resource in
Resource!{read,X,Y,self},
receive {welcome, Y} →Resource!{load ,X};

{writing , Y} →;
{full , Y} → .

For convenience, we create pairs of fresh references in one step with a make ref

operation. The thus created references, X and Y, must be bound to the pid of
the processes that will engage in interaction. The monitor, with pid Resource, is
going to use X for reading and Y for writing. Symmetrically, the current writer
(with pid self) will use Y for reading and X for writing.

What guarantees do we obtain from our type system? To discuss this mat-
ter we must remember that, in Erlang, message sending is non-blocking and
that messages may be retrieved from the mailbox in any order (as opposed to,

Identifiers

u ::= X variable
| α process id
| r reference

Values

V ::= u identifier
| a atom

Messages

M ::= {~V } tuple

Receive patterns

p ::= { ~X} when ~X = ~V

Terms

P ::= V value
| u!M,P send
| receive pi → Pi

i∈I receive
| spawnP asX inP spawn
| make ref X,X for u, u inP refs

Configurations

C ::= α : ~M mbox
| α [P] process
| (να)C new pid
| (νrαrα)C new refs
| C | C par

Fig. 1. Syntax

say, first-in first-out). The guarantee that Erlang processes engage in protocols
as specified by the session types—commonly known as session fidelity—is cap-
tured in our setting by inspecting mailboxes at termination. In the case of the
Reader above, the type system guarantees that the reader did not receive (dur-
ing its short life) unexpected messages from the server that remain unseen in
the mailbox. The same can be said of the monitor: at termination (if this ever
happens) no unexpected message remains in the mailbox.

3 Featherweight Erlang

This section presents our language, its syntax and reduction semantics.
For the programmers’ language we rely on a (countable) set of variables; we

use upper-case letters X and Y to range over variables, following the Erlang
conventions. A distinguished variable, self, plays a special role in the semantics.
We also need a set of non-interpreted atoms (or labels), ranged over by lower-
case letter a. The syntax of the language is defined in Figure 1. The identifiers in
the programmer’s syntax are variables only (the remaining two alternatives are
described below). Values V of the programmers’ language are simply variables
or atoms. The messages exchanged by processes, M , are tuples of values.

A program is a (closed) term that uses for identifiers variables only. The
constructors of terms include values as well as primitives to send and to re-
ceive messages, to spawn new processes and to create new unique references. A
term of the form u!M,P sends message M to the process named u and contin-
ues as P . A term of the form receive pi → Pi

i∈I attempts to pattern-match a
message from the mailbox against the various patterns pi and continues with
the term Pj for which the matching succeeds (patterns and pattern matching
are described below), blocking if no message matches. A term spawnP asX inQ
creates a new process with running code P , binds the (newly created) process

identifier to variable X and continues with term Q. Finally, a term of the form
make refX,Y for u, v inP creates two unique references, binds them to variables
X and Y , associates them to process identifiers u and v, and continues with
term P . A simple form of terms allowing the description of unbounded behaviour,
e.g. def A ~X = P inP and A~V , can be easily incorporated in our language, fol-
lowing, e.g., [7, 12]. For the sake of simplicity, and in order to concentrate on the
novel aspects of our system, we decided not to include them.

For the runtime language we need two new classes of identifiers: process
identifiers (pid’s) denoted by α and unique references denoted by r. The syntax
of terms remains unchanged, except for the extended category of identifiers.
Terms do not engage in reduction per se. Instead they must be uploaded into a
configuration. Configurations are built from five different constructors. A term
of the form α : ~M describes a mailbox for the process with pid α, containing a list
of (unread) messages ~M ; a process α [P] is a term P located at pid α. Then we
have scope restriction operators, (να)C for process identifiers, and (νrα1

1 rα2
2)C

for pairs of references. Finally, configurations of the form C1 | C2 allow C1 and
C2 to run in parallel.

We count with three binders for terms and two for configurations. They are:
the variables ~X in a receive pattern { ~X} when ~Y = ~u, variable X in a spawn
term spawnP asX inQ, variables X1 and X2 (but not u1 and u2) in a refer-
ence creation term make refX1, X2 for u1, u2 inP , process identifier α in config-
uration (να)C, and references r1 and r2 (but not α1 and α2) in configuration
(νrα1

1 rα2
2)C. In order to simplify the subsequent presentation we use letter n for

any of the binders α or rα1
1 rα2

2 . The sets of free variables and bound variables
are defined accordingly. We follow Barendregt’s variable convention, requiring
bound identifiers to be distinct from free identifiers in any mathematical con-
text. A substitution is a map (finite, partial domain) from variables into values,
written {~V/~X} and ranged over by σ. The (capture free) operation of applying
a substitution to term P , denoted Pσ, is standard.

