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Abstract

We present MiKO, a distributed process calculus obtained by instantiating
Boudol’s Generic Membrane Model with the TyCO language. In the membrane
model, a network is composed of a collection of domains, each of which comprises
an outer part, the membrane, and an inner part, the contents. The contents of the
domain is its computational core. It interacts with the outside (the other domains
in the network) using the membrane as intermediary. The membrane implements
all protocols required to control the flow of information between the network and
the contents of the domain. We provide an operational semantics and a type system
for the calculus and prove subject reduction, together with some examples.

1 Introduction
Process calculi provide powerful abstractions and an underlying theory to reason about
concurrent, communication based systems. In the last decade there has been an in-
creasing interest in using such calculi to model distributed systems, particularly in the
presence of code or computation mobility. Allowing resources to move between the
nodes of a distributed system introduces new, non-trivial, problems (e.g., binding pol-
icy, marshaling, security) that must be addressed by the underlying process calculus
and associated theory.

There have been many proposals of calculi to describe distributed mobile systems.
Most of the proposals came from the π-calculus community [19], namely Dπ [15],
π1l [1], lsdπ [21], the Seal calculus [11], Nomadic Pict [30], and the Distributed Join
calculus [13], or from the Ambient calculus community [10], notably boxed ambients
[6] and safe ambients [16]. Other works comprise, for instance, KLAIM [12], based
on the LINDA model.

Common to all these works is the concept of computational area, typically a named
location where processes run, generically known as a domain. Another concept global
to these calculi is that of mobility, where moving entities range from processes to entire
hierarchies of domains. The control of mobility is, in all cases, somehow limited. For
instance, in π1l code mobility depends on the state of the domain, and in lsdπ, Dπ,
and the Ambient calculus mobility might be controlled by means of a type system [8,
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1



2

9, 17, 18]. Still, it is not easy to program, for instance, the authentication of a client’s
certificate or the forwarding of incoming messages to a third-party destination.

In the present work we try to overcome this problem by building on the notion
of programmable membrane, as introduced by Boudol [3, 4, 5]. Membranes are not
explicitly present in any of the works mentioned above and, as far as we are aware,
has been explored in the M-calculus [23], in the calculus of Kells [24], in the Brane
calculi [7], and in [14].

The key idea behind the membrane model is that each domain is bipartite into a
computing body and a membrane. All exchanges between the interior and the exterior
of the domain must go through the membrane for validation. The following diagram
represents the process of sending a message between two domains, using the mem-
branes of each domain as intermediates.

The model is parametric on the computational structure of the membranes, that is,
the calculus that is used to implement the membrane protocols. Thus it is possible
to combine the membrane model with your favorite process calculus to obtain a fully
functional model for domain-based distributed computing.

In this context we present and instance of the membrane model, using the TyCO-
calculus [29] to implement the behavior of both the membranes and the contents of
domains. TyCO is a form of the π-calculus that features built-in objects that may
respond to one of several method calls, as opposed to simple inputs as in the π-calculus.
TyCO’s builtin objects are exactly what is needed to provide for the various services
provided by the membrane interface.

At the programming level, our goal is to implement membranes as modules for
which the only relevant information is the interface they provide. This approach allows
to develop libraries of membranes with distinct behaviors that may readily be used to
implement applications. Thus, ideally, to program a domain one would first choose
an appropriate membrane from the library and then implement the application specific
contents of the domain.

Outline of the paper. The remainder of this paper is structured as follows: sections 2
to 4 describe the syntax, the semantics, and a type system for MiKO. Section 5 presents
examples aiming at providing a better understanding of the capabilities of the language.
Section 6 compares work in the area. The last section concludes the paper. Detailed
proofs of the results are found in the appendices.

2 Syntax
This section introduces the syntax of MiKO.

We rely on a set of names N , and on a set of labels L, disjoint from N . Names are
used to describe domains and channels; to improve readability we use r, s, t to range
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N ::= inaction | x{m|〉P}[P ] | x !M | N | N | new x N (networks)
P ::= inaction | x !M | x?m | x?∗m | P | P | new x P | (processes)

A~V | in[P ] | out[x,M ] | mkdom[x,m|〉P , P ] in P

M ::= l[~V ] (messages)
m ::= {li = Ai}i∈I (methods)
A ::= (~x)P (abstractions)
V ::= x | A (values)

Figure 1: Syntax of MiKO

over domain names, a, b, c to range over channel names, and x, y, z to range over both
domain and channel names. Figure 1 describes the syntax of the calculus, where ~x
describes a sequence of names x1 . . . xn (n > 0), and similarly for values.

MiKO is an higher-order process calculus, manipulating values that can be either
names x (channels or sites) or processes abstracted on a sequence of names (~x)P . The
calculus is organized in two layers: networks and processes. A network consists of a
collection of domains and network messages running in parallel. For processes we use
TyCO [26, 27, 29] enriched with three new constructs: in, out, and mkdom.

A domain x{m|〉P}[Q] is a location named x, composed of a membrane m|〉P and
a contents Q. Membranes define the interaction between the domain and the outside
world, as well as between the membrane and its contents Q. The method suite m
defines the interface of the domain (with the exterior and the interior), and process
P is used to keep the state of the membrane. The contents Q of the domain runs
the domain’s core business. A network message x ! l[~V ] denotes a message, labeled
with l and carrying values ~V , targeted at domain x. The remaining network constructs
are standard: inaction denotes the terminated network, N | L describes the parallel
composition of two networks N and L; and new x N introduces a new name x in
network N .

Processes are used in the membrane and in the contents of domains. Its syntax
includes objects x?m reading messages from channel x and processing them according
to the methods in m, the invocation x ! l[~V ] of a method l with arguments ~V in an
object or a domain x, and the application A~V of an abstraction A to a sequence of
arguments ~V . An abstraction is a process P parametrized on a sequence of names ~x,
written (~x)P .

Processes also include three special-purpose constructs: in[P ] that launches a pro-
cess P in the contents part of the domain, out[x,M ] that sends a message M to do-
main x, and mkdom[x,m|〉P ,Q] in R that creates a new domain x with membrane
m|〉P and contents Q, visible in process R.

The following example, inspired in [5], illustrates the syntax of the calculus. Con-
sider a domain with a transparent membrane: a membrane that routes every message in
and out of the domain. This membrane offers two methods: enter that accepts a mes-
sage from the network, and exit that routes a message to the network. Two domains,
both equipped with transparent membranes, communicate via a very simple protocol:
(1) the source domain issues an exit command; (2) the source’s exit method selects the
enter method in the target domain; (3) the enter method in the target domain launches
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new x N | M ≡ new x (N | M) if x /∈ fn(M) (SN-SCOPE)
s{m|〉new c S}[P ] ≡ new c s{m|〉S}[P ] if c /∈ fn(s,m, P ) (SN-MEMB)
s{m|〉S}[new c P ] ≡ new c s{m|〉S}[P ] if c /∈ fn(s,m, S) (SN-CONT)

inaction ≡ new s s{m|〉inaction}[inaction] (SN-INACT)
new x new y N ≡ new y new x N (SN-EXCH)

Figure 2: Structural congruence on networks

the received message in its contents area. A possible implementation of a transparent
membrane is as follows.

Transparent =
{

enter ( source , x ) = in [ x [ ] ]
e x i t ( t a rge t , x ) = out [ t a rge t , enter [ x ] ] {− p r i v a t e −}

}

Method exit sends an abstraction to the target domain. Method enter applies the
received abstraction x to the empty vector [] (thus obtaining a process), and launches it
in the domain contents. The membrane needs no state, as reflected by inaction below.
The sending of a process P from domain r to domain s may be written as follows.

r {Transparent |〉 inact ion } [ r ! e x i t [ s , ( ) P ] ]

To keep the calculus simples, we do not distinguish between methods meant to be
used by external (network) and by internal (membrane or contents) messages. Instead,
in the examples, we mark the latter kind of methods with a private comment.

3 Operational Semantics
This section introduces the operational semantics of MiKO. We define a reduction se-
mantics on networks (Figure 4) and on processes (Figure 5) making use of simple
structural congruence relations [19] for networks (Figure 2) and for processes (Fig-
ure 3).

Bindings, free names, and substitution. The binding occurrences are the name
x in new x N , in new x P , in mkdom[x,m|〉S, P ] in Q, as well as names xi in
(x1 . . . xn)P . Free and bound identifiers are defined as usual, and we work up to α-
equivalence. The set of free names for networks, processes, and methods is denoted
by fn(·). Substitution on processes, notation P [V/y], denotes the standard capture-
avoiding substitution of name y for value V , in process P .1

Structural Congruence. The structural congruence relation for networks (respec-
tively, for processes), ≡, is the least congruence relation closed under the rules in

1Substitution is not total. For example, (c!M)[A/c] confounds instantiation of abstractions with that
of names. Sangiorgi shows that substitution is defined for a certain class of processes, that of well-sorted
processes [22]. It should be easy to show that the same property holds for well-typed processes, as defined
in Section 4.
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new c P | Q ≡ new c (P | Q) if c /∈ fn(Q) (SP-SCOPE)
inaction ≡ new c inaction (SP-INACT)

new a new b P ≡ new b new a P (SP-EXCH)

Figure 3: Structural congruence on processes

s{m|〉P}[s !M | Q] → s{m|〉(m.M | P )}[Q] (RN-SEND)

s{m|〉(out[r, l[~V ]] | S)}[P ] → r ! l[s~V ] | s{m|〉S}[P ] (RN-OUT)
s !M | s{m|〉S}[P ] → s{m|〉(S | m.M)}[P ] (RN-COM)

s{m|〉(in[P ] | S)}[Q] → s{m|〉S}[Q | P ] (RN-IN)

s{m|〉(mkdom[r, m′|〉S, P ] in R | T )}[Q] →
new r (r{m′|〉S}[P ] | s{m|〉(R | T )}[Q]) if r /∈ fn(s,m, T, Q) (RN-MKD)

S → T

s{m|〉S}[P ] → s{m|〉T}[P ]
P → Q

s{m|〉S}[P ] → s{m|〉S}[Q]
(RN-MEMB,RN-CONT)

N → N ′

N | L → N ′ | L
N → N ′

new x N → new x N ′
N ′ ≡ N N → L L ≡ L′

N ′ → L′

(RN-PAR,RN-RES,RN-CONG)

Figure 4: Reduction rules on networks

Figure 2 (respectively, in Figure 3) alpha-congruence, and the commutative monoidal
rules.

For networks, SN-SCOPE is the usual scope extrusion rule, and SN-MEMB and SN-
CONT describe scope extrusion applied to domains. For processes, the rules are stan-
dard.

Reduction. The reduction rules for networks and processes are given in Figures 4
and 5, where method invocation {li = Ai}i∈I .(lj [~V ]) is defined as the process Aj

~V ,
when j ∈ I . The below diagram, depicting migration between domains, explains the
first four axioms in Figure 4.

Rule RN-SEND delivers a message l[~V ] from the contents part of the domain to its
membrane, calling method l in the domain’s interface. The method may then create
a process out[r, l′[~U ]]. Rules RN-OUT adds the source domain to the message (thus
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c?m | c !M → m.M (RP-COM)
c?∗m | c !M → c?∗m | m.M (RP-REP)

((~x)P )~V → P [~V /~x] (RP-APP)

P → Q

P | R → Q | R
P → Q

new c P → new c Q

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

(RP-PAR,RP-RES, RP-CONG)

Figure 5: Reduction rules on processes

α ::= ch(ρ) | dom(ρ) | abs(~α) | t | µt.α

ρ ::= {li : ~αi}i∈I

Figure 6: Syntax of types

obtaining l′[s~U ]), and places the message in the network. Rule RN-COM accepts the
message from the network, selecting method l′ in the interface of the target membrane.
The method may then create a process in[P ]. Then, rule RN-IN drives process P from
the membrane to contents of the domain.

