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1 INTRODUCTION

IN recent years researchers have devoted great effort to
providing semantics for pure concurrent/parallel pro-

gramming languages within the realm of process-calculi.
Milner et al.'s �-calculus [19] or an asynchronous formula-
tion due to Honda and Tokoro [11] and Boudol [6] have
been the starting point for most of these attempts. Several
forms and extensions of the asynchronous �-calculus have
since been proposed to provide for more direct program-
ming styles and to improve efficiency and expressiveness
[7], [9], [31].

Dataflow and von Neumann architectures represent the
two extremes in a continuous design space. In the dataflow
model, computations are triggered by the availability of all
input values to an instruction (the firing rule). This makes
the model totally asynchronous and the instructions self-
scheduling. Dataflow architectures range from pure data-
flow [3], [10], [23], hybrid dataflow/control-flow [8], [21],
[22], and, lately, multithreaded RISC [1], [2], [25] designs.
Multithreading aims to provide high processor utilization
in the presence of large memory or interprocessor commu-
nication latency. High latency operations are overlapped
with computation by rapidly switching to the execution of
other threads.

Next generation microprocessor design coupled with
VLSI technology point to multithreaded hardware as
typified by IBM's Power4 and Sun's MAJC, featuring
multiple RISC/VLIW cores and very high bandwidth
interprocessor connections, aiming at large grain multi-
threading. On another scale, current superscalar micro-
processor designs such as the MIPS R10k, the PA-RISC
8k, and the Alpha 21264 implement what is commonly
called micro-dataflow using moderately large instruction
windows, out-of-order execution, dynamic dispatch, and

register renaming. The next generation superscalar micro-
processors will require a greater amount of fine-grained
parallelism to fully explore their aggressive dynamic
dispatch. In this context, hardware support for multi-
threading can provide a solution by allowing fast context
switches, overlapping memory loads, or interprocessor
communication with computation. Moreover, multithread-
ing may remove most pipeline hazards in current von
Neumann implementations, thus avoiding the need for
complex forwarding and branch prediction logic. How-
ever, single-thread performance in multithreaded archi-
tectures is typically low, this having a negative impact on
individual application's performance. The ideal situation
would call for applications themselves to be partitioned
into several fine-grained threads by a compiler and the
multithreading hardware would then overlap the multiple
threads from that single application.

Programming paradigms and compilations techniques
adequately to profit from this kind of hardware are major
research areas. In recent years, the focus has shifted from
pure dataflow languages, such as Id [20], to numerically
oriented Sisal [17], and, finally, to the compilation of more
conventional languages, such as Cilk [5] (a multithreaded C)
and ML on von Neumann architectures, a shift driven by
Nikhil and Arvind's seminal work on P-RISC [21].

Languages that can be efficiently compiled from high-
level constructs into low-level, fine-grained, threads are
quite suitable for multithreaded computing. In this context,
there are several advantages in using process calculi [9],
[11], [31] for concurrent and parallel computing. Process
calculi provide a natural programming model as they deal
with the notions of communication and concurrency. They
usually have very small kernel calculi, with well-under-
stood semantics that form ideal frameworks for language
implementations. This significantly diminishes the usual
gap between the semantics of the language and that of its
implementation. The mappings between high level abstrac-
tions into such kernel calculi provide natural compilation
schemes that expose thread parallelism at the instruction set
architecture (ISA) level. Moreover, explicit communication
allows the compiler to extract important hints of how and
when a running thread should be suspended (typically,
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when a high latency load or interprocessor communication
occurs). Finally, these calculi also commonly feature type
systems that not only allow checking the type safeness of
programs but also collecting important information for code
optimization, namely to minimize the amount of tokens used
in the computations [4], [13], [14].

We argue that process calculi provide a powerful
framework to reason about fine-grained parallel computa-
tions, allowing, for example, the construction of formally
verifiable systems, high-level programming idioms, and
optimizing compilers based on static type-checking infor-
mation. We present a small, asynchronous, kernel object
language based in a process calculus. From a programming
point of view, such languages are suitable to express
dataflow computations and, in particular, multithreaded
computations. The base process calculus is quite expressive
and many interesting programming idioms can be encoded
in its kernel form. These encodings, on the other hand,
provide a straightforward way of compiling high-level
programs into low-level, threaded code, thus exposed to the
ISA level. The asynchronous character of the calculus makes
the interleaved/parallel execution of threads a natural
choice. To formalize these ideas, we introduce a specifica-
tion for a multithreaded abstract machine that grows from
Turner's abstract machine for the asynchronous �-calculus

[27] and which possesses important runtime properties,
namely its soundness with respect to the base calculus and
the absence of deadlocks in well-typed programs.