If P is a program (a closed term), we upload P at our machine by building
a configuration of the form

(να)(α [P{α/self}] | α :ε)

composed of program P located at process identifier α, and empty mailbox
for the same pid (ε denotes the empty sequence). The distinguished nature of
variable self is apparent in P{α/self}: process P may refer to its own pid via self,
which at runtime is replaced by the actual value α.

Structural congruence is the smallest relation on processes including the rules
in Figure 2. The first two rules say that parallel composition is commutative and
associative. The rules in the second line deal with scope restriction. The first,
scope extrusion, allows the scope of n to encompass C2; due to the variable
convention, n bound in (νn2)C1, cannot be free in C2. The other two rules allow
exchanging the order of restrictions.1

1 Notice that (νrα1
1 rα2

2)(να1)C 6≡ (να1)(νrα1
1 rα2

2)C due to the variable convention
(the left-hand side configuration is not well formed).

C1 |C2 ≡ C2 |C1 (C1 |C2) |C3 ≡ C1 | (C2 |C3)

(νn)C1 |C2 ≡ (νn)(C1 |C2) (νn1)(νn2)C1 ≡ (νn2)(νn1)C1

Fig. 2. Structure Congruence

match({ ~X} when ~Y = ~U, {~V }) = match~Y=~U (~X, ~V)

match~Y=~U (X ~X, V ~V) = {V/X} ∪match~Y=~U (~X, ~V) if X /∈ ~Y

match~Y1X~Y2=~U1V ~U2
(X ~X, V ~V) = {V/X} ∪match~Y1X~Y2=~U1V ~U2

(~X, ~V)

match = (ε, ε) = ∅

Fig. 3. Pattern Matching

Messages are read from a mailbox via a pattern matching mechanism. In order
to simplify the definitions (type system included), patterns { ~X} when ~Y = ~V

introduce as many variables ~X as the length of the tuple expected. The actual
matching is then performed on the ~Y = ~V part. The definition is in Figure 3. If
defined, the output of the matching function may then be applied to a term. In
examples we often elide the when clause, by using atoms as well as previously
introduced variables in patterns. The code for write presented previously

write (X) = receive {store,X} →idle().

must be understood as

write (X) = receive {Y,Z} when Y,Z=store,X →idle().

Reduction is the smallest relation on processes that includes the rules in
Figure 4. Rule send places message M in the mailbox of the target process α2,
while the sender continues as P . Syntactically splitting the process behavior
α [P] from its mailbox α : ~M as two separate resources allows a process to send
to its own mailbox. That is the case when, in rule send, α1 is equal to α2.
Rule recv reads from the mailbox the first message M that matches one of the
patterns pi in the receiving term. The matching function, if defined, yields a
substitution σ which we apply to term Pj , corresponding to the selected pattern
pj . The message is removed from the mailbox. If no pattern matches M , then
the configuration does not reduce. Rule mkref creates two fresh references r1 and
r2 and replaces them by bound variables X1 and X2 in term P . Each reference
becomes associated in the ν-binder to the correspondent process identifier, α1

or α2. Rule spawn creates a fresh pid α2 for the spawned term P . Two new
resources are created: process α2 [P{α2/self}] where the self variable is replaced

α1 [α2!M,P] | α2 : ~M −→ α1 [P] | α2 : ~MM (send)

j ∈ I match(pj ,M) = σ match(pi,M
′) undefined ∀ i ∈ I, ∀M ′ ∈ ~M1

α : ~M1M ~M2 | α [receive pi → Pi i∈I] −→ α : ~M1
~M2 | α [Pjσ]

(recv)

α [make ref X1, X2 forα1, α2 inP] −→ (νrα1
1 rα2

2)α [P{r1r2/X1X2}] (mkref)

α1 [spawnP asX inQ] −→ (να2)(α1 [Q{α2/X}] | α2 [P{α2/self}] | α2 :ε) (spawn)

C1 −→ C2

C1 | C3 −→ C2 | C3

C1 −→ C2

(νn)C1 −→ (νn)C2

C1 ≡ C2 −→ C3 ≡ C4

C1 −→ C4

(par, res, str)

Fig. 4. Reduction

by α2, and the (empty) queue α2 : ε. The newly created pid is replaced in the
continuation process Q, so that Q may then communicate with the new process.