Domains can only be created from the membrane of an existing domain, via rule
RN-MKD. To create a domain, we provide a domain name r, a membrane m′|〉S, the
contents P of the domain, and the scope R of the existing domain where the new do-
main r is visible. Rules RN-MEMB, RN-CONT, RN-PAR, and RN-RES allow reduction
inside the membrane, the domain contents, the parallel composition, and name restric-
tion, respectively. Finally, RN-CONG brings structural congruence into reduction.

The rules for processes (Figure 5) are standard [29]
As an example of a reduction in MiKO, consider the domain at the end of Section 2,

in parallel with a domain with a transparent membrane and empty contents, where we
abbreviate inaction to 0.

r {Transparent |〉 0} [ r ! e x i t [ s , ( ) P ] ] | s{Transparent |〉 0} [ 0 ]

and using rules RN-SEND, RN-OUT, RN-COM, RN-IN, as described in the diagram
above, we successively have:

r {Transparent |〉 0} [ r ! e x i t [ s , ( ) P ] ] | s{Transparent |〉 0} [ 0 ] →
r {Transparent |〉out [ s , enter [ ( ) P ] ] } [ 0 ] | s{Transparent |〉 0} [ 0 ] →
r {Transparent |〉 0 ] } [ 0 ] | s ! enter [ r , ( ) P ] | s{Transparent |〉 0} [ 0 ] →
r {Transparent |〉 0 ] } [ 0 ] | s{Transparent |〉 in [P ] } [ 0 ] →
r {Transparent |〉 0 ] } [ 0 ] | s{Transparent |〉 0} [P ]

4 The Type System
This section introduces a type system for our language and presents the main results:
subject-reduction and type safety.
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Γ `s m : ρ Γ `s P | Q Γ ` s : dom(ρ)
Γ ` s{m|〉P}[Q]

(TN-DOM)

Γ `s
~V : ρ.l Γ ` s : dom(ρ)

Γ ` s ! l[~V ]
(TN-MSG)

Γ ` N Γ ` L

Γ ` N | L
Γ ` N Γ ` x ∈ {ch( ), dom( )}

Γ \ x ` new x N
Γ ` inaction

(TN-PAR,TN-RES,TN-INACT)

Figure 7: Typing networks

Types. We fix a countable set of type variables ranged over by t. The syntax of types
is given in Figure 6, where the sequence of types α1 . . . αn (n > 0) is abbreviated to
~α.

Types of the form ch(ρ), dom(ρ), and abs(~α) denote types for channels, for do-
mains, and for abstractions, respectively. Records ρ describe a collection of n (n > 0)
methods labeled li accepting arguments of types ~αi. Types are interpreted as rational
(regular infinite) trees. A type of the form µt.α (with t guarded in α) denotes the ratio-
nal tree, solution of the equation t = α. An interpretation of recursive types as infinite
trees naturally induces an equivalence relation ≈ on types, by putting α ≈ β if the
underlying trees for α and for β are equal [20].

Typing rules. Typings, denoted by Γ are partial functions of finite domains from
names to types. Notation Γ\x denotes the typing obtained from Γ by removing x from
its domain.

The type system is described in Figures 7–9, where {li : ~αi}i∈I .lj = ~αj when
j ∈ I . It includes four kinds of judgments: (a) judgment Γ ` N asserts that network
N is well typed under typing assumptions Γ; (b) judgment Γ `s P means that process
P is well typed under typing assumptions Γ, when running at side s; (c) judgment
Γ `s m : ρ asserts that the method suite m has type ρ, when located at site s; and (d)
judgment Γ `s V : α assigns type α to value V , at site s.

To type a domain s{m|〉S}[P ] using rule TN-DOM, one has to type the membrane
m|〉S and the contents P , both in s. Domain s must possess the type of its interface m.
To type a message using rule TN-MSG, one must type the contents ~V of the message,
and make sure that the type for s is a domain-type whose l-component is the type of
~V . To type a name restriction new x N using rule TN-RES, we type network N , and
check whether the type for name x is a that of a channel or of a site.

When typing processes, we record (under the turnstile) the domain that hosts the
process. This piece of information is relevant when typing the out operation, since
we stamp messages with the name of the sending domain. Rule TP-OBJ expresses the
fact that c must be a channel that has a type compatible with method suite m. Rule
TP-MSG is similar to TN-MSG, but here x can be a channel or a domain, since we use
the same constructor to send messages to membranes or interact with objects. To type
the in constructor in domain s, we type P in s using rule TP-IN. Rule TP-OUT types the
sequence of values s~V in the target domain r, since abstractions run in the destination
domain. Notice that one appends the origin domain s to the list of parameters, as
prescribed by the operational semantics (rule RN-OUT in Figure 4). To type domains
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Γ `s m : ρ Γ ` c : ch(ρ)
Γ `s c?m

Γ `s c?m
Γ `s c?∗m

(TP-OBJ,TP-REP)

Γ `s
~V : ρ.l Γ ` x ∈ {dom(ρ), ch(ρ)}

Γ `s x ! l[~V ]
(TP-MSG)

Γ `s P

Γ `s in[P ]
Γ `r s~V : ρ.l Γ ` r : dom(ρ)

Γ `s out[r, l[~V ]]
(TP-IN,TP-OUT)

Γ ` r{m|〉S}[P ] Γ `s R

Γ \ r `s mkdom[r, m|〉S, P ] in R
(TP-MKD)

Γ `s A : abs(~α) Γ `s
~V : ~α

Γ `s A~V
(TP-APP)

Γ `s P Γ `s Q

Γ `s P | Q
Γ `s P Γ ` c : ch( )

Γ \ c `s new c P
Γ `s inaction

(TP-PAR,TP-RES,TP-INACT)

Figure 8: Typing processes

∀i ∈ I, Γ `s Ai : abs(~αi)
Γ `s {li = Ai}i∈I : {li : ~αi}i∈I

(TM-METH)

Γ(x) = α α ≈ β

Γ ` x : β

Γ `s P Γ ` ~x : ~α

Γ \ ~x `s (~x)P : abs(~α)
Γ `s V1 : α1 . . . Γ `s Vn : αn

Γ `s V1 . . . Vn : ~α
(TV-ID,TV-ABS,TV-SEQ)

Figure 9: Typing method suites and values

creation, rule TP-MKD checks that both the created domain r{m|〉S}[P ] and its scope
R are well-typed. Rule TP-APP checks that the arguments ~V are as expected by the
abstraction A. Finally, rule TP-RES is similar to TN-RES, except that only channel
restriction is possible in processes.

Rule TV-ID incorporates type equivalence in the type system. The remaining rules
should be easy to understand.

Properties. Subject-Reduction asserts the invariance of typings under reduction.

Theorem 4.1 (Subject-Reduction) If Γ ` N and N → L, then Γ ` L.

Type safety asserts that typable programs do not encounter immediate errors. To-
gether with Subject-Reduction we obtain Milner’s slogan “Well-typed programs do not
go wrong”.

Two things can go wrong: a) the invocation of a method non-existent in the target
object or domain interface; b) the application of a wrong number of arguments to an
abstraction. In the former case {li = Ai}i∈I .(lj [~V ]) is not defined (that is, j /∈ I);
in the latter P [V1 . . . Vk/x1 . . . xn] is not defined (that is, n 6= k or P [Vi/xi] is not
defined for some i). We say that a network is faulty if



9

1. N ≡ new ~x (s !M | s{m|〉S}[P ] | L), and m.M is not defined; or

2. N ≡ new ~x (s{m|〉P}[s !M | Q] | L), and m.M is not defined; or

3. N ≡ new ~x (s{m|〉(c?m | c !M | P )}[Q] | L), and m.M is not defined, and
similarly for c?∗m; or

4. N ≡ new ~x (s{m|〉P}[c?m | c !M | Q] | L), and m.M is not defined, and
similarly for c?∗m; or

5. N ≡ new ~x (s{m|〉(((~y)P )~V | R)}[Q] | L), and P [~V /~y] is not defined; or

6. N ≡ new ~x (s{m|〉P}[((~y)P )~V | Q] | L), and P [~V /~y] is not defined.

Theorem 4.2 (Type-Safety) If Γ ` N , then N is not faulty.

5 Examples
In this section we present several examples to illustrate the use of membranes, as well
as the programming style we propose.

5.1 Polarised membrane
Our first example illustrates a membrane that filters messages depending on its internal
state. A polarised membrane [1, 5] controls the passage of incoming and outgoing
messages using a private channel named membraneStatus. If it is active (active =
true), then messages flow freely from the network into the contents and vice-versa,
as if the membrane were transparent (see section 2). Otherwise (active = false) all
messages are discarded by the membrane.

Assuming the presence of boolean values and conditional processes, an implemen-
tation of the polarised membrane might be:

{
enter ( o r i g i n , process ) =

membraneStatus?{
value ( a c t i v e ) =

membraneStatus ! value [ a c t i v e ] |
i f a c t i v e then in [ process ]

}
e x i t ( targetDomain , process ) =

membraneStatus?{
value ( a c t i v e ) =

membraneStatus ! value [ a c t i v e ] |
i f a c t i v e then out [ targetDomain , enter [ process ] ]

}
ping ( o r i g i n , rep lyTo ) =

membraneStatus?{
value ( a c t i v e ) =

membraneStatus ! value [ a c t i v e ] |
out [ o r i g i n , enter [ rep lyTo ! [ a c t i v e ] ] ]

}
deac t i va te ( ) = {− p r i v a t e −}

membraneStatus?{
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value ( a c t i v e ) =
membraneStatus ! value [ fa lse ]

}
a c t i v a t e ( ) = {− p r i v a t e −}

membraneStatus?{
value ( a c t i v e ) =

membraneStatus ! value [ true ]
}

askStatus ( targetDomain , replyTo ) = {− p r i v a t e −}
out [ targetDomain , ping [ rep lyTo ] ]

}
|〉 membraneStatus ! value [ true ]

If we name the above membrane as polarised, a domain s, initially active, running
process P may be written as

new membraneStatus s{ po la r i sed } [P ]

The domain state is maintained by a message in transit (initially with value true)
on channel membraneStatus. Methods enter and exit check the state of the domain
before forwarding the messages to and from the network. Method deactivate sets the
status of the membrane to false.

A domain becomes unavailable when method deactivate gets selected. Method
ping informs external clients of the current state of the domain, and method askStatus
checks whether a target domain that implements the “ping” protocol is active.

5.2 Quality of Service membrane
Our second example illustrates how to program a membrane that guarantees a certain
quality of service (QoS) and enforces a protocol between a server and its clients. To
assure the required QoS, the server allows only a fixed number of simultaneous re-
quests. Towards this end, it keeps track of the number of concurrent active clients. The
state is recorded in a private channel sessionCounter that keeps track of the number of
available sessions. The protocol forces a client first to connect to the server, then to
repeatedly issue requests (and receive results back), and finally to disconnect from the
server.

The server. Channel handler is the link between the membrane and the contents of
the server.

The membrane offers four methods: connect, disconnect, request, and exit .
Method connect checks if there are available sessions. If so, it creates a private channel
sessionID, sends it to the client (via an out operation), interacts with the server’s con-
tents (using the in operation) to create an object to handle the session, and decrements
the session counter. Otherwise, it informs the client that there are too many sessions
opened. Method disconnect closes the session by selecting the disconnect operation on
the contents, and incrementing the session counter. Methods exit and request are as in
the transparent membrane (Section 2), only that we have renamed enter to request for
reasons that will become apparent below.

