Electronic Notes in Theoretical Computer Science 75 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume75.html| 20 pages

The Impact of Linearity Information on the
Performance of TyCO

Francisco Martins

Department of Mathematics, University of Azores, Portugal

Luis Lopes

Department of Computer Science, Faculty of Sciences, University of Porto,
Portugal

Vasco T. Vasconcelos

Department of Informatics, Faculty of Sciences, University of Lisbon, Portugal

Abstract

We describe a linear channel inference system for the TyCO programming language,
where channel usage is tracked through method invocations as well as definition in-
stantiations. We then apply linear channel information to optimize code generation
for a multithreaded runtime system. The impact in terms of speed and space is
analyzed.

1 Introduction

Modern compilers rely on type information for code generation. Message
passing concurrent languages base their computation model on two abstrac-
tions: processes, representing arbitrary computations, and channels, used for
processes to exchange messages. For these kind of languages, knowledge of
the usage of channels is crucial for efficient code generation: code size is re-
duced, tests are avoided, less heap is allocated and thus garbage collection is
performed less often. This has an obvious impact on performance. Moreover,
due to hardware limitations, type driven optimizations can make the difference
between being and not being able to run a program.

In the realm of channel-based concurrent (m-based) programming lan-
guages there are different kinds of information that may be used for efficient
code generation. For example, the Pict compiler crucially relies on the fact
that a replicated process is the only input on a given channel, and that it ap-
pears prior to any message on the channel [9]. Another example uses receptive

(©2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume75.html

MARTINS

channels [T1]: if we know that at any time there is exactly one receptor on a
given channel, then the heap space allocated for the receptor can be reused.
Furthermore, the code for reduction may be simplified since no checks are
required on the state of the channel.

Channel linearity information allows important optimizations to be per-
formed [AJ6l9]. Linear channels—channels that may be used exactly once for
output and exactly once for input—are of special interest since they encompass
the important case of synchronization channels, being pervasive, for example,
in functional style constructs.

This paper describes a type inference algorithm that computes how many
times (zero, one, many) each channel is used in a given program written
in the TyCO programming language [I4J15], and describes the experimental
results obtained with the TyCO compiler [T0]. The type inference system is an
extension of that of Igarashi and Kobayashi, allowing for mutually recursive
definitions.

The outline of the paper is as follows. The next section briefly introduces
the TyCO programming language and its process calculus. Section Bl presents
a linear type assignment system, and the following section a linear type in-
ference system. Section [l compares our approach with that of Igarashi and
Kobayashi [3] in terms of use assignments. Section [describes and assesses
the performance increment resulting from the optimization of linear channels
in the TyCO compiler and virtual machine. The last section compares our
system with that of Igarashi and Kobayashi [3], and points to further work.

2 The TyCO language and its calculus

The TyCO programming language is an object-based concurrent programming
language based on a calculus with the same name [I3], featuring a predicative
polymorphic type system.

An example

We start with a program that produces consecutive prime numbers using
the algorithm of Eratosthenes. We assume a definition Ints that produces con-
secutive integer values on some output stream, starting from 2. The integers
are fed into a series of sieves, each with its own grain. A sieve of grain n filters
all numbers that are multiple of n, forwarding the remaining numbers to the
next sieve in the chain. Parameters to Sieve are the input stream, the grain,
and the output stream. Here is a possible definition:

Sieve (inStream, grain, outStream) =
inStream 7 (n) :
if n % grain /=0
then
outStream ! [n] ;

MARTINS

Sieve [inStream, grain, outStream]
else
Sieve [inStream, grain, outStream]

An invariant of the program says that sieves are ordered by their grain,
the one with the smallest grain being closer to the source of integers. The last
sieve in this chain is special, we call it a Sink. If a number (say n) ever reaches
the last sieve, it must be a prime. The Sink then outputs the number, creates
a new sink, and becomes a regular Sieve of grain n, reading from wherever the
Sink used to read, and writing into the newly created sink.

Sink (inStream) =
inStream 7 (n) :
io ! puti [n] ;
new newSieve Sink [newSieve| | Sieve [inStream, n, newSieve]
The example highlights a feature unusual on most object-oriented pro-
gramming languages: the ability to change the behavior of objects half-way
through computation, essentially, the become operation of the actor model [2:

Sink (inStream, ...) = ... Sieve [inStream, ...]

The only restriction is that channel inStream in both Sink and Sieve share
the same type: a stream of integers, in this case (more on types in the next
section). To put all this code into work we need to instantiate a copy of
Ints, and another of Sink, connected by a new channel that we decided to call
aStream. The program that writes on the output consecutive prime numbers,
ad eternum, is then:

new aStream Ints [aStream] | Sink [aStream]

Syntax

We briefly introduce the TyCO process calculus that lies at the heart of
programming language with the same name, while, at the same time, explain
the program above. Assume a countable set of (channel) names, a set of
labels, and a countable set of definition identifiers. We denote names, labels,
and definition identifiers, respectively, by letters a,b, v, z,y, by letter [, and
by letters X, Y, Z. The syntax of process expressions is given by the grammar
in figure [

Processes of the form a!l[0] describe messages, where a is the channel
through which the communication {[¢] is sent, [is a label that selects a method
in the target object, and v is the actual contents of the message. We allow
label val to be omitted; so outStream ! [n] abbreviates outStream ! val [n].