What can go wrong with our machine? Looking at the operational semantics
(Figure 4) nothing, really. Send always succeeds (for we admit mailbox buffers to
be unbounded); receive may not succeed (for two reasons: no message in mailbox,
no message in the mailbox matches the patterns) but that does not constitute an
abnormal behaviour; finally, there is no reason why make ref and spawn should
not succeed.

The possible abnormal conditions have to do with our understanding of how
sessions must happen. We identify two cases: a process terminates (reduces to
a value) but leaves session messages in the mailbox; a process tries to receive
a message with a given label within a given session but finds no such message
in the mailbox. For the former case and given the asynchronous nature of our
operational semantics, one may still find, at termination and in the mailbox,
a session initiation message followed by session messages. This does constitute
a malfunctioning since the session was never started on the server side. In the
latter case, processes need not receive messages for all open sessions at all times,
but if they decide to receive a message on a given session, then they must contain
patterns for all possible messages in that session (otherwise one or both of the
participants can get stuck by being unable to receive the next message).

We then say that a configuration C constitutes an error when C is structural
congruent to (ν~n)(α [P] | α : ~M | C ′) and

Incomplete session: term P is a value, buffer ~M is of the form ~M1{ , X, } ~M2,
and no message in ~M1 is of the form { , , X, }, or

Unmatched session message: term P is receive ({X,Y, }whenX,Y = a, r →
Q, . . .), there is one message in ~M of the form { , r, } but no message of the
form {a, r, }.

The type system in the next section filters out such abnormal cases.

T ::= {ai : Si}i∈I process id
| atom atom

S ::= &[ai : Ti → Si]
i∈I receive

| ⊕[ai : Ti → Si]
i∈I send

| end close

Fig. 5. Types

4 Typing

This section introduces our type system and presents its main result.
The syntax of types is in Figure 5. We distinguish types T for shared data

and session types S. In the former category we have types for pids, {ai : Si}i∈I ,
describing the set of sessions a process may engage in, and the type of atoms.
For session types we distinguish a type &[ai : Ti → Si]i∈I describing patterns
in a receive term labelled with ai, receiving values of type Ti, and proceeding
as prescribed by Si; a type ⊕[ai : Ti → Si]i∈I describing the various messages
a client may send; and end, a type describing the completed session. A process
may engage in different new sessions Si, each labelled with a different label ai.
Receiving on a given session yields a type &[ai : Ti → Si]i∈I ; a client that sends
on the same session has the dual type ⊕[ai : Ti → Si]i∈I , where S denotes the
type dual of S. Type end is dual of itself.

We use two sorts of typing environments: shared environments, Γ , containing
entries of the form p : T , and linear environments, ∆, containing entries (u1, u2 p
p) : S and (up11 , u

p2
2) : ref (with p, p1, p2 variables or process identifiers, and u1, u2

variables or references). An entry of the form (u1, u2 p p) : S describes a session
running between the current process and p, using references u1 and u2, and at
state S; an entry (up11 , u

p2
2) : ref describe a pair of references u1, u2 destined to

be used in a session between processes with pids p1 and p2.
In typing rules we will freely compose ∆ environments assuming that the

result is defined (or the respective rule cannot be applied). The principle of
composition is that when a pair of new references is added, the references do
not already occur in the environment; also, when a session usage is added, the
only allowed occurrence of the mentioned references is in a dual usage where they
appear in reverse order. Formally, we have that ∆, (up11 , u

p2
2) : ref is defined when

u1 6= u2 and, if (up33 , u
p4
4) : ref ∈ ∆ or (u3, u4 p p4) : S2 ∈ ∆, then u1,2 6∈ {u3, u4}.