The remainder of the paper is organized as follows:
Section 2 presents the Threaded TyCO calculus. Sections 3
and 4 present two multithreaded abstract machines for the
calculus. Sections 5 and 6 present some properties of both
machines. Section 7 describes an implementation for the
second abstract machine, namely the fundamental data
structures and the instruction set architecture. Section 8
describes a compilation scheme for languages, using the
calculus as an intermediate representation language. Final-
ly, Section 9 compares this approach to other related work
and issues some conclusions and future research directions.

2 THE THREADED TYCO CALCULUS

Typed Concurrent Objects, TyCO for short, is a form of the
asynchronous �-calculus featuring first class objects, asyn-
chronous messages, and polymorphic process definitions
[29], [31]. The calculus formally describes the concurrent
interaction of ephemeral objects through asynchronous
communication. This section recasts TyCO with a multi-
threaded dataflow flavor, whose main abstractions are
threads, tokens, and resources. We call the new calculus
TTyCO.

Below, for each syntactic category �, we let ~� denote the
collection �1; . . . ; �n and let ~� denote the sequence �1; . . . ;�n,
for n � 0. When n is 0, ~� is represented by " and ~� by a
space (' '). The difference between the collection ~� and the
sequence ~� is that we allow permutations on the former, but
not on the latter.2

Threads T are sequential compositions of atomic instruc-
tions. The syntax �~I� denotes a thread composed of a
sequence of instructions ~I. Concurrent composition of
threads is denoted by ~T . Threads constitute the unit of
concurrency in the calculus.

Instructions I are the constituents of threads and may
generate tokens or resources. Resources are pieces of code
whose execution is pending on the arrival of a token. A
resource may be an object x �M or a polymorphic thread
definition X � A. In each case, x or X is the tag of the
resource. We call x-tags object tags and X-tags thread tags.
Tokens are pieces of data that activate resources, ultimately
producing new threads. Tokens come in two flavors:
asynchronous messages x:lh~yi that invoke the method l in
an object resource tagged with x and an instance creation
Xh~xi that produces a copy of the thread tagged with X. A
final instruction, new x, allows the creation of a new tag in a
given thread.

Thread abstractions A and method maps M complete the
calculus. A thread abstraction �~x�T is simply a thread
abstracted on a sequence of object tags. Think of these tags
as the parameters of the thread; the token that activates a
resource X � A also provides the arguments for the thread.
Methods form the bodies of objects. They are maps (that is,
partial functions of finite domain) from labels into thread
abstractions. This time, the token that activates a resource
x �M must supply a label (to obtain an abstraction) and
the arguments (to obtain a runnable thread).

Given infinite disjoint sets for object tags (x; y; z), for
thread tags (X), and for labels (l), we write the full syntax of
the calculus as follows:

T ::� �~I� Thread
I ::� S j Xh~xi j new x Instruction
S ::� x �M j x:lh~xi j X � A Store

M ::� f gl � Ag Method map
A ::� �~x�T Abstraction:

We assume that the names in the sequence ~x of an
abstraction �~x�T are pairwise distinct. Also, in a sequence of
instructions X1 � A1; . . . ;Xn � An, we assume that tags Xi

are pairwise distinct. The reason why we identify a separate
category for store items S becomes clearer in the next
section as we describe an abstract machine to run TTyCO
threads.

To illustrate the syntax and main components of the
calculus, we sketch a small example of a polymorphic
buffer cell.