Objects are described by processes of the form a 7 M, where a is the location
of the object and M is its collection of methods. A method is of the form
l; (Z;) = P;, where [; is its label (unique within the collection of methods), Z;
represents the formal parameters, and P; is the method body. Objects with

3

MARTINS

P == allv] | a?{l;(Z)=Pliesr | P|Q | O | newa P |
X[v] | defier Xi(7;) = P;in Q

Fig. 1. Syntax of the TyCO process calculus

a single method labeled with val may be abbreviated to a?(x) = P, thus
regaining the usual prefixes of the m-calculus.

The process P | @ represents the parallel execution of P and . Inaction
denotes a terminated process. Scope restriction, or channel declaration, is
introduced by processes of the form new x P, suggesting = as a new channel
visible only within P. Definitions are introduced with processes of the form
defie; Xi(Z;) = P; in @, allowing for mutually recursive process definitions.
The program above should be understood as the process

def Ints (..) = ... Sieve (..) = ... Sink (..) = ... in new aStream ...

Core to the language is also the conditional construct, and expressions built
from channels, base types (integers, booleans, strings, floats), and primitive
operations on base types. The remaining constructs are translated at parsing
time into the core (two of them are described below; for the full language
refer to the language definition [T4]). For example, the sequential composition
operator is derived. The above piece of code

outStream ! [n] ; Sieve [..]

is translated into (the scope of ack extends as far to the right as possible)

new ack outStream ! [n, ack] | ack ? { done () = Sieve [..]}
where we expect the object at outStream to output a message ack ! done]

upon reception of a message. The colon syntax is used for this exact purpose.
The above piece of code

inStream ? (n) : P

is an abbreviation to (again, the scope of the receptor extends as far to the
right as possible)

inStream ? (n,r) =r ! done|] | P
thus regaining the usual synchronous prefixes of the 7-calculus.

Notice that the semi-colon operator does not allow to compose two ar-
bitrary processes, in contrast to the parallel composition: at the left of the
semi-colon one can only have a message or a definition instantiation. This is
the reason why we cannot lift the recursive instantiation of Sieve out of the
if-then-else.

Reduction

The operational semantics of the calculus is presented following Milner [7]:
a congruence relation (not shown) between processes simplifies the reduction
relation introduced thereafter. The rules in figure Bl inductively define the

4

MARTINS

com all[7] | a?{l;(T;) = P}icr — {0/Z;} P,

P—qQ P—qQ
RES PAr
new z P — new z) PIR—Q|R
. P—0Q o, P=R _R=S 5=Q
def Din P — def D in Q & P—Q

Fig. 2. Reduction relation

reduction relation. COM is the communication rule between a message and
an object. The resulting process is the method body P;, selected by the label
l;, with its parameters Z; replaced by the arguments ¢. INST rule describes
the replacement of a definition identifier by its body, performing the neces-
sary substitution. Structural congruence is crucially used to bring processes
into the form requested by the left-hand-side of axioms Com and INST. The
remaining rules allow reduction to happen within restriction, parallel compos-
ition, and definition. Rule STR brings structural congruence into reduction.

3 Linear type assignment system

This section introduces a type system allowing for reasoning about how many
times channels are used during reduction. The type system for TyCO in-
cludes recursive types and predicative polymorphism (over definition identifi-
ers), which we omit for the sake of clarity.

Uses and types

In order to record the number of times a channel has been used, Igarashi
and Kobayashi introduce the concept of uses, that enables to keep track of
channels usage both for input and for output [3]. There are three kinds of uses:
0, meaning that no communication is allowed on the channel; 1, meaning at
most one communication—a linear channel; and w describing an unbound
number of communications on the channel.

Four operations on uses are useful to describe the type system. The sum,
the product, the least upper bound, and the supression of uses, denoted re-
spectively by k1 + ko, K1 X Ko, k1 U Ko, and k~, are defined as follows.

K1+ Ke|0 1w K1 X Ko|0 1 w K1 Uke|0 1 w K~
0 01w 0 000 0 01w 0 |undef
1 1l ww 1 01w 1 11w 1 0
w www w 0w w w www wl| w

bt

MARTINS

a == Al pPitier |t (base types)
p = alkor) (channel types)

Fig. 3. The grammar of types

Assume a countable set of type wvariables, and let ¢ range over the set.
Types, annotated with uses, are described in figure B Channel types represent
the type of an object with n methods labeled with /; and parameters of types p;.
To maintain a separate counting on the number of messages sent and received
on a channel, we attach to each channel type a pair of uses (k1,k2), where
k1 and kg specify, respectively, the number of sends and receives recorded for
the channel. Type variables are really not needed until type reconstruction
(section H). For the full language we must add the primitive types. Here
are some of the types inferred by the TyCO compiler for the example in the
previous section.

ack: {done: }(1:1)
outStream: IntegerStream(©«)
Sieve: IntegerStream(“?) Integer IntegerStream ()

where IntegerStream is the base type {val: Integer {done: }(1:D}.

Counting definition instantiations

The def construct binds processes to definition identifiers and allows for
intantiations within its scope. In a process of the form def;c; X;(Z;) = P; in Q,
each definition X; may be instantiated any number of times from any P; or ().
For a process P to be typified correctly, the input and output uses of every
(type of every) name in P must reflect, at least, its communication capabilities.
If a name a occurs free in a definition X (Z;) = P;, it is not enough to consider
the usage of @ within P;. In fact, the usage of a depends also from the number
of times that X is instantiated within) and within the remaining definitions.
Our type systems and inference algorithm are parameterized on a function U
that counts the number of times a definition is instantiated.