Similarly, ∆, (u1, u2 p p1) : S1 is defined when u1 6= u2 and, if (up33 , u
p4
4) : ref ∈ ∆

then u1,2 6∈ {u3, u4}, and if (u3, u4 p p4) : S2 ∈ ∆, then u1,2 6= u3,4 and u1 = u4

iff u2 = u3.
The type system for terms is in Figure 6. Sequents are of the form Γ ;∆ `u

P : T , meaning that, under contexts Γ and ∆, term P with pid u has type T .
The rules for identifiers and atoms should be evident; we require ‘completed’

linear contexts at the leaves of typing derivations, as usual in session type sys-
tems. We then have two rules for message send, one to initiate a new session,
the other to output on a running session. In the former case, we make sure that

Γ, u : T ; {(ui, wi p pi) : end}i∈I ` u : T Γ ; {(ui, wi p pi) : end}i∈I ` a : atom
(identifier,atom)

Γ ; ` p : {ai : Si}i∈I Γ ;∆, (u2, u1 p p) : Sj `u P : T j ∈ I
Γ ;∆, (up1, u

u
2) : ref `u p!{aj , u1, u2, u}, P : T

(request)

Γ ; ` V : Tj Γ ;∆, (u1, u2 p p) : Sj `u P : T j ∈ I
Γ ;∆, (u1, u2 p p) : ⊕ [ai : Ti → Si]i∈I `u p!{aj , u2, V }, P : T

(out)

Γ ;∆ `acc
u pi → Pi : T Γ ;∆ `in

u qj → Qj : T ∀i ∈ I, j ∈ J consistent(∆, (qj)
j∈J)

Γ ;∆ `u receive (pi → Pi)i∈I , (qj → Qj)j∈J : T
(receive)

Γ ; ` u : {ai : Si}i∈I Γ ;∆, (X1, X2 p p) : Sj `u P{aj/Xa} : T j ∈ I
Γ ;∆ `acc

u {Xa, X1, X2, p} whenXa = aj → P : T
(accept)

Γ, Y : Tj ;∆, (u1, u2 p p) : Sj `u P{aju1/XaX} : T j ∈ I
Γ ;∆, (u1, u2 p p) : &[ai : Ti → Si]i∈I `in

u {Xa, X, Y } whenXaX = aju1 → P : T
(in)

Γ,X : T ;∆1 `X P{X/self} : Γ,X : T ;∆2 `u Q : T

Γ ;∆1,∆2 `u spawnP asX inQ : T
(spawn)

Γ ;∆, (Xu, Y v) : ref `u P : T

Γ ;∆ `u make ref X,Y for u, v inP : T
(mkref)

Fig. 6. Typing rules for terms

the process on p knows how to start an aj session, read (and remove) the pair
of references u1, u2 from ∆ and add a new session-entry to ∆. The new entry
records the two references, the pid of the target process and the dual (since we
are on the client side) of the session type for session aj . In the latter case we are
within a session: we type check the continuation term P to obtain a type Sj for
the session pertaining to u2 (the write reference) and build a ⊕ type accordingly.

The rule for receive is the most complex one for there may be multiple
branches, some trying to open new sessions, others trying to progress on already
open sessions. We assume the branches partitioned in two sets: those opening
new sessions and those engaged in open sessions. For the former we use rule
accept which should be confronted with rule request. This time we use Sj be-
cause we are on the server side; we also propagate the effect of pattern matching
on the continuation process P , via an appropriate substitution. For the latter
we use rule in which should be confronted with rule out: we place an entry for
message payload Y in the shared environment and propagate the substitution
as in accept; for the type of the session, we use a & type, rather than a ⊕ type.

In the rule for receive all branches must have the same linear context ∆. But
this is not enough, for in rule in we ‘guess’ from one label aj the whole set of
labels in a receive session type. We must then make sure that we do not declare
in the type labels that are not in the receive pattern. Predicate consistent is
used for the effect. We say that context ∆ is consistent with a set of patterns

({Xi, Yi, } whenXi, Yi = ai, ui)i∈I) when ∀i ∈ I.(ui, p) : &[a : → , . . .] ∈ ∆
implies ∃j ∈ I s.t. a = aj and ui = uj .

For spawn, we place an entry X : T for the spawned process P in the typing
environment and type check P by replacing self by X. The continuation term Q
also knows X at type T . The shared environment is passed to both terms,
whereas the linear one is split in two, one for each term. The rule for make ref
places a new ref-entry for the newly created pair of references in the linear
context, and type checks the continuation process P .

At this point we can explain the reasons behind using two references per
session instead of just one. Consider the following example:

clientAndServer () = make ref X,Y for self , self in self !{connect,X,Y,self},
receive {connect,X,Y,Client} →

self !{hello,Y, }, receive {hello,Y, } →...