The server’s membrane, QoSMembrane, may then be programmed as follows.

{
connect ( c l i e n t , rep lyTo ) =

sessionCounter ?{
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value ( ava i lab leSess ions ) =
i f ava i lab leSess ions > 0
then

new sessionID
out [ c l i e n t , enter [ ( ) replyTo ! connected [ sessionID ] ] ] |
in [ handler ! create [ sessionID , c l i e n t ] ]
sessionCounter ! value [ ava i lab leSess ions − 1]

else
out [ c l i e n t , enter [ ( ) replyTo ! tooManySessions [ ] ] ] |
sessionCounter ! value [ ava i lab leSess ions ]

}
disconnect ( c l i e n t , sessionID ) =

in [ sessionID ! disconnect [ ] ] |
sessionCounter ?{

value ( ava i lab leSess ions ) =
sessionCounter ! value [ ava i lab leSess ions + 1]

}
request ( source , x ) = in [ x [ ] ]
e x i t ( t a rge t , x ) = out [ t a rge t , enter [ x ] ] {− p r i v a t e −}

}|〉
sessionCounter ! [ 5 ]

On the contents side, the server must provide an implementation for the shared
channel handler that handles the various sessions. Each session is associated with a
different sessionID. Channel sessionStatus records the availability of the session: a
session is available until the client issues a disconnect operation. Results to client re-
quests are first returned to the membrane, which then relays them to the corresponding
client domain. The content of a generic server, QoSContents, may be implemented as
follows.

handler ?∗ {
create ( sessionID , c l i e n t ) =

new sess ionStatus
sess ionStatus ! value [ true ] |
sessionID ?∗ {
{− s p e c i f i c server methods −}
disconnect ( ) =

sess ionStatus ?{
value ( a l i v e ) =

sess ionStatus ! value [ fa lse ]
}

}
}

Then, a domain, QoSDomain, running a generic QoS server is the following do-
main.

new sessionCounter
new handler
QoSDomain{QoSMembrane} [ QoSContents ]

The client. The client uses a stateless membrane, and provides a simple method suit,
intended to simply follow the protocol with the server. Notice that we can not use the
transparent membrane (Section 2) in this case, since the client calls specific methods
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on the server (connect, disconnect, and request), rather than the fixed enter method
provided by the transparent membrane.2

The clientMembrane is as follows,

{
enter ( server , process ) =

in [ process [ ] ]
connect ( server , rep lyTo ) = {− p r i v a t e −}

out [ server , connect [ rep lyTo ] ]
disconnect ( server , sessionID ) = {− p r i v a t e −}

out [ server , disconnect [ sessionID ] ]
request ( server , computat ion ) = {− p r i v a t e −}

out [ server , request [ computat ion ] ]
}
|〉 inact ion

and, given process clientContents, a client domain becomes:

c l i e n t {clientMembrane } [ c l i en tCon ten t s ]

A particular service. As an example of a service the server may implement we use a
mathematical server [28] to illustrate the QoS client-server interaction presented above.

For the server side, a math server accepts computation request from clients, com-
pute the request, and reply the results back. We provide the following two methods
of the sessionID object, to be added to the part specific server methods in the above
QoSContents code.

add ( n , m, replyTo ) =
sess ionStatus ?{

value ( a l i v e ) =
sess ionStatus ! value [ a l i v e ] |
i f a l i v e then
QoSDomain ! e x i t [ c l i e n t , ( ) replyTo ! value [ n+m] ]

}
neg ( n , rep lyTo ) =

sess ionStatus ?{
value ( a l i v e ) =

sess ionStatus ! value [ a l i v e ] |
i f a l i v e then
QoSDomain ! e x i t [ c l i e n t , ( ) replyTo ! value [0−n ] ]

}

Here is the example of a client that (1) establishes a session; (2) asks for the addition
two numbers; (3) asks for the symmetric of the result; and finally (4) closes the session.

new replyTo
c l i e n t ! connect [ QoSDomain , replyTo ] |
replyTo ?{

connected ( sessionID ) =
new r e s u l t
c l i e n t ! request [ QoSDomain , ( ) sessionID ! add [ 3 ,4 , r e s u l t ] ] |
r e s u l t ?{

value ( x ) =

2Since messages are not values, we cannot write a generic method
exit (server, method) = out[server, method].
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c l i e n t ! request [ QoSDomain , ( ) sessionID ! neg [ x , r e s u l t ] ] |
r e s u l t ?{

value ( x ) =
i o ! p r i n t i [ x ] |
c l i e n t ! disconnect [ QoSDomain , sessionID ]

}
}

tooManySessions ( ) =
i o ! p r i n t s [ ” could not connect to the server ” ]

}

5.3 Members manager
Our last example presents a flavor of programmable membranes that may be reused
in several scenarios. The members manager provides a controlled access to a domain.
Unlike the math server that allows access to any client, we want to give permission
to registered users only. So, in order to use the services offered by the domain, the
client must first register (thus becoming a member) and then authenticate itself with
a password. The membrane manages a set of registered users and ensures that only
logged users can issue requests to the server. The members membrane may be used in
some interesting cases, such as:

• in a chat server: only register users can enter the chat services;

• in a “free” email provider: users first agree on an email account, setting up a
user name and a password, and then access their emails privately;

• in an e-seller provider, such as a virtual library or a reserved area in a financial
server;

• or even, in a refined math server: instead of issuing a connect operation, users
first register themselves and then login at the server.

Our goal is to implement a members membrane in a modular way so that imple-
menting any of the above examples would simply imply writing the service-specific
contents, reusing the membrane.

The protocol between a client and the members membrane is as follows: the first
time the client accesses the server it must register himself. For that purpose, it must
provide a tentative login ID. If the registration goes well (the login ID is not in use)
it gets a password back, otherwise it is notified of the registration failure. Registered
users are allowed to engage in a session with the server if the user/password pair they
provide matches the information in the list of allowed users. The session proceeds with
logged users sending requests to the server and receiving the replies. When leaving the
server the client must issue a logout operation to close its session.

The membrane stores the information relative to registered members in a map and
the users that are currently logged in a set. In the example below this information
is recorded in the membrane state as two private channels named membersMap and
loginSet. The membrane offers the following services: newMember to register new
members; login to authenticate users and start a session; logout to terminate a session;
request to accept demands from clients; and exit used by the server to deliver answers
for client requests.

The outline of the membersMembrane is as follows. We present and comment each
method separately, assuming an implementation for maps and for sets.
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{
newMember ( c l i e n t , loginName , replyTo ) = . . .
l o g i n ( c l i e n t , loginName , password , replyTo ) = . . .
l ogou t ( c l i e n t , loginName ) = . . .
request ( c l i e n t , loginName , job , replyTo ) = . . .
e x i t ( c l i e n t , r e s u l t ) = . . . {− p r i v a t e −}

}
|〉

memberMap?∗ { . . . } |
l og inSe t ?∗ { . . . } |
. . .

To register a new member we use the following code. 3

newMember ( c l i e n t , loginName , replyTo ) =
i f membersMap ! containsKey [ loginName ]
then

out [ c l i e n t , enter [ rep lyTo ! loginNameExists [ ] ] ]
else

new password
membersMap ! put [ loginName , password ] |
out [ c l i e n t , enter [ rep lyTo ! r e g i s t e r e d [ password ] ] ]

The implementation is straightforward. We check whether there is a member al-
ready registered with the given login name. If not, we generate a password, add the
new member to the map, and inform the client of its password. Otherwise, we inform
the client of the failed attempt.

Next is a possible implementation of the login operation:

l o g i n ( c l i e n t , loginName , givenPassword , replyTo ) =
i f membersMap ! containsKey [ loginName ] and

membersMap ! get [ loginName ] = givenPassword
then

out [ c l i e n t , enter [ rep lyTo ! connected [ ] ] |
l og inSe t ! add [ loginName ]

else
out [ c l i e n t , enter [ rep lyTo ! inval idUserPassword [ ] ] ]

We check whether the client is registered and the password matches. If is everything
goes well, we notify the client that the login operation was successful, otherwise we
report an error.

The logout operation simply updates the login set. The implementation is as fol-
lows:

l ogou t ( c l i e n t , loginName ) =
log inSe t ! remove [ loginName ]

There are two generic methods for accepting and replying to requests: the request
and the exit methods. The underlying communication protocol between the client and
the server is established via these two methods. The interaction with the contents part
of the server is performed via shared channel handler. For instance, a chat server may
implement the ICQ protocol or a email server the IMAP protocol, encapsulating the

3TyCO’s idiom
if membersMap!containsKey[loginName] then ...
is short for [25]
new r membersMap!containsKey[loginName, r] | r ? {value (x) = if x then ...
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messages using these two methods and providing an implementation for the handler
channel. Notice that the membrane checks that the client sending the request is logged
in. All the remaining actions are assigned to the contents of the domain. The imple-
mentation is simple:

request ( c l i e n t , loginName , job , replyTo ) =
i f l og inSe t ! conta ins [ loginName ]
then

in [ handler ! request [ c l i e n t , loginName , job , replyTo ] ]
else

out [ c l i e n t , enter [ rep lyTo ! notLoggedIn [ loginName ] ] ]

e x i t ( c l i e n t , r e s u l t ) =
out [ c l i e n t , enter [ r e s u l t ] ]

A domain named oscar running an ICQ process (not shown) that implements the
AIM/ICQ protocol may be set up as:

new memberMap
new l og inSe t
new handler
oscar [ membersMembrane ]{ ICQ}

6 Related Work
The introduction mentions a few process-calculi based proposals to describe mobile
systems: Dπ [15], π1l [1], lsdπ [21], the Seal calculus [11], Nomadic Pict [30], vari-
ants of the Ambient calculus [10], notably boxed ambients [6] and safe ambients [16],
as well as, KLAIM [12]. None of these works, however, encompasses an explicit no-
tion of computational domain. This section concentrates on models of domains with
programmable membranes.

The Mikado domain model, as presented by Boudol [3, 4, 5], constitutes the starting
point of this work. In fact, MiKO is an instance of the the Mikado’s generic domain
model.

The M-calculus [23], like MiKO, bases its notion of domain on locations which
are composed of a controller and a content process. Unlike MiKO, locations may
have sub-locations and thus the network topology is a tree. MiKO networks are flat
and communication is point-to-point. In the M-calculus, interaction consists of either
messages directed to resources within a remote domain or migration of processes or
locations. MiKO provides a more service-oriented view of interaction since only mes-
sages directed to methods in the membranes (albeit carrying code) of remote domains
are allowed. Moreover, the interface presented to the network by the membrane of a
domain is the only data path to the process in the contents of that domain. In fact, this
is exactly the same interface that must be used by the contents itself to interact with
the network outside. We feel that this symmetric view of membranes provides a clear
and modular programming paradigm. In the M-calculus, whenever a message to a re-
source within a domain gets cleared by predefined filters for incoming messages, it can
move freely between the controller and the contents. This distinction in the treatment
of outward and inward interaction is, in our view, unnatural as the symmetry of the
membrane or controller should be invariant. Migration the M-calculus is based on a
“passivation” construct that freezes a process or a domain and sends it to the destination
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domain. This is a very powerful feature of the calculus that allows higher order entities
to be sent over the network. In MiKO we do not require such a high-level feature as the
calculus has abstractions as first-class values and especially because we do not require
to migrate domains (our networks are flat).

The brane calculi [7] are used to describe interaction between cells and molecules.
The communication between cells is performed through free-floating molecules that
bind to the exterior or the interior of the membranes in order to cross them. If we
imagine that cells possess specific receptors that bind molecules, then these receptors
are the interface of the cell and therefore, the receptors are akin to the labels of our
methods. MiKO and the brane calculi have different aims, MiKO being better suited to
describe high-level mobile computing.