[
Cell = (self, value) [

self = {
read = (reply)[ reply.valhvaluei; Cellhself,valuei ],
write = (newval)[ Cellhself, newvali ]

}
];
new intcell; Cellhintcell, 5i;
new boolcell; Cellhboolcell, falsei;
intcell.writeh7i;
new r; boolcell.readhri;
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r = {val = (x)[io.printhxi]}
]

In the example, we define a thread abstraction, the Cell,
with two attributes: the location self and the value value of
the cell. The thread body is defined as a single object with
two methods, one for reading the current cell value and
another to change it. The recursion at the end of each
method keeps the cell alive after a reduction. TTyCO
inherits from TyCO a predicative polymorphic type-system
and, as a result, the Cell abstraction is polymorphic on the
attribute value. Next, we create two instances of Cell: one
with an integer attribute, the other with a Boolean attribute.
Finally, we write the value 7 in the intcell (originally with
the value 5); read the value from boolcell and wait for a
reply in tag r. When the reply message arrives, a new thread
is spawned that prints the value in the message.

3 A SIMPLE ABSTRACT MACHINE

This section presents an abstract machine for interpreting
TTyCO programs. The machine evolves by maintaining a
store of resources and tokens and analyzing the instructions
in each thread, from left to right. Resources for which there
are no matching tokens pending are moved to the store;
tokens for which there are no available resources are moved
to the store.

3.1 Machine States

A tag x is bound in the sequence of instructions ~I 0 in a thread
of the form �~I; new x;~I 0� and in the thread T of an
abstraction �~yx~z�T ; otherwise it is free. For tags denoting
thread definitions, the rule is slightly different. Given a
thread of the form �~I;X1 � A1; . . . ;Xn � An;~I 0�, each tag Xi

is bound in A1; . . . ; An and in ~I 0; otherwise, it is free.
A direct consequence of this definition is that, in a closed

program, when scanning the instructions in a thread from
left to right, a resource X � A always appears prior to a
token Xh~xi. On the other hand, since the creation of a new
tag x is decoupled from the creation of its resources, we
cannot guarantee that a resource x �M appears prior to a
token x:lh~yi. As such, instance creation tokens Xh~xi will
never find their way into the store, whereas message tokens
x:lh~yi may.

Our machine evolves by rewriting states into states. A
state of the machine is represented by a term

run ~T in ~S

denoting a pool of threads ~T running on a pool of available
resources and tokens ~S. We use the letter C to range over
states. Items in the store are a subset of the possible
instructions; this is the reason why we have anticipated a
separate subcategory S of instructions in the syntax of the
calculus.

We take the view that programs are closed for tags, that
is, the initial thread contains no free tags. We also assume
that all bound tags (object and thread) in the initial thread
are pairwise distinct. Given such a thread T0 we build the
initial state of the machine as

run T0 in ":

3.2 Structural Congruence

Following Milner [18], we divide the computational rules of

the calculus into two parts: the structural congruence rules

and the reduction rules. Structural congruence rules allow

the rewriting of terms until they are in the form required by

reduction, thus simplifying the presentation of the latter.
For �, a thread T , or a store item S, the structural

congruence relation is the smallest congruence relation on

states that include the following rules:

~� � ~�0 if ~� is a permutation of ~�0

��; ~T � ~T:

Notice that concurrency and nondeterminism are intro-

duced by allowing arbitrary permutations among threads

and items in the store. The second rule allows the garbage

collection of an empty thread.

3.3 Reduction

Given the notion of free tags described in Section 3.1, we

denote by f~x=~ygT the usual (capture-avoiding) substitution

of ~x for ~y in T . To extract the abstraction associated with

label l in a method map M, we use the notation M:l rather

than the conventional notation for maps M�l�. To apply an

abstraction to a sequence of object tags, we write

��~y�T �h~xi �def f~x=~ygT so that, when M is fl � �~y�T; . . .g, the

expression M:lh~xi stands for the thread f~x=~ygT .
Computation is driven by the interaction between

concurrent threads of execution. Each thread produces

new tags, tokens, and resources that interact with those

already in the store. New threads result from appropriate

matching between tags in the threads and in the store. Fig. 1

summarizes the rules. We denote by !� the reflexive and

transitive closure of the ! relation.
FORK-M: A method invocation x:lh~yi at the head of a

thread selects the method l of an object x �M in the store.