The above code, in which the request is made to self, is typable in our system, but
if we had been using only one reference X, the presence of both ends of a session
in a single term would (eventually, after some steps) produce a single typing
for (X p self) which would include the actions of both participants (sending of
{hello...} followed by receive of the same message) on one session type, due to
the aliasing of the two intended uses of X in one place. This soundness problem
with aliased endpoints is well-understood in the session types literature; see [12].

The type system in Figure 6 does not yield an obvious algorithm: it requires
splitting linear context in rule spawn, as well guessing types in different rules. For
the former problem there are well-known techniques associated with linear type
systems that pass the whole context to one of the subterms, get back the unused
part of the context and pass it to the second subterm; see e.g., [11]. The second
problem occurs in rules spawn, out and in. In the first case, the common solution
is to seek the help of programmers by requiring a type annotation for the pid
of the spawned process P , providing the session types for its various services.
This would avoid tedious annotation of every receive, in which new sessions are
intermixed with existing ones that, moreover, can be partially satisfied. In rule
in we need to guess the right &-type based on one of its branches. All these
branches are then gathered together in rule receive where all types are checked
for consistency via predicate consistent. The strategy here goes along the lines of
preparing, in rule in, singleton branch types, and then merging them all together
in rule receive. Finally, for rule out we record one only ⊕-branch in the type and
add the remaining types to match the requirements in the remaining rules.

In order to prove subject-reduction we also have to type configurations. To
facilitate typing in the presence of mailboxes, we introduce types τ for mes-
sages in mailboxes. A type a(T)@r represents a session message with reference r
carrying an atom a and a value of type T ; type req is for new session requests.

The typing rules for configurations are in Figure 7. When typing with process,
the actual process id α is propagated in the typing of the enclosed term, ensuring
that it is understood as self. Rule par splits the linear context, and passes each
part to a different sub-configuration (cf. rule spawn for terms in Figure 6). In
rule newpid we introduce two usages for the subject pid: we add α : T in the

Γ ;∆ `α P :

Γ ;∆ ` α [P]

Γ ;∆1 ` C1 Γ ;∆2 ` C2

Γ ;∆1,∆2 ` C1 | C2
(process, par)

Γ, α : T ;∆,α : ~τ ` C
Γ ;∆ ` (να)C

Γ ;∆i `α Mi : τi ∀i ∈ 1 . . . n

Γ ;∆1, . . . ,∆n, α : τ1 . . . τn ` α :M1 . . .Mn

(newpid,mbox)

Γ ; ∅ ` α : {ai : Si}i∈I j ∈ I
Γ ; {(r1, r2 p α′) : Sj} `α {aj , r1, r2, α′} : req

Γ ; ∅ ` V : T

Γ ; ∅ ` {a, r, V } : a(T)@r
(reqmsg, sesmsg)

Γ ;∆, (rα1
1 , rα2

2) : ref ` C
Γ ;∆ ` (νrα1

1 rα2
2)C

α1 : ~τ1, α2 : ~τ2 ∈ ∆ S1 − (~τ1 � r1) = S2 − (~τ2 � r2)
Γ ;∆, (r1, r2 p α2) : S1, (r2, r1 p α1) : S2 ` C

Γ ;∆ ` (νrα1
1 rα2

2)C
(sesrefs, newrefs)

Fig. 7. Typing rules for configurations

shared environment, exposing a type for incoming requests, and we also expect
in the linear environment some entry α : ~τ for the corresponding mailbox.

Rule mbox which types each message in the mailbox of α and composes
the linear environments together with a sequence of message types for α. In
turn, we can examine the message typing rules reqmsg and sesmsg. In reqmsg
the request message introduces, in the linear environment, the usage that the
process receiving the message would perform, which is needed to match the
symmetric (dual) usage obtained with rule request of Figure 6. Observe that the
given type req does not need to carry additional information. Then in sesmsg a
session message is given a type a(T)@r; a sequence of such message types can
inform about the messages of a session that are already in the mailbox, and is
used to obtain the correct remaining usage (modulo these messages) per session.