Gorla, Hennessy, and Sassone [14] present an experiment with membranes that
type check the incoming code to certify that the actions it may perform are granted
by the target domain. In order to keep the impact of type checking low, they explore
a trusting relation between sites and check only the code that arrives from untrusted
domains. A domain in MiKO is not able to check the code it receives; the decision
of allowing code to pass or not through the membrane is defined only in terms of the
source domain, the selected method, and the state of the domain.

7 Conclusion
In this report we presented the MiKO process calculus and associated programming
language. MiKO is based on a model for distributed computing where computation
happens in domains that are shielded from the remainder of the network by a mem-
brane. The membrane implements whatever protocols are required to forward, discard
or filter messages to and from the domain contents.

The original proposal for the domain model [5] makes no assumption on the com-
putational structure (membrane and contents) of domains. MiKO uses the TyCO pro-
cess calculus [29] to implement both the membrane and the contents of domains. We
defined an operational semantics and a type system for the calculus that ensures that
well-typed MiKO programs do engage in runtime errors.

The programming language derived from the base calculus is straightforward. Pro-
grams are written a in modular way by implementing the membrane and contents as
separate components. This allows the setup of general purpose membranes that imple-
ment protocols used by the service specific contents of a domain. These components
can be effectively reused by applications requiring the same kind of membrane.

Currently the implementation of a compiler and run-time system for MiKO is un-
derway, based on Mikado’s software framework for rapid prototyping of run-time sys-
tems for mobile calculi [2].
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A Proof of Subject Reduction
This section presents the proof for Theorem 4.1. The proof uses two main auxiliary
results, namely, Substitution (Lemma A.1) and Structural Congruence (Lemma A.4).

Lemma A.1 (Substitution)

1. If Γ, x : α `r V : β and Γ `r U : α, then Γ `r[U/x] V [U/x] : β.

2. Let ρ = {l1 : ~β1 . . . ln : ~βn}. If Γ, x : α `r m : ρ and Γ ` U : α, then Γ `r[U/x]

m[U/x] : ρ.

3. If Γ, x : α `r P and Γ ` U : α, then Γ `r[U/x] P [U/x].

4. If Γ, x : α ` N and Γ ` U : α, then Γ ` N [U/x].

Proof. The proof of the first three results is by mutual induction on the typing
derivation.

Substitution on Values. We proceed by case analysis on the structure of V , tracing
the last typing rule applied.

• Case V is y
By hypothesis we derive

Γ(y) = γ γ ≈ β

Γ, x : α ` y : β

and we have two cases to consider:

– x = y
Since Γ ` U : α with α = γ and γ ≈ β then we conclude Γ ` U : β.

– x 6= y
The value is not affected by the substitution, then by rule TV-ID Γ ` y : β
holds.

• Case V is (~y)P
By hypothesis

Γ, x : α `r P Γ, x : α ` ~y : ~β

(Γ, x : α) \ {~y} `r (~y)P : abs(~β)

Since Γ ` U : α, we apply the clause for Processes to Γ, x : α `r P and obtain
Γ `r[U/x] P [U/x]. The names in ~y are bound, so they are not affected by the
substitution, then by rule TV-ABS and by definition of substitution, we get Γ \
{~y} `r[U/x] ((~y)P )[U/x] : abs(~β) which concludes the case.
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Substitution on Methods. By hypothesis, the following derivation tree holds.

Γ, x : α `r P1 Γ, x : α ` ~y1 : ~β1

(Γ, x : α) \ {~y1} `r (~y1)P1 : abs( ~β1) . . .

Γ, x : α `r Pn Γ, x : α ` ~yn : ~βn

(Γ, x : α) \ { ~yn} `r ( ~yn)Pn : abs( ~βn)
(Γ, x : α) \ ({~y1} ∪ . . . ∪ { ~yn}) `r m : ρ

By hypothesis Γ ` U : α. We apply the clause for Processes to Γ, x : α `r

P1, . . . ,Γ, x : α `r Pn and obtain Γ `r[U/x] P1[U/x], . . . ,Γ `r[U/x] Pn[U/x]. Let
δ1 = abs( ~β1), . . . , δn = abs( ~βn). Since the names in ~y1, . . . , ~yn are bound, they are
not affected by substitution so Γ ` ~y1 : ~β1, . . . ,Γ ` ~yn : ~βn hold. By TM-METH rule,
the following derivation tree holds

Γ `r[U/x] P1[U/x] Γ ` ~y1 : ~β1

Γ \ {~y1} `r[U/x] (~y1)P1[U/x] : δ1 . . .

Γ `r[U/x] Pn[U/x] Γ ` ~yn : ~βn

Γ \ { ~yn} `r[U/x] ( ~yn)Pn[U/x] : δn

Γ \ ({~y1} ∪ . . . ∪ { ~yn}) `r[U/x] {l1 = (~y1)P1[U/x] . . . ln = ( ~yn)Pn[U/x]} : ρ

where {l1 = (~y1)P1[U/x] . . . ln = ( ~yn)Pn[U/x]} is by definition of substitution
{l1 = (~y1)P1 . . . ln = ( ~yn)Pn}[U/x].

Substitution on Processes. We proceed by case analysis on the structure of P , trac-
ing the last typing rule applied.

• Case P is inaction
We derive by hypothesis, Γ, x : α `r inaction. Since Γ ` U : α, by TP-INACT

rule we conclude Γ `r[U/x] inaction.

• Case P is y ! l[~V ]
By hypothesis, the following derivation holds

Γ, x : α `r
~V : ρ.l Γ, x : α ` y ∈ {dom(ρ), ch(ρ)}

Γ, x : α `r y ! l[~V ]

Let ~β = ρ.l, then the derivation of Γ, x : α `r
~V : ~β is

Γ, x : α `r V1 : β1 . . . Γ, x : α `r Vn : βn

Γ, x : α `r
~V : ~β

We have two sub-cases:

– x = y
By hypothesis Γ ` U : α. We apply the clause for Values to Γ, x : α `r

V1 : β1, . . ., Γ, x : α `r Vn : βn and conclude Γ `r[U/x]
~V [U/x] : ~β. Since

x = y, we obtain Γ ` U ∈ {dom(ρ), ch(ρ)}. By rule TP-MSG we con-
clude the sub-case.

Γ `r[U/x]
~V [U/x] : ρ.l Γ ` U ∈ {dom(ρ), ch(ρ)}

Γ `r[U/x] U ! l[~V [U/x]]

that can be written as Γ `r[U/x] U ! l[~V ][U/x], by definition of substitution.
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– x 6= y

By hypothesis Γ ` U : α. Then, we apply the clause for Values to
Γ, x : α `r V1 : β1,. . ., Γ, x : α `r Vn : βn, and get Γ `r[U/x]

~V [U/x] : ~β.
Since x 6= y, Γ ` y ∈ {dom(ρ), ch(ρ)} holds and we conclude the sub-
case by rule TP-MSG.

Γ `r[U/x]
~V [U/x] : ρ.l Γ ` y ∈ {dom(ρ), ch(ρ)}

Γ `r[U/x] y ! l[~V [U/x]]

which is Γ `r[U/x] y ! l[~V ][U/x], by definition of substitution.

• Case P is y?m or P is y?∗m
These two cases hold in a very similar way. We illustrate the proof for the first
case as an example. By hypothesis, Γ, x : α `r y?m, so the following type
derivation holds

Γ, x : α `r m : ρ Γ, x : α ` y : ch(ρ)
Γ, x : α `r y?m

We need to study two sub-cases:

– Case x = y
Since Γ ` U : α, we apply the clause for Methods to Γ, x : α `r m : ρ
and get Γ `r[U/x] m[U/x] : ρ. By hypothesis, Γ ` y : ch(ρ) so we get
Γ ` U : ch(ρ) and by rule TP-OBJ the following type derivation holds.

Γ `r[U/x] m[U/x] : ρ Γ ` U : ch(ρ)

Γ `r[U/x] U?m[U/x]

that, by definition of substitution is written as Γ `r[U/x] (U?m)[U/x].

– x 6= y

By hypothesis, Γ ` U : α, and applying the clause for Methods to
Γ, x : α `r m : ρ, we get Γ `r m[U/x] : ρ. Since x 6= y, y is not affected
by substitution and by TP-OBJ rule the following derivation tree concludes
the sub-case.

Γ `r[U/x] m[U/x] : ρ Γ ` y : ch(ρ)

Γ `r[U/x] y?m[U/x]

that is written as Γ `r[U/x] (y?m)[U/x], by definition of substitution.

• Case P is out[y, l[~V ]]
By hypothesis,

Γ, x : α `y (r~V ) : ρ.l Γ, x : α ` y : dom(ρ)

Γ, x : α `r out[y, l[~V ]]

where β = ρ.l and the derivation of Γ, x : α `y (r~V ) : ~β is
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Γ, x : α `y r : β0 Γ, x : α `y V1 : β1 . . . Γ, x : α `y Vn : βn

Γ, x : α `y (r~V ) : ~β

We have four sub-cases to handle:

– Case x = y and x = r

Since by hypothesis, Γ ` U : α, we apply the clause for Values to
Γ, x : α `y r : β0, Γ, x : α `y V1 : β1, . . ., Γ, x : α `y Vn : βn and get
Γ `U U : β0, Γ `U V1[U/x] : β1, . . ., Γ `U Vn[U/x] : βn. By hypothesis,
Γ ` U : α and Γ, x : α ` y : dom(ρ), so Γ ` U : dom(ρ) holds. By rule
TP-OUT we conclude the case

Γ `U U ~V [U/x] : ~β Γ ` U : dom(ρ)

Γ `U out[U, l[~V [U/x]]]

where

Γ `U U : β0 Γ `U V1[U/x] : β1 . . . Γ `U Vn[U/x] : βn

Γ `U U ~V [U/x] : ~β

that by definition of substitution is Γ `U out[U, l[~V ]][U/x].

– Case x 6= y and x = r
Since by hypothesis, we have Γ ` U : α, applying the clause for Val-
ues to Γ, x : α `y r, Γ, x : α `y V1 : β1, . . . ,Γ, x : α `y Vn : βn we
get Γ `y U : β0, Γ `y V1[U/x] : β1, . . ., Γ `y Vn[U/x] : βn. So, we
have Γ `y (U ~V )[U/x] : ~β. Name y is not affected by the substitution so
Γ ` y : dom(ρ) holds. By rule TP-OUT we obtain the following derivation
tree

Γ `y U ~V [U/x] : ~β Γ ` y : dom(ρ)

Γ `U out[y, l[~V [U/x]]]

and the proof for Γ `y U ~V [U/x] : ~β is

Γ `y U : β0 Γ `y V1[U/x] : β1 . . . Γ `y Vn[U/x] : βn

Γ `y U ~V [U/x] : ~β

that is written as Γ `U out[y, l[~V ]][U/x], by definition of substitution.

– Case x = y and x 6= r
By hypothesis Γ ` U : α and we apply the clause for Values to Γ, x : α `y

r : β0,Γ, x : α `y V1 : β1, . . ., Γ, x : α `y Vn : βn and obtain Γ `U

r : β0,Γ `U V1[U/x] : β1, . . ., Γ `U Vn[U/x] : βn. Since Γ ` U : α
and Γ, x : α ` y : dom(ρ), then Γ ` U : dom(ρ). By rule TP-OUT the
following derivation holds

Γ `U r~V [U/x] : ~β Γ ` U : dom(ρ)

Γ `r out[U, l[~V [U/x]]]
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where

Γ `U r : β0 Γ `U V1[U/x] : β1 . . . Γ `U Vn[U/x] : βn

Γ `U r~V [U/x] : ~β

that is written as Γ `r out[U, l[~V ]][U/x], by definition of substitution.
– Case x 6= y and x 6= r

By hypothesis and the clause for Values the following derivation tree con-
cludes the case

Γ `y r~V [U/x] : ~β Γ ` y : dom(ρ)

Γ `r out[y, l[~V [U/x]]]

where

Γ `y r : β0 Γ `y V1[U/x] : β1 . . . Γ `y Vn[U/x] : βn

Γ `y r~V [U/x] : ~β

that is written as Γ `r out[y, l[~V ]][U/x], by definition of substitution.