The matching is done via the name tag, here x. The result is

a new thread whose parameters have been replaced by the

arguments ~y. FORK-O: Inversely, an object x �M is

triggered by a message x:lh~yi waiting in the store. In each

case, the messages and objects are consumed. These two

forms of reduction are called communication.
FORK-D: Another form of reduction occurs when a new

instance Xh~xi at the head of a thread meets a definition

X � A in the store. The result is a thread whose parameters

have been replaced by the arguments ~x. Notice that the

resource is not consumed in the process; we would not have

unbounded computations otherwise. This form of reduction

is called instantiation.
STORE-O, STORE-M, STORE-D: When there is no match in

the store for a token or a resource appearing in a thread,

these are put into the store. The STORE rules must only be

tried after the FORK rules.
NEW: To create a new (object) tag, we rely on the set of

tags being infinite and pick one unused in the rest of the

state. Finally, rule STRUCT brings structural congruence into

reduction.
Analyzing the rules, we see that the machine halts when

the pool of threads empties. Final states are of the form

LOPES ET AL.: FINE-GRAINED MULTITHREADING WITH PROCESS CALCULI 3



run " in ~S:

We illustrate the dynamics of the simple machine by
executing the Cell example described in Section 2. Suppose
that the initial thread is run to the end. After nine reduction
steps (there are nine instructions in the initial thread), we
get the state

run [i={i/self,5/value}M], [b={b/self,false/value}M]
in Cell=A, i.writeh7i, b.readhr'i
for appropriate M and A taken from the example. We have
performed the substitutions {i/intcell}, {b/boolcell}, and {r'/r}
for three new rules. Next, we may run the two threads to
the end, to obtain

run [Cellhi,7i], [r'.valhfalsei; Cellhb,falsei]
in Cell=A, r'= {val = (x)[io.printhxi]}
Running the two new threads to the end, we get

run [i={i/self,7/value}M], [io.printhfalsei],
[b={b/self,false/value}M]

in Cell=A, i.writeh7i, b.readhr'i.
Finally, assuming that print forks no thread, the machine
halts at the state

run "

in Cell=A,i={i/self,7/value}M,b={b/self,false/value}M

with two cell objects and the cell thread definition in the
store.

3.4 Discussion

With respect to TyCO, we have traded the explicit parallel
composition of processes for the sequential nature of
threads, coupled with the nondeterminism in the selection
of a resource or a token (captured by the structural
congruence relation). Threaded TyCO is sound with respect
to TyCO; see Section 4 for details.

We have not said what happens to the machine when, in
the FORK rules, thread instantiation or method selection is
not defined. In fact, rule FORK-D can only fire if Ah~yi is
defined, that is, when the lengths of~z and ~y match, for A of
the form �~z�T . Rules FORK-M and FORK-O can only fire if l is
in the domain of M and Ah~yi is defined, for M�l� � A.
Fortunately, we can statically guarantee that such runtime
errors do not occur for a certain class of programs, exactly

those programs that are typable in a (decidable) type system

[28], [31]. For such programs, the abstract machine does not

deadlock, that is, it either halts or runs indefinitely [15].
To account for multithreading, we allow permutations

on threads via STRUCT rule. Notice that, at any point in the

execution of a machine, the running thread (the one at the

ªleftº of the pool) may be switched, by starting the next

reduction step with rule STRUCT (where the C � C0 part

switches the order of threads as desired). Such behavior can

be described by a rule of the form

run ~T1; T ; ~T2 in s! run T; ~T1; ~T2 in s:

Permutation on threads precludes the fairness of the

machine in the sense that any given instruction in any given

thread always gets executed, contrary to the case with the

machine proposed by Turner [27].

4 THE SIMPLE MACHINE IS SOUND

This section presents the TyCO process calculus, a proof

that the simple machine presented in Section 3 is sound

with respect to TyCO, and a discussion on the incomplete-

ness of the machine. The soundness result is important

since it tells us that the simple machine can be fully

simulated in TyCO (and, therefore, in the asynchronous

�-calculus), a crucial step in the development of a robust

machine specification.