Rule newrefs is for when a pair of references has been created, but a session
request message has not been sent yet. It facilitates a subsequent use of rule
request. Rule sesrefs ensures that sessions are dual. To obtain the actual session
type that remains to be performed on each side of a session, we carefully advance
the session types Si of each session partner according to the types of messages
already received. To achieve this, we utilise two auxiliary definitions. First, we
want to extract from a mailbox the message type information that pertains to
the specific reference ri used for input; for this we use (τi � ri) defined as:

req~τ � r = ~τ � r a(T)@r~τ � r = a(T)(~τ � r) a(T)@r′~τ � r = ~τ � r if r 6= r′

which generates a sequence (written ~ρ) of message pre-types a(T) stripped of
reference information. Then, we advance each session type Si by calculating the
session remainder S′i given from Si − ρi = S′i. The remainder is defined as:

S − ε = S &[ai : Ti → Si]i∈I − aj(Tj)~ρ = Sj − ~ρ if j ∈ I
⊕[ai : Ti → Si]i∈I − ~ρ = ⊕ [ai : Ti → Si]i∈I

In the above definition, branch types advance according to received messages,
but selections remain unchanged since they correspond to the messages that will
be sent, and not to those that are received.

The basic tenet of sessions is that remaining communications always “match,”
captured by the notion of type duality. To this end, following the conditions of
type rule sesrefs, we define balanced environments below.

Definition 1 (Balanced ∆). Predicate balanced(∆) holds if (r1, r2 p α2) : S1

and (r2, r1 p α1) : S2, α1 : ~τ1, α2 : ~τ2 in ∆ implies S1 − (τ1 � r1) = S2 − (τ2 � r2).

Next, we define an ordering on linear environments that specifies the ways
in which typings evolve with reduction.

Definition 2 (∆ Reduction). We define ∆⇒ ∆′ as follows:

(r2, r1 p α1) : S, (r1, r2 p α2) : &[ai : Ti → Si]i∈I , α1 :~τ1aj(Tj)@r1~τ2 ⇒
(r2, r1 p α1) : S, (r1, r2 p α2) : Sj , α1 :~τ1~τ2 if j ∈ I

(r1, r2 p α2) : ⊕ [ai : Ti → Si]i∈I , α2 :~τ2 ⇒ (r1, r2 p α2) : Sj , α2 :~τ2aj(Tj)@r2 if j ∈ I
(rα1

1 , rα2
2) : ref ⇒ (r2, r1 p α1) : S, (r1, r2 p α2) : S

∆⇒ ∆ ∆1, ∆2 ⇒ ∆′
1, ∆2 if ∆1 ⇒ ∆′

1

A property of the evolution of linear environments with⇒ is that it preserves
balance, which in turn constitutes a measure of type soundness.

Lemma 1 (Balance Preservation). If balanced(∆) and ∆ ⇒ ∆′ then
balanced(∆′).

Subject Reduction (type soundness) ensures that after reduction processes
can be typed and that the resulting linear environment follows the above order-
ing. By Balance Preservation, this implies that the resulting environment is also
balanced. The same can be easily shown for structural transformation.

Theorem 1 (Subject Reduction). If Γ ;∆ ` C with balanced(∆) and C −→
C ′, then Γ ;∆′ ` C ′ with ∆⇒ ∆′.

We can now state Type Safety which guarantees that configurations that are
typed with balanced environments never reduce to an error configuration. Note
also that environments are always balanced for user-level code in which no free
references occur.

Theorem 2 (Type Safety). If Γ ;∆ ` C with balanced(∆), then C does not
reduce to an error.

Proof (Outline). Type Safety can be proved easily by contradiction: since we
have Subject Reduction it is enough to show that error processes are not ty-
pable. In the case of an incomplete session with input reference r (where the
corresponding request message has been consumed), the only possible typing

mentioning r in a terminated process α [V] will be end, and the mailbox will
have a non-empty set of session messages on r not preceded by a corresponding
request message (with input reference r); therefore the session remainder will be
undefined. In the case of unmatched messages, we can show that a configuration
in which a mailbox contains a message carrying r together with an atom that
is not supported in the receiving process is untypable, since again the message
remainder will be undefined. In both cases an application of sesrefs will fail.

There are other undesirable configurations, namely when the same reference
appears in messages occurring in parallel threads (causing non-determinism in
the receiving order), or when subsequent (or parallel) requests share some ref-
erence. However, such configurations are trivially untypable, since the linear
environments composed in these cases are undefined.