• Case P is ((~y)Q)~V
By hypothesis,

Γ, x : α `r Q Γ, x : α ` ~y : ~β

(Γ, x : α) \ {~y} `r (~y)Q : abs(~β)

(Γ, x : α) \ {~y} `r V1 : β1

...
(Γ, x : α) \ {~y} `r Vn : βn

(Γ, x : α) \ {~y} `r
~V : ~β

(Γ, x : α) \ {~y} `r ((~y)Q)~V

Names in ~y are bound, so they are not affected by the substitution and Γ ` ~y : ~β
holds. Since Γ ` U : α, we apply induction hypothesis to Γ, x : α `r Q, clause
for Values to (Γ, x : α) \ {~y} `r V1 : β1, . . .,(Γ, x : α) \ {~y} `r Vn : βn, and by
rule TP-APP we derive the following tree

Γ `r[U/x] Q[U/x] Γ ` ~y : ~β

Γ \ {~y} `r[U/x] (~y)Q[U/x] : abs(~β)

Γ \ {~y} `r[U/x] V1[U/x] : β1

...
Γ \ {~y} `r[U/x] Vn[U/x] : βn

Γ \ {~y} `r[U/x]
~V [U/x] : ~β

Γ \ {~y} `r[U/x] ((~y)Q[U/x])~V [U/x]

that is , by definition of substitution, the same as Γ `r[U/x] ((~y)Q~V )[U/x].

• Case P is P1 | P2, P is new y Q, or P is in[Q].
These cases hold trivially. We illustrate the proof for the first case as an example.
By hypothesis, the following type derivation holds

Γ, x : α `r P1 Γ, x : α `r P2

Γ, x : α `r P1 | P2
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by induction hypothesis applied to Γ, x : α `r P1 and Γ, x : α `r P2, and by
TP-PAR we conclude

Γ `r[U/x] P1[U/x] Γ `r[U/x] P2[U/x]

Γ `r[U/x] P1[U/x] | P2[U/x]

that is, by definition of substitution, Γ `r[U/x] (P1 | P2)[U/x].

• Case Γ, x : α `r mkdom[y, m|〉S, P ] in R
The following derivation tree holds

Γ, x : α `y m : ρ
Γ, x : α `y S | P

Γ, x : α ` y : dom(ρ)
Γ, x : α ` y{m|〉S}[P ] Γ, x : α `r R

(Γ, x : α) \ {y} `r mkdom[y, m|〉S, P ] in R

where
Γ, x : α `y S Γ, x : α `y P

Γ, x : α `y S | P

We apply induction hypothesis to Γ, x : α `y P , to Γ, x : α `y S, and to
Γ, x : α `r R, and obtain Γ `y P [U/x], Γ `y S[U/x], and Γ `r[U/x] R[U/x],
respectively. By the clause for Methods applied to Γ, x : α `y m : ρ we get
Γ `y m[U/x] : ρ and since y is bound, Γ ` y : dom(ρ) holds. Therefore, by
TP-MKD rule we conclude the following derivation tree

Γ `y m[U/x] : ρ
Γ `y S[U/x] | P [U/x]

Γ ` y : dom(ρ)
Γ ` y{m[U/x]|〉S[U/x]}[P [U/x]] Γ `r[U/x] R[U/x]

Γ \ {y} `r[U/x] mkdom[y, m[U/x]|〉S[U/x], P [U/x]] in R[U/x]

where
Γ `y S[U/x] Γ `y P [U/x]

Γ `y S[U/x] | P [U/x]

that is Γ `r[U/x] (mkdom[y, m|〉S, P ] in R)[U/x], by definition of substitution.

Substitution on Networks. The proof for the second case is also obtained by straight-
forward induction on the typing of Γ ` N , and analyzing the structure of N . We
present only the case that is different from the first clause.

• Case N is y{m|〉S}[P ]
By hypothesis

Γ, x : α `y m : ρ

Γ, x : α `y S
Γ, x : α `y P

Γ, x : α `y S | P Γ, x : α ` y : dom(ρ)
Γ, x : α ` y{m|〉S}[P ]

We have two sub-cases:
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– x = y
From Γ, x : α `x m : ρ and Γ ` U : α we apply the clause for Methods and
obtain Γ `U m[U/x] : ρ. By induction hypothesis applied to Γ, x : α `y P
and Γ, x : α `y S, we get, respectively, Γ `U P [U/x] and Γ `U S[U/x].
From Γ ` y : dom(ρ) and by hypothesis, we get Γ ` U : dom(ρ). By
TN-DOM rule the following derivation tree holds

Γ `U m[U/x] : ρ

Γ `U S[U/x]
Γ `U P [U/x]

Γ `U S[U/x] | P [U/x] Γ ` U : dom(ρ)
Γ ` U{m[U/x]|〉S[t/s]}[P [t/s]]

that is Γ ` (U{m|〉S}[P ])[U/x], by definition of substitution.

– x 6= y
Since Γ, x : α `y m : ρ and Γ ` U : α, applying the clause for Methods
we get Γ `y m[U/x] : ρ. By induction hypothesis applied to Γ, x : α `y P
and Γ, x : α `y S, we get, respectively, Γ `y P [U/x] and Γ `y S[U/x].
Since y is not affected by the substitution, Γ ` y : dom(ρ) holds and the
following derivation tree concludes the case by TN-DOM rule.

Γ `y m[t/s] : ρ

Γ `y S[U/x]
Γ `y P [U/x]

Γ `y S[U/x] | P [U/x] Γ ` y : dom(ρ)
Γ ` y{m[U/x]|〉S[U/x]}[P [U/x]]

that may be rewritten as Γ ` (y{m|〉S}[P ])[U/x], by definition of substi-
tution.

�

Lemma A.2 (Strengthening)

1. If x /∈ fn(V ) ∪ {s} and Γ, x : α `s V : β, then Γ `s V : β.

2. If Γ, x : α `s m : ρ and x /∈ fn(m) ∪ {s}, then Γ `s m : ρ.

3. If Γ, x : α `s P and x /∈ fn(P ) ∪ {s}, then Γ `s P .

4. If Γ, x : α ` N and x /∈ fn(N), then Γ ` N .

Proof. The proof of the first three results is by mutual induction on the typing
derivation.

Strengthening for Values.

• Case V is y
Since x 6= y, this case holds by hypothesis and we conclude Γ ` y : β.
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• Case V is (~y)P
Γ, x : α `s P Γ, x : α ` ~y : ~β

(Γ, x : α) \ {~y} `s (~y)P : abs(~β)

Since x /∈ fn(P ) ∪ {s}, by the clause for Processes applied to Γ, x : α `s P , we
get Γ `s P . Names in ~y are bound so Γ ` ~y : ~β holds and by rule TV-ABS we
conclude

Γ `s P Γ ` ~y : ~β

Γ \ {~y} `s (~y)P : abs(~β)

Strengthening for Methods. By straightforward induction on the derivation tree of
(Γ, x : α) \ ({~y1} ∪ . . . ∪ { ~yn}) `r m : ρ.

By hypothesis,

Γ, x : α `s P1 Γ, x : α ` ~y1 : ~β1

(Γ, x : α) \ {~y1} `s (~y1)P1 : abs( ~β1)

Γ, x : α `s Pn Γ, x : α ` ~yn : ~βn

(Γ, x : α) \ { ~yn} `s ( ~yn)Pn : abs( ~βn)
(Γ, x : α) \ ({~y1} ∪ . . . ∪ { ~yn}) `s {l1 = (~y1)P1 . . . ln = ( ~yn)Pn} : ρ

Since x /∈ fn(m) ∪ {s}, we conclude Γ ` ~y1 : ~β1, . . . ,Γ ` ~yn : ~βn and applying
the clause for Processes to Γ, x : α `s P1, . . . ,Γ, x : α `s Pn, the following derivation
tree holds.

Γ `s P1 Γ ` ~y1 : ~β1

Γ \ {~y1} `s (~y1)P1 : abs( ~β1)

Γ `s Pn Γ ` ~yn : ~βn

Γ \ { ~yn} `s (~yn)Pn : abs( ~βn)
Γ \ ({~y1} ∪ . . . ∪ { ~yn}) `s {l1 = (~y1)P1 . . . ln = ( ~yn)Pn} : ρ

Strengthening for Processes. Proved by induction of the derivation tree of Γ `s

P . We proceed by case analysis on the structure of P , analyzing the last typing rule
applied.

• Case P is inaction
By hypothesis, Γ, x : α `s inaction, then Γ `s inaction.

• Case P is y ! l[~V ]
Let ~β = ρ.l. The following derivation tree holds

Γ, x : α `s V1 : β1
...

Γ, x : α `s Vn : βn

Γ, x : α `s
~V : ~β Γ, x : α ` y ∈ {dom(ρ), ch(ρ)}

Γ, x : α `s y ! l[~V ]

Since x /∈ fn(~V ) ∪ {s}, we apply the clause for Values and rule TV-SEQ to
Γ, x : α `s V1, . . . Γ, x : α `s Vn, and obtain Γ `s

~V : ~β. By hypothesis, x 6= y,
so Γ ` y ∈ {dom(ρ), ch(ρ)} holds. Applying TP-MSG rule we conclude the
case.
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• Case P is y?m or P is y?∗m
These two cases are proved similarly. We prove only the first case. By hypothe-
sis,

Γ, x : α `s m : ρ Γ ` y : ch(ρ)
Γ, x : α `s y?m

Since, x /∈ fn(m) ∪ {s}, by the clause for Methods applied to Γ, x : α `s m : ρ
we get Γ `s m : ρ. By hypothesis, x 6= y, so Γ ` y : ch(ρ) holds. Therefore,
applying TP-OBJ rule we conclude the case

Γ `s m : ρ Γ ` y : ch(ρ)
Γ `s y?m

• Case out[y, l[~V ]]

Let ~β = ρ.l.

Γ, x : α `s s : β0

Γ, x : α `s V1 : β1
...

Γ, x : α `s Vn : βn

Γ, x : α `s (s~V ) : ~β Γ, x : α ` y : dom(ρ)

Γ, x : α `s out[y, l[~V ]]

Since x /∈ {s}∪ fn(Vi), i ∈ I , by the clause for values we get Γ `s (s~V ) : ~β and
by TP-OUT rule, we conclude the case.

• Case P is ((~y)Q)~V
By hypothesis,

Γ, x : α `s Q Γ, x : α ` ~y : ~β

(Γ, x : α) \ {~y} `s (~y)Q : abs(~β) (Γ, x : α) \ {~y} `s
~V : ~β

(Γ, x : α) \ {~y} `s ((~y)Q)~V

Since x /∈ ({s} ∪ fn(Q) ∪ fn(~V )) \ {~y}, we apply induction hypothesis to
Γ, x : α `s Q, and the clause for Values to (Γ, x : α) \ {~y} `s

~V : ~β and de-
duce, respectively, Γ `s Q and Γ \ {~y} `s

~V : ~β. Names in ~y are bound, so
Γ ` ~y : ~β holds. Therefore, we conclude Γ `s ((~y)Q)~V by rule TP-APP.