4.1 Typed Concurrent Objects

The TyCO process calculus is quite similar to its threaded

version presented in Section 2. The main difference is that

threads are replaced by the parallel composition of

processes and that mutually recursive process definitions

are explicit.
Given infinite disjoint sets for names (x; y; z), for process

variables (X), and for labels (l), we write the full syntax of

TyCO as follows:
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P ::� 0 j P j P 0 j new x P Processes
x �M j x:lh~xi
def D in P j Xh~xi

D ::� gX � A Definitions
M ::� f gl � Ag Method Maps
A ::� �~x�P Abstractions:

Definitions D and method maps M are to be understood

as maps from process variables (respectively, labels) into

abstractions. The intended meaning of each constructor

should be evident from the discussion on TTyCO in

Section 2. The scope of the name introduced by new

extends as far to the right as possible in the same ways as

the scope of x in a thread �~I; new x;~I 0� encompasses the

whole ~I 0. Also, the scope of the process variables introduced

by def extends as far to the right as possible.
To be in line with the usual conventions in process

calculi, we have shifted terminology: we now call names to
object tags, and process variables to thread tags.

Contrary to TTyCO, processes need not be closed for
names and process variables. Name x is bound in the
process P of an abstraction �~yx~z�P or a scope restriction
new x P ; it is free otherwise. For each syntactic category �,
the set fn��� of the free names in an � is defined accordingly
and so is the usual (capture-free) substitution of ~x for~y in P ,
denoted f~x=~ygP . Given a process of the form
def X1 � A1; . . . ; Xn � An in P , each tag Xi is bound in the
abstractions A1; . . . ; An and in the process P ; it is free
otherwise. The set fv�P � of the free (process) variables in a
process P is defined accordingly. Alpha conversion, both for
names and for process variables, is defined in the usual
way.

Similarly to TTyCO, the operational semantics is given
by a reduction relation built on top of a structural
congruence. Here, structural congruence, also denoted � ,
is somewhat more complex than in TTyCO. It is defined as
the smallest congruence relation over processes that
includes alpha conversion and is induced by the rules in
Fig. 2, where � is a method map M or a definition D.

The first rule allows garbage collecting 0 processes and
states the commutativity and associativity of the parallel
composition operator. The next three new-related rules
allow garbage collecting names with empty scopes, com-
muting new statements, and extending the scope of new
over parallel composition, provided there is no capture of
names. Then, the four def-related rules account for the
garbage collection of definitions with empty bodies, for the

commutation of new and def, for the extension of the scope

of def over parallel composition, and for the coalescence of

process declarations, all avoiding the capture of free names

and free process variables.
The rules that define reduction are gathered in Fig. 3. The

dynamics of the two axioms, COMM and INST, can be

understood from that of rules FORK-M/FORK-O and FORK-D

of the simple machine for TTyCO (Section 3.3), respectively.

The next three rules allow reduction to happen underneath

parallel composition, name restriction, and definitions,

respectively. Finally, rule STRUCT brings structural con-

gruence into reduction.

4.2 Soundness

We translate states of the form

run ~T in D; ~S;

where ~S contains only objects x �M or messages x:lh~xi.2 It

should be easy to see that any state can be converted into a

structural equivalent of the above form. As such, in the

sequel, we reassign letter S to denote an object or a

message. The translation of machine states into TyCO

processes is as follows:

�jrun ~T in D; ~Sj� �def

new x1 . . . new xn def �jDj� in �j ~Sj� j �j ~T j�;

where x1; . . .xn are the free names in the state, that is, in
~T;D; ~S.

The maps �jDj� and �j ~Sj� are the homomorphic extensions

(to the respective monoids) of the map defined by the rules

�jX � Aj� �def
X � �jAj�

�jx �Mj� �def
x � �jMj�

�jx:lh~xij� �def
x:lh~xi

�j�~x�T j� �def �~x��jT j�
�jf gl � Agj� �def f gl � �jAj�g:

The map �j ~T j� is the homomorphic extension of the map

defined by the following rules:
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�j��j� �def
0

�j�x:lh~xi;~I�j� �def
x:lh~xi j �j~Ij�

�j�x �M;~I�j� �def
x � �jMj� j �j~Ij�

�j�Xh~xi;~I�j� �def
Xh~xi j �j~Ij�

�j�new x;~I�j� �def
new x �j~Ij�

�j�D;~I�j� �def
def �jD 2 �j~Ij�;

where, in the rule for �D;~I�, we assume ~I does not start with

an instruction of the form X � A.
For example, the state

run�x � fl � �y���g;x:lh1i� in x:lh2i �1�
is translated into a process structural congruent to

new x x:lh2i j x � fl � �y�0g j x:lh1i: �2�
We say that C converges to C0 and denote C # C0 if C !�

C0 and C0 6! . Then, the main result of this section may be

presented as follows:

Theorem 1 (Soundness).