5 Further work

Some Erlang programs consist of simple message exchanges and do not require
provisions for sessions, in particular the use of references. We can easily adapt
our system to handle these cases by extending pid types to {ai : Si, bj : Tj}i∈I,j∈J
allowing a process to receive simple messages such as {b, V }. Then, receive pat-
terns of the shape {X,Y } whenX = b can be typed using an extra rule in the
style of accept, to be invoked from the receive rule in Figure 6.

Our type system guarantees that all within-session messages have a chance of
being received. It would be desirable to also guarantee this property for session
initiation messages, thus offering stronger behaviour guarantees. Intuitively, we
need to ensure that at any state, terms can receive all possible session-initiation
messages, either immediately or by reducing to a state that does so. A technique
along the lines of non-uniform receptivity may prove helpful [1]. Moreover, since
Erlang has general pattern matching, it would be useful to allow guards to impose
constraints on the values received (e.g., receive only integer 5), and this can be
achieved by using dependent types.

Delegation is the term used to describe the ability to pass a session identifier
on a message. It allows, e.g., for a server to balance its load by sending some
(open) sessions to other servers. The very nature of Erlang makes delegation a
delicate matter, as opposed to the pi calculus where it is built in the language.
Due to the nature of Erlang semantics, where communication is buffered, each
process is co-located with its mailbox, and messages are addressed to pids, dele-
gation requires a fairly complex protocol, and remains outside the scope of this
work (if interesting at all in Erlang). A possible source of inspiration may come
from the work on Session Java where a runtime API implements a delegation
protocol for socket based session communication [8].

In order to concentrate on the novelty of our proposal, we deliberately ex-
cluded unbound behaviour. Such an extension should be easy to include via, e.g.,
recursive term definitions, as explained in Section 3. Realistic examples may re-
quire recursive types. This is, e.g., the case of our example in Section 2 if we allow

an unbounded number of store or load operations in a sequence. Fortunately, re-
cursion in session types is well studied (see, e.g., [6, 12]) and its incorporation
in the present setting should not present difficulties. In order to better convey
our typing proposal, the typing system in this paper is not algorithmic. We are
nevertheless confident that there is an equivalent algorithmic type system (see
discussion in Section 4).

Acknowledgements. We are indebted to the anonymous reviewers and to Kostis
Sagonas for their comments. This work was supported by FCT/MCTES via
projects PTDC/EIA–CCO/105359/2008 and CMU–PT/NGN44–2009–12.

References

1. Roberto M. Amadio, Gérard Boudol, and Cédric Lhoussaine. On message deliver-
ability and non-uniform receptivity. Fundam. Inf., 53:105–129, May 2002.

2. Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent
Programming in Erlang. Prentice-Hall, 2nd edition, 1996.

3. Business process execution language for web services. Available at http://public.
dhe.ibm.com/software/dw/specs/ws-bpel/ws-bpel.pdf.

4. Richard Carlsson. An introduction to Core Erlang. In PLI01 Erlang Workshop,
2001.

5. Maria Christakis and Konstantinos Sagonas. Detection of asynchronous message
passing errors using static analysis. In Practical Aspects of Declarative Languages
(PADL’2011), volume 6539 of LNCS, pages 5–18. Springer, 2011.

6. Simon J. Gay and Malcolm J. Hole. Subtyping for session types in the pi calculus.
Acta Informatica, 42(2/3):191–225, 2005.

7. Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and
type disciplines for structured communication-based programming. In ESOP’98,
volume 1381 of LNCS, pages 22–138. Springer, 1998.

8. Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed pro-
gramming in Java. In Proceedings of ECOOP’08, volume 5142 of LNCS, pages
516–541. Springer, 2008.

9. Tobias Lindahl and Konstantinos Sagonas. Practical type inference based on suc-
cess typings. In 8th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, PPDP’06, pages 167–178. ACM, 2006.

10. Mirko Viroli. Towards a formal foundation to orchestration languages. Electronic
Notes in Theoretical Computer Science, 105:51 – 71, 2004. Proceedings of the First
International Workshop on Web Services and Formal Methods (WSFM 2004).

11. David Walker. Advanced Topics in Types and Programming Languages, chapter
Substructural Type Systems. MIT Press, 2005.

12. Nobuko Yoshida and Vasco T. Vasconcelos. Language primitives and type dis-
cipline for structured communication-based programming revisited: Two systems
for higher-order session communication. In 1st International Workshop on Security
and Rewriting Techniques, volume 171(4) of ENTCS, pages 73–93. Elsevier, 2007.