• Case P is P1 | P2, P is new y Q or P is in[Q]
These cases hold trivially. We prove only the first case. By hypothesis,

Γ, x : α `s P1 Γ, x : α `s P2

Γ, x : α `s P1 | P2

Since by hypothesis, x /∈ fn(P1)∪ fn(P2)∪ {s}, we apply induction hypothesis
to Γ, x : α `s P1 and Γ, x : α `s P2, and get Γ `s P1 and Γ `s P2. By rule
TP-PAR, we conclude Γ `s P1 | P2.
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• Case mkdom[y, m|〉S, P ] in R

Γ, x : α `y m : ρ
Γ, x : α `y S | P

Γ, x : α ` y : dom(ρ)
Γ, x : α `s y{m|〉S}[P ] Γ, x : α `s R

(Γ, x : α) \ y `s mkdom[y, m|〉S, P ] in R

where

Γ, x : α `y S Γ, x : α `y P

Γ, x : α `y S | P

Since x /∈ (fn(m) ∪ fn(S) ∪ fn(P ) ∪ fn(R) ∪ {s}) \ {y}, we apply induction
hypothesis to Γ, x : α `s S, Γ, x : α `s P , and Γ, x : α `s R, and the clause for
methods to Γ, x : α `s m. Name y is bound, so Γ ` y : dom(ρ) holds, thus, by
rule TP-MKD, we conclude the case.

Strengthening for Networks. The proof for the second case is obtained by straight-
forward induction on the typing of Γ ` N . We proceed by case analysis on the structure
of N , analyzing the last typing rule applied. We present the case that is different from
the first clause.

• Case N is y{m|〉S}[P ]
By hypothesis,

Γ, x : α `y m : ρ

Γ, x : α `y S
Γ, x : α `y P

Γ, x : α `y S | P Γ, x : α ` y : dom(ρ)
Γ, x : α ` y{m|〉S}[P ]

Since x /∈ {y}∪ fn(m)∪ fn(S)∪ fn(P ), Γ ` y : dom(ρ) holds and we apply the
clause for Methods to Γ, x : α `s m and clause 1 of this lemma to Γ, x : α `s S,
and Γ, x : α `s P . Thus, we deduce, respectively, Γ `y m : ρ, Γ `y S and
Γ `y P . By rule TN-DOM, we conclude Γ ` y{m|〉S}[P ].

�

Lemma A.3 (Weakening)

1. If Γ `s V : β, then Γ, x : α `s V : β.

2. If Γ `s m : ρ, then Γ, x : α `s m : ρ.

3. If Γ `s P , then Γ, x : α `s P .

4. If Γ ` N , then Γ, x : α ` N .

Proof. The proof of the first three results is by mutual induction on the typing
derivation.
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Weakening for Values Follows by straightforward induction of the structure of V ,
analyzing the last typing rule.

• Case V is y
By hypothesis,

Γ(y) = γ γ ≈ β

Γ ` y : β

Since x not in Γ, then Γ, x : α `s y : β holds.

• Case V is (~y)P
By hypothesis,

Γ `s P Γ ` ~y : ~β

Γ \ {~y} `s (~y)P : abs(~β)

Name x is not defined in Γ, so Γ, x : α ` ~y : ~β holds. Applying the clause for
Processes to Γ `s P , we obtain Γ, x : α `s P and rule TV-ABS concludes the
case

Γ, x : α `s P Γ, x : α ` ~y : ~β

(Γ, x : α) \ {~y} `s (~y)P : abs(~β)

Weakening for Methods. By hypothesis, the following derivation holds

Γ `s P1

Γ \ {~y1} `s (~y1)P1 : abs( ~β1) . . .

Γ `s Pn

Γ \ { ~yn} `s ( ~yn)Pn : abs( ~βn)
Γ \ ({~y1} ∪ . . . ∪ { ~yn}) `s m : ρ

Since x not in Γ, we apply the clause for Processes to Γ `s P1, . . . ,Γ `s Pn and
the following derivation holds

Γ, x : α `s P1

(Γ, x : α) \ {~y1} `s ( ~~ 1y)P1 : abs( ~β1) . . .

Γ, x : α `s Pn

(Γ, x : α) \ {~yn} `s ( ~xn)Pn : abs( ~βn)
(Γ, x : α) \ ({~y1} ∪ . . . ∪ {~yn}) `s m : ρ

Weakening for Processes.

• Case P is inaction
If Γ `s inaction, then Γ, x : α `s inaction.

• Case P is y ! l[~V ]
Let ~β = ρ.l. By rule TP-MSG, we obtain

Γ `s V1 : β1 . . . Γ `s Vn : βn

Γ `s
~V : ~β Γ ` y ∈ {dom(ρ), ch(ρ)}

Γ `s y ! l[~V ]

By hypothesis, x is not defined in Γ, so Γ, x : α ` y ∈ {dom(ρ), ch(ρ)} holds
and we apply the clause for values to Γ `s V1, . . . ,Γ `s Vn, getting the follow-
ing derivation tree
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Γ, x : α `s
~V : ~β Γ, x : α ` y ∈ {dom(ρ), ch(ρ)}

Γ, x : α `s y ! l[~V ]

and the proof for Γ, x : α `s
~V : β is

Γ, x : α `s V1 : β1 . . . Γ, x : α `s Vn : βn

Γ, x : α `s
~V : ~β

which concludes the case.

• Case P is y?m or P is y?∗m
These two cases hold similarly. We illustrate the proof for the first case as an
example.

By hypothesis, we obtain

Γ `s m : ρ Γ ` y : ch(ρ)
Γ `s y?m

Since x is not defined in Γ, then Γ, x : α ` y : ch(ρ) holds. Applying the clause
for methods to Γ `s m, we get

Γ, x : α `s m : ρ Γ, x : α ` y : ch(ρ)
Γ, x : α `s y?m

that concludes the case.

• Case P is out[r, l[~V ]]
Let ~β = ρ.l.

Γ `r s : β0 Γ `r V1 : β1 . . . Γ `r Vn : βn

Γ `r (s~V ) : ~β Γ ` r : dom(ρ)

Γ `s out[r, l[~V ]]

By hypothesis, x is not in Γ, so Γ ` r : dom(ρ) holds. Applying the clause
for Values to Γ `r s : β0, Γ `r V1 : β1, . . . ,Γ `r Vn : βn, we get Γ, x : α `r

(s~V ) : ~β. By rule TP-OUT we conclude the case:

Γ, x : α `r (s~V ) : ~β Γ, x : α ` r : dom(ρ)

Γ, x : α `s out[r, l[~V ]]

• Case P is ((~y)Q)~V
By hypothesis

Γ `s Q Γ ` ~y : ~β

Γ \ {~y} `s (~y)Q : abs(~β)

Γ \ {~y} `s V1 : β1 . . .Γ \ {~y} `s Vn : βn

Γ \ {~y} `s
~V : ~β

Γ \ {~y} `s ((~y)Q)~V

Since, by hypothesis, x is not defined in Γ, then Γ, x : α ` y : β holds. Ap-
plying induction hypothesis to Γ `s Q and the clause for Values to Γ \ {~y} `s

V1 : β1, . . . ,Γ \ {~y} `s Vn : βn, the following derivation holds
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Γ, x : α `s Q Γ, x : α ` ~y : ~β

(Γ, x : α) \ {~y} `s (~y)Q : abs(~β) (Γ, x : α) \ {~y} `s
~V : ~β

(Γ, x : α) \ {~y} `s ((~y)Q)~V

where

(Γ, x : α) \ {~y} `s V1 : β1 . . . (Γ, x : α) \ {~y} `s Vn : βn

(Γ, x : α) \ {~y} `s
~V : ~β

• Case P is P1 | P2, P is new y Q, or P is in[Q]
These cases hold trivially. We illustrate the proof for the first case as an example.
By hypothesis, the following derivation holds

Γ `s P1 Γ `s P2

Γ `s P1 | P2

Since name x is not defined in Γ, we apply induction hypothesis to Γ `s P1 and
Γ `s P2, and by rule TP-PAR the following derivation concludes the case.

Γ, x : α `s P1 Γ, x : α `s P2

Γ, x : α `s P1 | P2

• Case P is mkdom[r, m|〉S,Q] in R

Γ ` r : dom(ρ)
Γ `r Q Γ `r S

Γ `r S | Q Γ `r m : ρ

Γ ` r{m|〉S}[Q] Γ `s R

Γ \ {r} `s mkdom[r, m|〉S,Q] in R

By hypothesis, x is not in Γ, so we apply the clause for Methods to Γ `r m : ρ
and induction hypothesis to Γ `r S, Γ `r Q, and Γ `s R. By rule TP-MKD the
following derivation holds

Γ, x : α `r S | Q
Γ, x : α `r m : ρ

Γ, x : α ` r : dom(ρ)
Γ, x : α ` r{m|〉S}[Q] Γ, x : α `s R

(Γ, x : α) \ {r} `s mkdom[r, m|〉S,Q] in R

where
Γ, x : α `r Q Γ, x : α `r S

Γ, x : α `r S | Q

Weakening for Networks The proof is obtained by a straightforward induction on
the typing tree of Γ ` N . We proceed by case analysis on the structure of N , analyzing
the last typing rule applied. We present the case that is different from the first clause.
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• Case N is y{m|〉S}[P ]
By hypothesis,

Γ `y m : ρ

Γ `y S Γ `y P

Γ `y S | P Γ ` y : dom(ρ)
Γ ` y{m|〉S}[P ]

The sequent Γ, x : α ` y : dom(ρ) holds, since x is not defined in Γ. Applying
the clause for Methods to Γ `y m : ρ, we obtain Γ, x : α `y m. The following
derivation tree holds by clause 1 of the current lemma applied to Γ `y S and
Γ `y P , and by rule TN-DOM.

Γ, x : α `y m : ρ

Γ, x : α `y S
Γ, x : α `y P

Γ, x : α `y S | P Γ, x : α ` y : dom(ρ)
Γ, x : α ` y{m|〉S}[P ]

�

Lemma A.4 (Congruence Lemma)

1. If Γ `s P and P ≡ Q, then Γ `s Q.

2. If Γ ` N and N ≡ L, then Γ ` N .

Proof.

Congruence for Processes. By induction on the derivation tree of Γ `s P . We
proceed by case analysis on each rule of the congruence relation defined in figure 2,
inducting on the last rule applied.

• Case new x P | Q ≡ new x (P | Q), if x not free in Q.

Γ `s P Γ ` x : ch( )
Γ \ {x} `s new x P Γ \ {x} `s Q

Γ \ {x} `s new x P | Q

Since x /∈ fn(Q), we apply Lemma A.3 to Γ \ {~x} `s Q and conclude Γ `s Q.
The symmetric case is proved similarly, but using Lemma A.2 instead.

Γ `s P Γ `s Q

Γ `s P | Q Γ ` x : ch( )
Γ \ {x} `s new x (P | Q)

• Case inaction ≡ new x inaction
This case holds trivially by rules TP-INACT and TP-RES.

• Case new x new y P ≡ new y new x P
By TP-RES rule, we derive

Γ `s P Γ ` y : ch( )
Γ \ {y} `s new y P Γ \ {y} ` x : ch( )

Γ \ ({x} ∪ {y}) `s new x new y P
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Thus,

Γ `s P Γ ` x : ch( )
Γ \ {x} `s new x P Γ \ {x} ` y : ch( )

Γ \ ({y} ∪ {x}) `s new y new x P

that holds by Strengthing and Weakening.

Congruence for Networks. By induction on the typing of Γ ` N . We proceed by
case analysis on each rule of the congruence relation defined in Figure 2, inducting on
the last rule applied.