Definition 3.1 Let D & (Xi(Z;) = Pi)icr- A function U is a instantiation
counting function if it satisfies the following requirements.
(i) U(X,D,Q) >U(X,D,R), if Q — R,

(i) U(X,D, X;[0] | Q) = {Z/{(X,D, {T/ZP, | Q) otherwise.

The first assertion states that the number of potential instantiations to a
particular definition cannot increase during reduction. The second assertion
refers specifically to reductions that occur within an instantiation: if the in-
stantiation is on X—the definition identifier that we are counting—then the
number of instantiations decreases by 1, because X is instantiated in P; the

6

MARTINS

Com, a!l;[0] | a?{li(T;) = Plier — {0/%;} P;

PSR
RESs, - —
new x : a(m’mzp Snew x : aFr s R
P—-R [(#x
RESs;

J4
newz:pP —newz:pR
Fig. 4. New rules for the reduction relation with uses

same number of times in each side of equation, plus one more time in the
instantiation of X [7] itself. Otherwise, the number of potential instantiations
to X is not affected.

There is an instantiation counting function: the constant function that
maps any triple into w. In section Bl we propose a more useful function.

Subtyping
The binary relation < on types is defined as the least equivalence relation
closed under the following rule.

K1 > 1 Ko > o g > 1implies p; 2 d; e > 1 implies 7; = p;
(s AR =l ™
where py...p, X 01...0, means p; X 0y, for all 1 <4 < n. Intuitively p < o
if p denotes a channel type that can be used more times than o. The relation

is defined quite conventionally: covariant for input (1 > 1), contravariant for
output (pe > 1), and invariant when both conditions hold.

Type assignment, explicitly typed processes, and reduction with
uses

Judgments of the type assignment system are of the form I' - P, where T,
called a typing, is a map from names into types (and from definition identifiers
into type sequences), and P is an explicitly typed process (defined below). We
do not present the type system here; it can be found in reference [6]. It should
be noted that the type system is not syntax-directed because of the presence
of the usual subsumption rule,

x:pP o=<p
z:0FP

in addition to the weakening rules both for channel names and for definition
identifiers. An arbitrary instantiation counting function is used in the rule for
definitions.

We do however present the main property of the system, namely subject-
reduction. In order to do so, we need two ingredients: explicitly typed pro-
cesses, and a reduction relation that records the channel on which communic-

7

MARTINS

K-Reo KE{ly:pl, .o ly i pny o b (L pry eyl s P)
K-Var K t: (ly:p1,. by i pny-o) Bt (Lo pry e byt p)

Fig. 5. Kind assignment to base types

ation happened. The set of explicitly typed processes is obtained by replacing,
in figure[ll, new x P by new z : p P. We can easily get an implicitly typed pro-
cess from an explicitly typed one. The function erase replaces a (sub)process
of the form new z : p P by new x P.

For the second ingredient, use-aware reduction, we label each reduction
either with a channel z, or with the special symbol € denoting a communication
on a bound channel or a definition instantiation. We use ¢ to range both over
names and over €. The rules for the reduction relation with uses are obtained
from the rules in figure @ by a) labeling with [the arrows in rules PAR, DEF,
and STR, by b) labeling with € the arrow in axiom INST, and by c¢) replacing
rules Com and RES by the rules in figure H

The effect of consuming a resource / in a typing I' is a typing I' ¢, obtained
from I" as follows.

['(a) ifa#4,
I(a) = alsim2) if T'(a) = o) and k], k5 defined,

undefined otherwise.

Theorem 3.2 (Subject-reduction) If ' = P and P &R Q, then T=¢ is
defined and T ¢ - Q.

Notice that the suppression operation (as well as +, x, and LI in page)
only work on the outermost uses in a type. A channel of type {val: Integer
{done: }(1D}OD can only be written once. When a message is sent on such a
channel, the channel can no longer carry messages. This event is unrelated to
the communication capabilities of the channels transmited on the message—
the channel {done :}(Y)—that are consumed only when actually used.

4 Linear type inference system

This section describes a linear channel inference system for the TyCO process
calculus. We extend Igarashi and Kobayashi [3] with a) an arbitrary instanti-
ation counting function satisfying definition Bl and b) kinds [§] as exploited
by Vasconcelos [I6]. Kinds allow us to obtain a type system with computable
principal record typings and deeply interweave with Igarashi and Kobayashi
system, thus requiring a full presentation.

8

MARTINS

k= 0| 1| w | w | Ki+ke | K-k | KUKy
Fig. 6. Syntax of use expressions

Kinds and kind assignment to types

Intuitively, a kind describes a set of record types. A kind of the form
(ly © p1y...y 1y ¢ pn) denotes the subset of all record types that contain, at
least, the components Iy : gy, ..., 1, : pp-

Judgements of the kind assignment system are of the form K F « : k., where
K, called a kinding, is an acyclic map from type variables into kinds.[!] The
two axioms composing the kind assignment system are presented in figure

Pairs of the form (K, T") are called kinded typings. One operation on kinds
is useful to describe the type inference system. The sum of two kinds (I; : @;)ier
and (I, : @;) ey is the kind (I, : @k)rerus. Notice that for k € I N J, a, is the
same for the two operands.