1. If C ! C0, then either �jCj� � �jCj�0 or �jCj� ! �jCj�0;
2. If run T0 in " # C, then �jCj� 6! .

For the proof of the second clause, we need an auxiliary

result, namely, the simple machine preserves the invariant

that the store contains no redex.

Lemma 2 (Invariant). Call a pair of the form x �M;x:lh~xi a

redex.

1. If ~S contains no redex and

run ~T in ~S ! run ~T 0 in ~S0;

then ~S0 contains no redex.
2. If run T0 in "!� run ~T in ~S, then ~S contains no

redex.

Proof.

1. A simple induction on the derivation of a
reduction step.

2. A simple induction on the length of derivation,
noticing that the initial state run T0 in " is in the
conditions of the first clause. tu

We are now in a position to prove the main result.

Proof of Theorem 1.

1. By induction on the derivation of a reduction
step. An outline follows. For the axioms, the table
below summarizes the relation between �jCj� and
�jC0j�.

For the induction step, rule STRUCT, notice that

C � C0 implies �jCj� � �jC0j� since the maps �j ~T j�
and �j ~Sj� are homomorphisms and ��; ~T � ~T

matches 0; P � P .
2. Since C 6! , we know that C is of the form

run " in D; ~S, hence �jCj� is

new ~x def �jDj� in �j ~Sj�:
The result follows from the invariant 2.2. tu

4.3 Incompleteness

The map �jCj� from machine states into TyCO processes

described in the previous section is not complete. In fact,

there are reductions of processes �jCj� that cannot be

mimicked by the simple machine. One such process is

described by (2) in Section 4.2: �jCj� may reduce to

new x x:lh2i, but, due to the fact that STORE rules are

always tried after FORK rules, C ((1), same section) reduces

to run " in x:lh1i that translates into new x x:lh1i.
Further, nonhalted states may be translated into halted

processes. Take for C the state run x:lhi in ". Then, C

reduces (to run " in x:lhi), but �jCj� �def
new x x:lhi does not.

The rule employed in the reduction is STORE-M. In general,

it should be the case that, if �jCj� is halted, then C converges

by using rules other than the FORK rules.

4.4 An Alternative Machine

A variant of the simple machine is obtained by eliminating

the rule

STORE rules must be tried only after FORK rules.

We conjecture that such a machine is complete in some

particular sense. For example, the state described by (1) in

Section 4.2 now reduces in two steps (using rules STORE-O

and FORK-M) to run �� in x:lh2i, as required.
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Also, this small change in the machine invalidates the

invariant (Lemma 2) as redexes may now find their way

into the store.

5 THE ENVIRONMENT MACHINE

The machine proposed in Section 3 is still far from an

efficient interpreter: Substitutions are actually performed by

visiting the threads, the store is completely unstructured,

and the machine relies on the structural congruence relation

to bring forward the appropriate resource or token for a

given rule. This section presents another abstract machine

that avoids substitution and allows direct access to the

resources and tokens in the store.

5.1 States

An environment e is a map from object tags into object tags.

A thread closure c or Te is a pair composed of a thread T and

an environment e. We also need closures for resources since

these may go into the store. Abstraction closures Ae and

method closures Me are defined as for thread closures. We

evaluate closures �e such that the free tags in � are in the

domain of e.
The store, formerly a bag of resources and messages, is

given some structure, becoming a map s from thread tags X

into abstraction closures Ae and from object tags x into

queues q of method closures Me or of messages contents

lh~xi. A queue q can be regarded as a possibly empty list

�1 : . . . : �n; the empty queue being denoted by �. Queues

are not needed for thread definitions since the bindings in

the calculus (see Section 3) guarantee that there is at most a

definition X � A per thread tag X. Also, messages need no

accompanying environment since, when storing, we apply

the current environment.
The state of the environment machine is represented by a

term

run ~c in s;

denoting a pool of thread closures ~c running on a map s
from tags to the available resources and tokens. We use
letter E to range over environment states. Given a renamed
program T0 we build the initial state of the machine as
below, where ; denotes the empty environment:

run T0; in ":

5.2 Structural Congruence

Structural congruence is defined similarly to that of the
simple machine (Section 3.2). The difference is that it now
works only on the pool of threads. The structural
congruence relation is the smallest congruence relation on
states that includes the following rules:

~c � ~c0 if ~c is a permutation of ~c0

��e; ~c � ~c:

5.3 Reduction

For a given map � from elements � into elements , we use
the notation �f� :� g for the map �0 such that �0��0� is 
when �0 is � and is ���0� otherwise. Fig. 4 summarizes the
reduction rules for the environment machine. A synopsis of
the rules follows.