• Case new x N | L ≡ new x (N | L), for x /∈ fn(L).
By hypothesis, the following type inference holds

Γ ` N Γ ` x ∈ {dom( ), ch( )}
Γ \ {x} ` new x N Γ \ {x} ` L

Γ \ {x} ` new x N | L

Since x is not in Γ, we apply clause 2 of Lemma A.3 to Γ\{x} ` L, and conclude
Γ ` L. Therefore, it is easy to show by rule TN-RES that Γ ` new x (N | L).
The symmetric case is proved similarly, but using clause 2 of Lemma A.2, in-
stead. The proof for Γ \ {x} ` new x (N | L) is

Γ ` N Γ ` L
Γ ` N | L Γ ` x ∈ {dom( ), ch( )}

Γ \ {x} ` new x (N | L)

Since x is not in Γ, applying clause 2 of Lemma A.2 to L, we get Γ \ {x} ` L,
and by rule TN-RES we derive

Γ ` N Γ ` x ∈ {dom( ), ch( )}
Γ \ {x} ` new x N Γ \ {x} ` L

Γ \ {x} ` new x N | L
that concludes the case.

• Case s{m|〉new c S}[P ] ≡ new c s{m|〉S}[P ] c /∈ fn(P,m)
By hypothesis, the following type derivation holds

Γ \ {c} `s m : ρ Γ \ {c} `s new c S | P Γ \ {c} ` s : dom(ρ)
Γ \ {c} ` s{m|〉new c S}[P ]

where

Γ `s S Γ ` c : ch( )
Γ \ {c} `s new c S Γ \ {c} `s P

Γ \ {c} `s new c S | P

Since c is not in Γ, we apply the clause for Processes of Lemma A.3 to Γ\{c} `s

P , and that for Methods of the same lemma to Γ \ {c} `s m and get, respec-
tively, Γ `s P and Γ `s m : ρ. By rules TN-DOM and TP-RES, we conclude the
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case. The symmetric case is proved similarly but using the clause for Methods of
Lemma A.2 and that for Processes of the same lemma. Therefore, the following
derivation tree holds

Γ `s m : ρ

Γ ` s : dom(ρ)

Γ `s S
Γ `s P

Γ `s S | P
Γ ` s{m|〉S}[P ] Γ ` c : ch( )

Γ \ {c} ` new c s{m|〉S}[P ]

Since x /∈ fn(m), we apply the clause for Methods of Lemma A.2 to Γ `s m : ρ,
and that for Processes of the same lemma to Γ `s P , and conclude the case.

• Case s{m|〉S}[new c P ] ≡ new c s{m|〉S}[P ] for c /∈ fn(m,S).
By hypothesis, the following type inference holds

Γ \ {c} `s m : ρ Γ \ {c} `s S | new c P Γ \ {c} ` s : dom(ρ)
Γ \ {c} ` s{m|〉S}[new c P ]

where

Γ \ {c} `s S

Γ `s P Γ ` c : ch( )
Γ \ {c} `s new c P

Γ \ {c} `s S | new c P

Since c is not in Γ, we apply the clause for Methods of Lemma A.3 to Γ\{c} `s

m : ρ and that for Processes of the same lemma to Γ \ {c} `s S. By rule TP-RES

it is easy to show that Γ ` new c s{m|〉S}[P ] holds.
The symmetric case is proved as follows

Γ ` s{m|〉S}[P ] Γ ` c ∈ {ch( ), dom( )}
Γ \ {c} ` new c s{m|〉S}[P ]

where

Γ `s m : ρ

Γ `s S Γ `s P

Γ `s S | P Γ ` s : dom(ρ)
Γ ` s{m|〉S}[P ]

Since c /∈ fn(m,S), we apply the clauses for Methods and for Processes of
Lemma A.2 to Γ `s m : ρ and Γ `s S, respectively, and conclude the case.

• Case inaction ≡ new s s{m|〉inaction}[inaction]
This case holds trivially by rules TN-INACT and TN-DOM.

�

Lemma A.5 (Subject-Reduction)

1. If Γ `s P and P → Q, then Γ `s Q.

2. If Γ ` N and N → L, then Γ ` L.

Proof.
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SR for Processes. By induction on the derivation tree for P → Q. Consider the
derivation tree for Γ `s m : ρ.

Γ `s A1 : abs( ~α1) . . . An : abs( ~αn)
Γ `s {l1 = A1 . . . ln = An} : {l1 : ~α1 . . . ln : ~αn}

• Case c?m | c ! lj [~V ] → m.lj [~V ]
Since Γ `s c?m | c ! lj [~V ], then the following type derivation holds

Γ `s m : ρ Γ ` c : ch(ρ)
Γ `s c?m

Γ `s
~V : ρ.lj

Γ ` c ∈ {dom(ρ), ch(ρ)}
Γ `s c ! lj [~V ]

Γ `s c?m | c ! lj [~V ]

By definition, m.lj [~V ] is Aj
~V . Γ `s Aj

~V is

Γ `s Aj : abs(ρ.lj) Γ `s
~V : ρ.lj

Γ `s Aj
~V

• Case c?∗m | c ! lj [~V ] → c?∗m | m.lj [~V ]
The proof for Γ `s c?∗m | c ! lj [~V ] is

Γ `s m : ρ
Γ ` c : ch(ρ)

Γ `s c?m
Γ `s c?∗m

Γ `s
~V : ρ.lj

Γ ` c ∈ {dom(ρ), ch(ρ)}
Γ `s c ! lj [~V ]

Γ `s c?∗m | c ! lj [~V ]

The proof for Γ `s m.lj [~V ] holds by hypothesis.

Γ `s m : ρ
Γ ` c : ch(ρ)

Γ `s c?m
Γ `s c?∗m

Γ `s
~V : ρ.lj Γ `s Aj : abs(ρ.lj)

Γ `s Aj
~V

Γ `s c?∗m | Aj
~V

• Case ((~x)P )~V → P [~V /~x]
The proof for Γ `s ((~x)P )~V is

Γ `s P
Γ ` s : abs(~α)

Γ \ {~x} `s (~x)P : abs(~α)

Γ \ {~x} `s V1 : α1 . . .Γ \ {~x} `s Vn : αn

Γ \ {~x} `s
~V : ~α

Γ \ {~x} `s ((~x)P )~V

Since x1 : α1, . . . , xn : αn and Γ `s V1 : α1, . . . ,Γ `s Vn : αn, we meet the
conditions to apply the clause for Processes of Lemma A.1 and we get Γ `s

P [~V /~x].
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• Case
P → Q

P | R → Q | R
The following derivation tree holds

Γ `s P Γ `s R

Γ `s P | R

Applying induction hypothesis, if Γ `s P and P → Q, then Γ `s Q. Thus,
applying TP-PAR rule to Γ `s Q and Γ `s R, we get Γ `s Q | R.

• Case
P → Q

new c P → new c Q
By hypothesis,

Γ `s P Γ ` c : ch( )
Γ \ c `s new c P

By induction hypothesis, if Γ `s P and P → Q, then Γ `s Q, thus applying
TP-RES rule we get Γ `s new c Q.

• Case
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

By hypothesis we have Γ `s P ′ and if P ′ ≡ P , then by Lemma A.4, we get
Γ `s P . Since Γ `s P and P → Q, we apply induction hypothesis and get
Γ `s Q. By Lemma A.4, if Γ `s Q and Q ≡ Q′, then Γ `s Q′, concluding the
case.

SR for Networks. By induction on the derivation tree for N → L.

• Case s{m|〉P}[s ! lj [~V ] | Q] → s{m|〉(m.lj [~V ] | P )}[Q]
The proof for Γ ` s{m|〉P}[s ! lj [~V ] | Q] is

Γ `s m : ρ

Γ `s P
Γ `s s ! lj [~V ] | Q

Γ `s P | (s ! lj [~V ] | Q) Γ ` s : dom(ρ)

Γ ` s{m|〉P}[s ! lj [~V ] | Q]

where,

Γ `s
~V : ρ.lj

Γ ` s ∈ {dom(ρ), ch(ρ)}
Γ `s s ! lj [~V ] Γ `s Q

Γ `s s ! lj [~V ] | Q

Hence, the proof for Γ ` s{m|〉(Aj
~V | P )}[Q] is

Γ `s m : ρ

Γ `s Aj
~V | P Γ `s Q

Γ `s (Aj
~V | P ) | Q Γ ` s : dom(ρ)

Γ ` s{m|〉(Aj
~V | P )}[Q]
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where,
Γ `s Aj : abs(ρ.lj) Γ `s

~V : ρ.lj

Γ `s Aj
~V Γ `s P

Γ `s Aj
~V | P

• Case s{m|〉(out[r, l[~V ]] | S)}[P ] → r ! l[s, ~V ] | s{m|〉S}[P ]
Since Γ ` s{m|〉out[r, l[~V ]] | S}[P ], then the following type derivation holds

Γ `s m : ρ

Γ `s out[r, l[~V ]] | S Γ `s P

Γ `s (out[r, l[~V ]] | S) | P Γ ` s : dom(ρ)

Γ ` s{m|〉(out[r, l[~V ]] | S)}[P ]

where
Γ ` r : dom(ρ) Γ `r (s~V ) : ρ.l

Γ `s out[r, l[~V ]] Γ `s S

Γ `s out[r, l[~V ]] | S

and the proof for Γ ` r ! l[s, ~V ] | s{m|〉S}[P ] is

Γ ` r : dom(ρ) Γ `r (s~V ) : ρ.l

Γ ` r ! l[s, ~V ] Γ ` s{m|〉S}[P ]

Γ ` r ! l[s, ~V ] | s{m|〉S}[P ]

where

Γ `s m : ρ

Γ `s S Γ `s P

Γ `s S | P Γ `s s : dom(ρ)
Γ ` s{m|〉S}[P ]

• Case s ! lj [~V ] | s{m|〉S}[P ] → s{m|〉(S | m.lj [~V ])}[P ]
The proof for Γ ` s ! lj [~V ] | s{m|〉S}[P ] is

Γ ` s : dom(ρ) Γ `s
~V : ρ.lj

Γ ` s ! lj [~V ]

Γ `s m : ρ
Γ `s S | P

Γ ` s : dom(ρ)
Γ ` s{m|〉S}[P ]

Γ ` s ! lj [~V ] | s{m|〉S}[P ]

where
Γ `s S Γ `s P

Γ `s S | P

Since Γ ` s{m|〉(S | Aj
~V )}[P ], the following proof also holds
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Γ `s m : ρ

Γ `s S
Γ `s Aj

~V

Γ `s S | Aj
~V Γ `s P

Γ `s (S | Aj
~V ) | P Γ ` s : dom(ρ)

Γ ` s{m|〉(S | Aj
~V )}[P ]

where,
Γ `s Aj : abs(ρ.lj) Γ `s

~V : ρ.lj

Γ `s Aj
~V

• Case s{m|〉(in[P ] | S)}[Q] → s{m|〉S}[(Q | P )]
Since Γ ` s{m|〉(in[P ] | S)}[Q], the following derivation holds

Γ `s m : ρ

Γ `s P

Γ `s in[P ] Γ `s S

Γ `s in[P ] | S Γ `s Q

Γ `s (in[P ] | S) | Q Γ ` s : dom(ρ)
Γ ` s{m|〉(in[P ] | S)}[Q]

that matches with the type derivation of Γ ` s{m|〉S}[(Q | P )]

Γ `s m : ρ

Γ `s S

Γ `s Q Γ `s P

Γ `s Q | P
Γ `s S | (Q | P ) Γ ` s : dom(ρ)
Γ ` s{m|〉S}[(Q | P )]

• Case s{m|〉(mkdom[r, m′|〉S, P ] in R | T )}[Q] →
new r (r{m′|〉S}[P ] | s{m|〉(R | T )}[Q]) if r /∈ (fn(T ) ∪ fn(Q))
The proof for Γ \ r ` s{m|〉(mkdom[r, m′|〉S, P ] in R | T )}[Q] is

Γ \ r `s m : ρ
Γ \ r ` s : dom(ρ)

Γ \ r `s (mkdom[r, m′|〉S, P ] in R | T ) | Q
Γ \ r ` s{m|〉(mkdom[r, m′|〉S, P ] in R | T )}[Q]

where,

Γ \ r `s mkdom[r, m′|〉S, P ] in R Γ \ r `s T

Γ \ r `s mkdom[r, m′|〉S, P ] in R | T Γ \ r `s Q

Γ \ r `s (mkdom[r, m′|〉S, P ] in R | T ) | Q

and
Γ `r S | P

Γ `r m′ : ρ′ Γ ` r : dom(ρ′)
Γ ` r{m′|〉S}[P ] Γ ` R

Γ ` r{m′|〉S}[P ] | R Γ ` r : dom( )
Γ \ r `s mkdom[r, m′|〉S, P ] in R
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from Γ `r S | P we derive

Γ, r : α `r S Γ, r : α `r P

Γ, r : α `r S | P

The proof for Γ \ r ` new r (r{m′|〉S}[P ] | s{m|〉(R | T )}[Q]) for r /∈ fn(T )∪
fn(Q) holds.