Constraints

We extend the syntax of uses to incorporate variables and expressions. Let
u range over a countable set of use variables. The syntax of use expressions
is given by the grammar in figure We call the uses that may appear in
types—0, 1, w—constants.

A subtype constraint set (constraint set, for short) C' is a set of subtype
expressions p; = ps, called constraints. We extend =< to typings, and let ' < A
denote the constraint set {I'(z) <= A(x) | x € dom(A)}, when dom(A) C
dom(T).

For the definitions of substitution, ground substitution, solution, and con-
straint satisfaction (Cy = Cs) see [3], keeping in mind that substitution is also
applied to kinds.

A kinded type system for reconstruction

Figure [introduces a syntax-directed typing system that tracks linear
channels. Judgments are now of the form K;C;I' - P, for P an (implicitly
typed, figure [l) process. The notation is explained along with the rules.

The + and x operations on uses (defined in page H) are extended to types,
typings, and, in a similar way, to kindings. See [3] for the details. When
x & dom(I"), we use I', z : p, instead of ' + = : p.

Rule PAR says that, in order to type P; | P, one has to type each P;, find
a constraint set C' that satisfies each C; (we can easily show that C' = C;UCs
iff € = Cy and C = (), and a typing I' (whose domain contains those of
each I';) such that C satisfies each constraint in the set I' < I'y + T's.

1A cycle in a set of kind assignments is a sequence of elements t1 : kq,...,t, : ky, such
that ¢;11 occurs in k; and ¢; occurs in k.

MARTINS

b K, Ci;ThvE P Ky Oy o P, CET I+, CECUC
AR
K1+K2,C7F|_P1‘P2
KFa:(l:p) CETI=(a:a®) 7:0) CE{F=p}
K;C;T Fall[7]
CE U 2T} U u{p 2 a:})
CET = (a: {li: g + Ui,)

Msac

O N 0:THO

S KA CTF a? {I(7) = Prhier w 00
K;C:lx:pk P CkEdp

REs INST ——
K;C;I'tknewx P 0;C:T, X : p,v: 6 F X[7]

(Viel) Ki;ci;UjGIXj 05 U@ o, B P, KO UJGIXj P ARQ
C): I < (A_|_ Zje[u(Xj’ (Xz<fl) = Pi)ieh@) X Fj)
CrC C U, (01, =)
Yicr Ki + K; C; T F defier Xi(75) = Prin Q

DEF

Fig. 7. Type reconstruction

Rule MsG expresses the fact that a must be a channel with, at least, a
component [: g (notice the kind (I : p) assigned to «) and output capabilities
(usage (0,1)). The typing ¢ : & (meaning the n-fold sum vy : o1 +- -+ v, : 0,
when ¥ = vy - - v, & = 01 - - - 0,,) take into account the use of ' by the receiver,
keeping in mind that the v; are not necessarily disjoint.

The (1,0) in rule OBJ expresses the fact that a must be a channel with,
at least, input capabilities. We take the least upper bound of the typings for
the methods, since only one of them will ever be activated. Also, we throw
away type information on #; from the resulting type, but keep the subtype
information p; < &, in the resulting constraint set.

For rule RES we throw away type information on x since x is bound in
the conclusion. The constraint ¢ < p in rule INST accounts for the fact
that the types of the arguments must be subtypes of the parameters; INST is
essentially an output operation. For rule DEF, one might expect that the sum
of the parts, that is A + Ejel I';, would be enough to typify the whole def-
process. This is not the case, since every time a definition P; is instantiated
we must supply a set I'; of resources. Thus, I" must hold enough resources to
cover every instantiation of X, hence, at least U(X, (X;(Z;) = P)ier, Q)—
the number of times that X is instantiated from ()—copies of I'; must exist in
I'. From an implementation point of view the computation of U, in particular
for nested def processes, is quite heavy and is by far the slowest step of the
reconstruction algorithm.

The equivalence between the system in figure [and the one mentioned in

10

MARTINS

section B is made precise by the following theorem.

Theorem 4.1 Let P be an explicitly typed process.

(i) If K;C;T F erase(P), and (C",1") is obtained from (C,T") by recursively
replacing type variables t for records {l; : p;}ie;r whenever t : (l; : pi)ier
occurs in K, and S is a solution of C' whose domain includes all type/use
variables in I" and in P, then ST'+ SP.

(i) If T+ P, then 0;0;T F erase(P).

Proof. By straightforward induction on the structure of the derivation of the
typing of P. O

A type reconstruction algorithm

Typings are not uniquely determined. The principal kinded typing—a
triple (K, C, I')—for processes allows one to recover all such typings.

See Vasconcelos [I6, section 4.2] for definitions of kinded substitution, kin-
ded substitution that respects a kinding, kinded set of equations, unifier of
a kinded set of equations, and more general than unifier. See Igarashi and
Kobayashi [3, definition 5.1.4] for definition of minimal solution.

Definition 4.2 (i) A triple (K’,C",1"), called a kinded constraint typing,
is an instance of (K,C,T), if dom(K) C dom(K"), dom(I") C dom(I"),
and there is a substitution S such that (K’,S) respects K, ST C I", and
C'E SC.

(ii) The triple (K, C,T") is principal for P, if
(a) K;C;T'F P, and
(b) If K';C";T"F P, then (K',C",T") is an instance of (K,C,T").

There is an algorithm, call it LTR for linear type reconstruction, that com-
putes a quadruple (K,C,T', E), where K is a kinding, I" is a typing, C is a
constraint set, and E is a set of type equations. From (K,C,T', E) we can
compute the principal typing of a process if it exists, or announce failure
otherwise.

We omit the algorithm (see reference [6]), but describe its main features.
The construction of the principal kinded constraint typing triple proceeds
in four phases: (1) compute a quadruple (K,C,I',E) using the LTR al-
gorithm; (2) compute the substitution pair (K’,S’) from the set of kinded
equations (K, E) using Ohori’s algorithm [8]; (3) generate a set of use con-
straints from C'; (4) resolve these constraints using [3] to obtain S. Then,
the triple (K’, S’SC, S’ST') is principal for P. If the kinded set of equations,
(K, E), has no solution, then P is not typable.

The algorithm for the first phase is obtained by reading the rules in figure [
bottom-up. Consider rule PAR. We recursively call the algorithm on P, and
P, thus obtaining (K;,Cq, Ty, Ey) and (Ks, Co, 'y, Ey). To combine these
we use a function @ that computes the most general pair (I',C) such that

11

MARTINS

W(Y, D,0,V) = W(Y, D,al[7],V) = 0
WY, D, P |Q,V) = W(Y,D,P,V) + W(Y,D,Q,V)
WY, D,a? (L) = P}ier, V) = Ly, W(Y. D. P, V)
W(,D,new x P,V) =W(Y,D,P, V)

WY, D, Y[, V) =1, i Y ¢ {Xihier
WY, D, Z[7],V) = 0, if Z¢& {Xibicrand Y # Z
WY, D, X,[7,V) =0, X,€V,and X; Y
WY, D, X;[t],V) =w, X,eV,and X;~Y

WX, D, X[, V) = 1+ W(X,, D, P,V U{X)}), ifX;&V
W(Y, D, X;[v], V) = W(Y, D, P,V U{X;}),

W(Y, D,def D' in Q,V) = W(Y,DUD',Q,V)

where D is (X;(%;) = P,)ier-
Fig. 8. The number of times a definition is instantiated.

CET XT;+Ts and C | C; UCy. The result of the call on Py | P is the
quadruple (K74 Ks, C,T', E1UFE5). The remaining rules are handled similarly,
with new additional functions developed as necessary.

Notice that in the forth phase, we solve the subtype constraints in the
constraint set obtained during the first phase. We are however interested in
an optimal type annotation for the new-channels in the input process, in the
sense that the uses of the channels are estimated as small as possible. Igarashi
and Kobayashi show how to optimally solve a constraint set [3].

The correctness of the algorithm is given by the following result.

Theorem 4.3 (Correctness of LTR) Let (K,C,T', E) be the output of the
LTR(P) algorithm.
(i) If (K',S") is the most general unifier of (K, E) and S is a minimal solu-
tion of C, then (K',S'SC,S'ST") is principal for P.
(i) If (K, E) is not unifiable, then P is not typable.

See example at the end of the section.

Computing the use of a definition identifier

The type systems mentioned in section Bl and presented in figure [0 as
well as the algorithm LTR described above are parametric on an instanti-
ation counting function (definition Bl). We now present an algorithm that

12

MARTINS

computes the number of times that a definition is instantiated within a pro-
cess. Notice that the algorithm has to deal with recursive instantiations to
definitions (possibly defined using mutually recursive equations) and, more
importantly, with free names in each definition.

Our approach is to interpret definition instantiations as a graph that mod-
els the dependencies between each definition. The number of times (0, 1, or
w) that a certain definition X is instantiated within a process P is given by
the number of paths starting on every Y free in P and ending in X.

Definition 4.4 Consider the definitions (X;(%;) = P,);e; and a definition
identifier Y. We say that X; instantiates Y directly, denoted by X; ~»; Y, if
P, =new Z def D in Y[0] | R. The relation ~~ is the transitive closure of ~;.
When X ~» Y we say that X instantiates Y, or that Y is reachable from X.

Finding whether a definition X instantiates another definition ¥ amounts
to determine if two nodes are connected in a direct-graph; algorithms can be
easily found in the literature ([I], for example).

The recursive function U computes the number of times that a definition
X, is instantiated in a process of the form def,c; X;(%;) = P; in Q. It uses
an auxiliary function YV that maintains a set V' of visited definitions to avoid

infinite recursion.
def

UXi, D, Q) = W(X;, D,Q,0).

Figure B describes function W, assuming that all bound definition iden-
tifiers are pairwise distinct. If @) is inaction or a message, the number of
instantiations is obviously 0. If) is an object, we compute the least upper
bound of the uses of Y, since only at most one of the methods is selected in
reduction.

The first and the second clauses for an instantiation Y'[¢] do not descend
the body of the corresponding definition, since it is not defined in the def-
process we are analyzing. The reachability tests performed at the third and
forth clauses are necessary when a definition has already been visited (X; € V).
When X; ~» Y there is a cycle starting in X;, since X; is the first definition
that belongs to V. Thus, if YV is part of that cycle its use is obviously w,
otherwise it is 0. The fifth and sixth clauses for Y [0] describe an instantiation
of a definition defined in D. In this case we must analyze P; (the process
bound to X;) as well. When Y is the same as X;, we add 1 to the result
yielded by the analysis of P;.