Γ ` r{m′|〉S}[P ]
Γ ` s{m|〉R | T}[Q]

Γ ` r{m′|〉S}[P ] | s{m|〉R | T}[Q] Γ ` r ∈ {ch( ), dom( )}
Γ \ r ` new r (r{m′|〉S}[P ] | s{m|〉R | T}[Q])

where,

Γ `r m′ : ρ′

Γ `s S
Γ `s P

Γ `s S | P Γ ` r : dom(ρ′)
Γ \ r ` r{m′|〉S}[P ]

and

Γ, r : α `s m : ρ

Γ `s R Γ `s T

Γ `s R | T Γ `s Q

Γ `s (R | T ) | Q Γ ` s : dom(ρ)
Γ ` s{m|〉(R | T )}[Q]

Since r /∈ fn(T ) ∪ fn(Q), we apply Lemma A.2 to Γ `s m : ρ, Γ `s T and
Γ `s Q, and get respectively, Γ \ r `s m : ρ, Γ \ r `s T , and Γ \ r `s Q, which
concludes the case.

• Case S → T
s{m|〉S}[P ] → s{m|〉T}[P ]

By hypothesis

Γ `s m : ρ

Γ `s S Γ `s P

Γ `s S | P Γ ` s : dom(ρ)
Γ ` s{m|〉S}[P ]

and applying induction hypothesis in S → T we have Γ `s T . Thus, by the
TN-DOM rule we get Γ ` s{m|〉T}[P ]

• Case
P → Q

s{m|〉S}[P ] → s{m|〉S}[Q]
By hypothesis,

Γ `s m : ρ

Γ `s S Γ `s P

Γ `s S | P Γ ` s : dom(ρ)
Γ ` s{m|〉S}[P ]

Applying induction hypothesis in P → Q, we have Γ `s Q. Then by TN-
DOMrule we get Γ ` s{m|〉S}[Q].
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• Case N → L
N | H → L | H

By hypothesis,
Γ ` N Γ ` H

Γ ` N | H
Applying induction hypothesis in N | L, we have Γ ` L. Thus, by TN-PAR rule
we get Γ ` N | H .

• Case N → L
new x N → new x L

We derive
Γ ` N Γ ` x ∈ {ch( ), dom( )}

Γ \ x ` new x N

and by induction hypothesis, if Γ ` N and N → L, then Γ ` L, thus by TN-RES

rule we get Γ \ x ` new x L.

• Case N ′ ≡ N N → L L ≡ L′

N ′ → L′

By hypothesis we have Γ ` N ′ and if N ′ ≡ N , then by Lemma A.4, we get
Γ ` N . Since Γ ` N and N → L, we apply induction hypothesis and get
Γ ` L. By Lemma A.4, if Γ ` L and L ≡ L′, then Γ `s L′, concluding the case.

�

B Proof of Type Safety
Theorem B.1 If Γ ` N , then N is not faulty.

Proof. We prove the contra-positive result, namely that N is faulty implies that
there is no Γ such that Γ ` N . We separately analyse the 6 cases oin the definition of
faulty.

1. Case N ≡ new ~x (s !M | s{m|〉S}[P ] | L) and m.M is not defined. We
assume that Γ ` N , and show that from this premise we may conclude that
m.M is defined. In fact, to conclude Γ ` N , we may apply rule TN-RES and
derive

Γ ` s ! l[~V ] | s{m|〉S}[P ] Γ ` L

Γ ` (s ! l[~V ] | s{m|〉S}[P ]) | L Γ ` ~x ∈ {dom( ), ch( )}
Γ \ {~x} ` new ~x ((s ! l[~V ] | s{m|〉S}[P ]) | L)

where

Γ `s
~V : ρ.l Γ ` s : dom(ρ)

Γ ` s ! l[~V ] Γ ` s{m|〉S}[P ]

Γ ` s ! l[~V ] | s{m|〉S}[P ]

and
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Γ `s m : ρ Γ `s S | P Γ ` s : dom(ρ)
Γ ` s{m|〉S}[P ]

From Γ `s
~V : ρ.l and Γ `s m : ρ, we conclude that m.M is defined, leading to

a contradiction.

2. Case N ≡ new ~x (s{m|〉P}[s !M | Q] | L), and m.M is not defined. By way of
contradiction, we assume that Γ ` N . The following derivation holds by TN-RES

rule

Γ `s m : ρ
Γ ` s : dom(ρ)

Γ `s P | (s ! l[~V ] | Q)

Γ ` s{m|〉P}[s ! ~V | Q] Γ ` L

Γ ` s{m|〉P}[s ! l[~V ] | Q] | L Γ ` ~x ∈ {dom( ), ch( )}
Γ \ {~x} ` new ~x (s{m|〉P}[s ! l[~V ] | Q] | L)

provided that

Γ `s P

Γ `s
~V : ρ.l

Γ ` s : ∈ {dom(ρ), ch(ρ)}
Γ `s s ! l[~V ] Γ `s Q

Γ `s s ! l[~V ] | Q
Γ `s P | (s ! l[~V ] | Q)

where we conclude that m.M is defined, leading to a contradiction.

3. Case N ≡ new ~x (s{m|〉(c?m | c !M | P )}[Q] | L), and m.M is not defined.
Assuming, by way of contradiction, that Γ ` N , we show that m.M is defined
by the following derivation

Γ ` L
Γ ` s{m|〉((c?m | c ! l[~V ]) | P )}[Q]

Γ ` s{m|〉((c?m | c ! l[~V ]) | P )}[Q] | L Γ ` {~x} ∈ {dom( ), ch( )}
Γ \ {~x} ` new ~x (s{m|〉((c?m | c ! l[~V ]) | P )}[Q] | L)

where

Γ `s m : ρ

Γ `s Q

Γ `s (c?m | c ! l[~V ]) | P
Γ `s ((c?m | c ! l[~V ]) | P ) | Q Γ ` s : dom(ρ)

Γ ` s{m|〉((c?m | c ! l[~V ]) | P )}[Q]
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and

Γ ` c : ch( )
Γ `s m : ρ

Γ `s c?m

Γ ` c ∈ {dom(ρ), ch(ρ)} Γ `s
~V : ρ.l

Γ `s c ! l[~V ]

Γ `s c?m | c ! l[~V ] Γ `s P

Γ `s (c?m | c ! l[~V ]) | P

which concludes that m.M is defined and we reach a contradiction. The proof
for c?∗m is constructed along the same lines.

4. Case N ≡ new ~x (s{m|〉P}[c?m | c !M | Q] | L), and m.M is not defined.

Assuming by way of contradiction that Γ ` N , we show that m.M is defined by
the following derivation

Γ ` L
Γ ` s{m|〉P}[(c?m | c ! l[~V ]) | Q]

Γ ` s{m|〉P}[(c?m | c ! l[~V ]) | Q] | L Γ ` {~x} ∈ {dom( ), ch( )}
Γ \ {~x} ` new ~x (s{m|〉P}[(c?m | c ! l[~V ]) | Q] | L)

Γ `s m : ρ

Γ `s P

Γ `s Q

Γ `s c?m | c ! l[~V ]

Γ `s (c?m | c ! l[~V ]) | Q
Γ `s P | ((c?m | c ! l[~V ]) | Q) Γ ` s : dom(ρ)

Γ ` s{m|〉P}[(c?m | c ! l[~V ]) | Q]

where Γ `s c?m | c ! l[~V ] we may derive

Γ `s m : ρ
Γ ` c : ch(ρ)

Γ `s c?m

Γ `s
~V : ρ.l

Γ ` c ∈ {dom(ρ), ch(ρ)}
Γ `s c ! l[~V ]

Γ `s c?m | c ! l[~V ]

from we conclude that m.M is defined, leading to a contradiction. The proof for
c?∗m is constructed in the same way.

5. Case N ≡ new ~x (s{m|〉(((~y)P )~V | R)}[Q] | L), and P [~V /~y] is not defined.
Therefore we can deduce

Γ \ {~y} ` {~x} ∈ {dom( ), ch( )}
Γ \ {~y} ` s{m|〉(((~y)P )~V | R)}[Q] | L

Γ \ ({~x} ∪ {~y}) ` new ~x (s{m|〉(((~y)P )~V | R)}[Q] | L)



43

and
Γ \ {~y} `s m : ρ

Γ \ {~y} ` s : dom(ρ)
Γ \ {~y} `s ((~y)P )~V | R) | Q

Γ \ {~y} ` s{m|〉(((~y)P )~V | R)}[Q] Γ \ {~y} ` L

Γ \ {~y} ` s{m|〉(((~y)P )~V | R)}[Q] | L
from

Γ `s (~y)P : abs(~β) Γ `s
~V : ~β

Γ `s ((~y)P )~V Γ `s R

Γ `s ((~y)P )~V | R Γ `s Q

Γ \ {~y} `s (((~y)P )~V | R) | Q

where we conclude that P [~V /~x] is defined, leading to a contradiction.

6. Case N ≡ new ~x (s{m|〉P}[((~y)P )~V | Q] | L), and P [~V /~y] is not defined.

Assuming, by way of contradiction, that Γ ` N , we show that P [~V /~y] is defined
by the following derivation

Γ \ {~y} ` s{m|〉P}[((~y)P )~V | Q] | L Γ \ {~y} ` ~x ∈ {dom( ), ch( )}
Γ \ ({~x} ∪ {~y}) ` new ~x (s{m|〉P}[((~y)P )~V | Q] | L)

and from Γ \ {~y} ` s{m|〉P}[((~y)P )~V | Q], we derive

Γ \ {~y} `s m : ρ

Γ \ {~y} `s Q

Γ \ {~y} `s P | ((~y)P )~V

Γ \ {~y} `s P | (((~y)P )~V | Q)

Γ \ {~y} ` s{m|〉P}[((~y)P )~V | Q] Γ \ {~y} ` L

Γ \ {~y} ` s{m|〉P}[((~y)P )~V | Q] | L

where the proof for Γ \ {~y} `s P | ((~y)P )~V is

Γ \ {~y} `s P

Γ `s
~V : ~β

Γ `s (~y)P : abs(~δ)

Γ \ {~y} `s ((~y)P )~V

Γ \ {~y} `s P | ((~y)P )~V

Therefore, we conclude that P [~V /~y] is defined, which leads to a contradiction.

�
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