Theorem 4.5 (i) Function U is an instantiation-counting function.

(ii) If def D in P = def D in Q, then U(X;, D, P) = U(X;, D, Q), for X; in
D.

Proof. First part follows directly from the definition of function . Second
part is by induction on the structure of P. The more interesting cases, but
still easy, are when P = X;[]. O

13

MARTINS

Example

As an example, consider the process def;c; X;(#;) = P; in P corresponding
to our running example; We illustrate phase one by analyzing its channel and
definition use. From the Sieve process definition we find that channel inStream
is used for input once and channel outStream is used for output once in the
then branch of the if process. But Sieve is recursive, and is reachable from
Sink, that is reachable from P; then U(Sieve, D, P) = w and the uses of
inStream and outStream is (w,0) and (0,w), respectively.

Analyzing the Sink definition, we find that channel inStream is used for
input once and io is used for output (also once). Then Sink passes inStream
to Sieve that inputs from it w times. So inStream has (w, 0) use. We also find
that Sink is recursive and is reachable from P, then U(Sink, D, P) is w, which
makes io to be used w times for output. The newly created channel newSieve
has the same usage as inStream, that is, (w,0).

The channel aStream created in P is used for output by Ints an infinite
number of times (recall that Ints produce integer numbers ad eternum; U (Ints,
D, P) = w) and, as discussed above, w times for input by Sink. Then the
usage of aStream is (w,w).

Finally, synchronization channels (ack for example) are always linear, des-
pite the fact that they may belong to recursive definitions, because they are
newly created for each synchronization.

5 Comparing with Igarashi’s type system

The def construct used in Igarashi and Kobayashi [3] is syntactic sugar for the
replicated input construct:

def z[y] = P in Q end stands for new z(x?*[¢y].P | Q)

TyCO uses (mutually) recursive definitions instead of replication. It is well-
known how to translate replication into recursive definitions and vice-versa
(see, for instance, [T2, pages 132-138]). This section compares our approach
(using the U function defined in figure B) with that of Igarashi and Kobayashi.
We denote by Fg the typing system in [3].

Translation into TyCO
The translation function [-] maps the Igarashi and Kobayashi process

def 2[y] = P in Q) end

into
[I. if z ¢ in(Q)
new z [Q] | 7 (y) = [P], if z € in(Q) and = & fn(P)

new x def A() =27 (y) = [P]|A[] in A[]|[Q], otherwise
14

MARTINS

and is an homomorphism in all other cases.
Theorem 5.1 Let P be a process in [3]. If I P, then I' = [P].

Proof. A straightforward induction on the structure of the derivation of
kg P. a

Encoding (mutually) recursive definitions into Igarashi’s calculus

We consider a function [[]]g that translates a TyCO process into Igarashi’s
calculus extended with objects and messages a la TyCO. The sets D and V
represent the definitions and the variables translated (so far), respectively. For
the rest of this section let D be the definition (X;(Z;) = P,)ic;. We define [-]},
for def and call processes and stipulate that [[]]g is a homomorphism for the
remaining process contructors.

Y[, < y! [0, ifY ¢ {X;}iegor Y €V
[X:[0]% & def ;0] = [P in@; ! [0] end, if X, &V
[def D" in QT = [Q'Tpup

The intuitive idea is that we substitute each definition instantiation X;[7]
by Igarashi’s process def x;[0] = [[Pl-]]lV)U{XZ’} in ;! [0] end and proceed with
the translation inside P;, the process bound to X; in D. If P; is recursive
we substitute X;[¢] within P; by z;![¢], since we have already introduced the
definition of z;. The set V' tracks the expanded definitions at each point during

translation.

Definition 5.2 The out use of a channel x in a typing I is

Ko, if D(x) = plrin2)

out(z, I) = {o, if 2 ¢ dom(T)

Lemma 5.3 Let T' - [X;[d]]}, and X; €V, then

out(y,T") {Z Lo X W Y

=0, otherwise
Proof. Since X; ¢ V, then [X;[7]]}, L def zi(Y) = [[B]]EU{X"} in ;! [v] end.
By definition of X; ~ Y, P; instantiates (possibly indirectly) Y, meaning that
[[Pi]]gU{Xi} includes at least an output to y. Thus, out(y, [[Pi]]l\;u{xi}> > 1. The
equality out(y,I") = 0 is proved using similar arguments. O

Lemma 5.4 Let I' - [[Q]]%. Then U(X;, D, Q) = out(x;,I').

Proof. Notice that function U has a structure similar to the translation func-
tion [-]. We proceed by induction on the structure of the translation and
present only the more interesting cases—call and def.

15

MARTINS

queue first/last references

envi ronnent frame channel nmessage frame

bi ndi ng
01 K

envi ronnent framne nessage frane

next

b)

Fig. 9. Message reduction: a) general case; b) linear channel.

For call, we prove that if T' - [Z[#]]}, then W(Y, D, Z[7], V) = out(y, I).
The proof is divided in 6 cases that match the definition of &/. We present
the last one. Let Z = X; for some i. if X; € V and Y # X;, then by
translation I' - def z;(Z) = [[Pi]]gu{xi} inz;![0] end. Let A+ [[Pi]]):/)u{xi}’ then
out(y,I") = 1- (1 + out(x;, A)) - out(y, A). We have to consider two cases: (1)
when out(z;, A) = 0, then 1- (1 + out(x;, A)) - out(y, A) = out(y, A), that, by
induction hypothesis, is W(Y, D, P;,V U {X;}); and (2) when out(z;, A) # 0.
We need to analyse two subcases: (2.a) when X; ~» Y, then at least one
output in y is performed in ﬂPi]]gU{Xi}, therefore out(y,I') = w, which is the
same as W(Y, D, P;, VU{X;}), since X is recursive; (2.b) when X; + Y, then
out(y, A) = 0 and hence out(y,I") = 0. The value of W(Y, D, P;, V U{X,}) is
also 0 when X is recursive and X; > Y.

For def, we prove that if I - [def D’ in Q’]]E, then W(Y, D, def D’ in @',
V) = out(y,I"). By definition of translation, I" - [[Q’]]EUD/, and by induc-
tion hypothesis out(y,I') = W(Y, D U D’,Q’, V') holds. The definition of W
supports W(Y, DU D", Q" V) =W(Y, D,def D" in Q', V). O

Theorem 5.5 Let P be a process. If ' = P, then I' b ﬂP]]g.

Proof. A straightforward induction on the structure of the derivation of I" -
P using lemmas B3 and B4 O

6 Optimizing linear channels

The run-time system of the TyCO programming language is implemented as
a virtual machine [5] that emulates byte-code format program files generated
by the TyCO compiler [I0]. Linear usage of channels enables optimizations

16

MARTINS

that may substantially increase the performance of the virtual machine.

Optimization

The optimization described in the sequel can be applied to any channel
for which we can ensure that it receives exactly one message and one object
through its life time. Reduction, of course, also occurs exactly once. The
main contribution to performance lies in the fact that, in this case, we do not
allocate an intermediate channel queue in the heap to hold the framed? for
the object and for the message. Instead, we create a single frame for the first
component of the redex that arrives and keep the frame reference directly in
the frame. Reduction is performed using this single frame.

In the non-optimized case, trying to reduce a message in a given channel
requires testing the state of the queue (empty, no messages, no objects) and,
accordingly, either enqueuing the message or creating a new thread in the
run-queue. The case for object reduction is symmetric. The queue is required
for we have no information on the number and on the arrival order of objects
and messages. Figure @b shows the heap configuration for the general case of
message reduction, when a message arrives first.

The compile-time recognition of linear channels allows the following sim-
plifications to be performed:

e avoid the allocation of a queue in the heap to hold messages and objects
(diminuishes heap usage and garbage collection overheads);

e use references to messages or to objects directly, minimizing indirections
(increases speed);

¢ simplify the instruction for reduction (increases speed).

We extend the language defined in [T4] with two new instructions to handle
linear reduction: forkLinearObj (k, n, t) and forkLinearMsg (k, n, 1,
a). Initially our binding at offset k in the current frame has a null reference.
The first component of the redex to appear creates a frame of size n to hold
data such as the method table t for the object, or the method name 1 and
the arguments a for the message, plus some extra space for local variables. A
reference to this frame is kept at offset k. The second component to arrive
reduces using data from the instruction arguments and from the frame held
at k.

Figure @b shows the heap configuration in this optimized case. There is
still some room for improvement. If, for example, we find that, at run-time,
the object always gets executed first, we may further optimize the code by
removing the test. The instruction ForkLinearObj simply keeps the binding
for the frame created, whereas the ForkLinearMsg instruction produces a
thread immediately.

2 Also called activation records: a block of words, allocated from the heap, containing
relevant information for the execution of a thread.

17

MARTINS

program time(s) heap(kw) fgc

—-opt opt % | —opt opt % | heap —opt opt %
tak 22,16,8 | 3.07 2.70 88 | 19925 17208 86 5500 67 32 47
fib 30 5.26 4.72 89 | 31617 26625 84 | 21000 46 22 47
hanoi 15 4.53 4.00 88 | 45023 38633 85 7560 40 33 82
sieve 10000 | 4.01 3.62 90 | 20385 18040 82 250 376 338 90
mirror 5626 | 0.29 0.27 93 1181 1071 90 224 140 122 87

Fig. 10. Performance results.

Preliminary performance results

We wish to measure the performance increment in the virtual machine
implementation that results from optimizing linear channels in programs. To
evaluate the effect of the optimization we use three metrics:

* execution time, measured in seconds (time) without garbage collections;
* heap usage, measured in machine number of words (space); and

e number of garbage collections (fgc) for a specific amount of heap memory.

The programs we use for this set of runs range from pure functional such
as: tak (Takeuchi numbers), fib (Fibonacci numbers), and hanoi (the Towers
of Hanoi); to object-based such as sieve (Eratosthenes’ sieve) and mirror
(mirroring a huge random tree). The results of our experiments are presented
in figure [l The arguments used for each benchmarks are also shown.

The TyCO compiler performs linearity analysis quite fast, being at most
16% slower than when using the default type inference algorithm. Note that
this is only critical for very large benchmarks, as in the other cases the indi-
vidual compile times are rather small. The benchmarks were run over Linux on
a laptop equipped with a Pentium III at 600MHz, 2561.2 cache and 256Mbytes
of RAM.

As can be observed in figure [[0 the preliminary results indicate an aver-
age decrease in the execution time to values around 89%. The effect of the
optimization on the heap usage is also significant, with values around 85% of
the non-optimized case.

These performance results may be further improved by eliminating or sim-
plifying the code for reduction of linear channels. In terms of heap usage it is
also possible to improve. In fact, the frames allocated for messages or objects
at linear channels do not require some fields that are otherwise crucial in the
non-optimized case (e.g., a next field to queue the object or message in a
channel).

7 Related and future work

The framework supporting the sections Bl and Bl on type systems is adapted
from the work of Igarashi and Kobayashi [3]. Our main contribution is the

18

MARTINS

handling of mutually recursive process definitions, possibly containing free
channel names.

The language Igarashi and Kobayashi study allows only for a simple form
of definitions, namely def z[g] = P in @), where the names of definitions are
conventional channels. But the x above is not a conventional channel: its
input and output usage is exactly the same. On this kind of channel we are
only interested on how many times the process definition can be expanded,
hence the usage assigned to such a channel is (w, k), where the w is there
merely for technical convenience. On the other hand, TyCO features process
definitions using identifiers from a syntactic category different from that of
channels. As a result, we may assign a single use (given by function U) to
such identifiers.

The rules for definitions in both works follow the same pattern. In refer-
ence [3], a formula is found for the particular case of definitions (ks - (k1 + 1),
where k; represents the number of times that the definition instantiates it-
self, and ko represents the number of times that the definition is instantiated
from the def body); we have decided to parameterize the type system with
a function U that tells how many times a definition is instantiated within a
process. Notice that mutual recursion can only be transformed into simple
recursion at the expense of code duplication; a really undesirable feature in
a compiler. Nevertheless, using appropriate encodings from one calculus into
the other, the type environments computed with [3] and with our type sys-
tem (parametrized with the instantiation-counting function defined in figure
R) coincide.

Further work includes the extension of the type inference system to handle
recursive types and predicative polymorphism, and the study of the complexity
of the instantiation-counting function &. Benchmarking with realist programs
is under way.

Acknowledgements.

The authors would like to thank anonymous referees for important com-
ments. This work was supported by projects Mikado (IST-2001-32222) and
MIMO (POSI/CHS/39789/2001).

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Series in Computer Science and Information
Processing. Addison-Wesley, 1974.

[2] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal, modular actor
formalism for artificial intelligence. In 3rd International Joint Conference on
Artificial Intelligence, pages 235-245, 1973.

19

MARTINS

[3] Atsushi Igarashi and Naoki Kobayashi. Type reconstruction for linear pi-
calculus with I/O subtyping. Journal of Information and Computation,
161(1):1-44, 2000.

[4] N. Kobayashi. Quasi-linear types. In POPL’99, pages 29-42, 1999.

[5] Luis Lopes, Fernando Silva, and Vasco T. Vasconcelos. A virtual machine for
the TyCO process calculus. In PPDP’99, volume 1702 of LNCS, pages 244-260.
Springer-Verlag, September 1999.

[6] Francisco Martins and Vasco T. Vasconcelos. TyCO + linear channels.
DI/FCUL TR 01-11, Department of Informatics, Faculty of Sciences, University
of Lisbon, December 2001.

[7] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, part I/II. Journal of Information and Computation, 100:1-77,
September 1992.

[8] Atsushi Ohori. A compilation method for ML-style polymorphic record calculi.
In 19th Annual Symposium on Principles of Programming Languages (POPL),
pages 154-165. ACM Press, 1992.

[9] Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. In Gordon Plotkin, Colin Stirling, and Mads Tofte,
editors, Proof, Language and Interaction: Essays in Honour of Robin Milner,
Foundations of Computing. MIT Press, May 2000.

[10] Lufs Lopes, Vasco T. Vasconcelos, Francisco Martins, and Rui Bastos.
The TyCO programming language—compiler and virtual machine. URL:
http://www.ncc.up.pt/ lblopes/tyco, 1988-2002.

[11] Davide Sangiorgi. The name discipline of uniform receptiveness. Theoretical
Computer Science, 221(1-2):457-493, 1999.

[12] Davide Sangiorgi and David Walker. The 7-calculus, A Theory of Mobile
Processes. Cambridge University Press, 2001.

[13] Vasco T. Vasconcelos. Typed concurrent objects. In 8th Furopean Conference
on Object-Oriented Programming, volume 821 of LNCS, pages 100-117.
Springer-Verlag, July 1994.

[14] Vasco T. Vasconcelos. Core-TyCO, appendix to the language definition,
yielding version 0.2. DI/FCUL TR 01-5, Department of Informatics, Faculty
of Sciences, University of Lisbon, July 2001.

[15] Vasco T. Vasconcelos. Tyco gently. DI/FCUL TR 01-4, Department of
Informatics, Faculty of Sciences, University of Lisbon, July 2001.

[16] Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus of
objects. In 1st International Symposium on Object Technologies for Advanced
Software, volume 472 of LNCS, pages 460-474. Springer-Verlag, November 1993.

20

	Introduction
	The TyCO language and its calculus
	Linear type assignment system
	Linear type inference system
	Comparing with Igarashi's type system
	Optimizing linear channels
	Related and future work
	References