FORK-M: Given a message x:lh~yi in an environment e, we
look for a method closure Me0 at the head of the queue
associated with e�x�. Me0 is dequeued and a new thread
closure is created with the appropriate environment. This
environment is the environment of M everywhere, except at
the parameters ~z of the thread abstraction M:l that are
mapped into the arguments e�~y�.

FORK-O: Inversely, given an object x �M in an environ-
ment e, we look for a message lh~yi at the head of the queue
associated with e�x�. A new thread closure is created with
the appropriate environment; lh~yi is dequeued. FORK-D is
similar to FORK-M except that the abstraction closure is not
removed from the store.

STORE-O, STORE-M, STORE-D: These rules behave simi-
larly to their counterparts in the simple machine, the
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difference being that tokens and resources are now stored at
the tail of the queue associated with the tag. Also, object
tags need to be dereferenced through the environment. As
with the simple machine, the STORE rules must only be
tried after the FORK rules.

NEW: Instead of creating a new tag y and substituting
throughout the remaining thread ~I, we place a new binding
fx :� yg in the environment and a new entry fy :� �g in the
store (remember that � denotes the empty queue).

STRUCT: As in the corresponding rule for the simple
machine (Section 3.3).

5.4 Discussion

Because we have imposed a discipline (FIFO) in the access
to the resources in the store, the environment machine,
albeit sound, is not complete with respect to the simple
machine of Section 3 (hence, with respect to TyCO); see
Section 6 for details.

Also, given that FORK rules are to be tried before STORE

rules, the environment machine preserves the invariant
that, at any time during a computation, the queues in the
store are either empty or have only messages or have only
method closures [27]. This is the counterpart of the
invariant (Lemma 2) of the simple machine.

6 THE ENVIRONMENT MACHINE IS SOUND

This section presents a proof that the environment machine
of Section 5 is sound, but not complete, with respect to the
simple machine of Section 3.

We start by encoding a state of the environment machine
run ~c in s into a state of the simple machine run ~T in ~S. For
� a thread T , an abstraction A, or a method map M, denote
by e� the result of the application of the substitution e to �.
The translation of environment machine states into simple
machine states is as follows:

run ~c in s �def
run �j~cj� in �jsj�:

The map �j~cj� is the homomorphic extension, within the
appropriate monoids, of the map defined by the rule

�jTej� �def
eT :

When the domain of s is �1; . . . ; �n, the map �jsj� is
defined as follows:

�jsj� �def �j�1 � s��1�j�; . . . ; �j�n � s��n�j�
�jX � Aej� �def

X � eA
�jy � �j� �def

"

�jx � lh~xi : qj� �def
x:lh~xi; �jqj�

�jx �Me : qj� �def
x � eM; �jqj�:

For example, the environment state

run �x � fl � �y���g�fx=xg in x � lh1i : lh2i �3�
is translated into the simple state

run �x � fl � �y���g� in x:lh1i; x:lh2i: �4�

We are now in a position to present the main result of

this section.

Theorem 3 (Soundness).

1. If E ! E0, then �jEj� ! E0;
2. If run T0; in " # E, then �jEj� 6! .

Proof.

1. By induction on the structure of a reduction step.
Rules in the simple and in the environment
machine are in a one-to-one correspondence.

2. Similar to the proof of the second clause of
Theorem 1, this time using the invariant dis-
cussed in Section 5.4. tu

The environment machine is not complete with respect

to the simple machine (hence, with respect to TyCO) since

we now impose a discipline in the access to the store. In

fact, there are reductions of the simple machine that cannot

be mimicked by the environment machine. For example, the

simple state �jEj� described in (4) above may reduce to state

run �� in x:lh1i, whereas E (3) can only reduce to state

run �� in x:lh2i.

7 IMPLEMENTATION

We propose an implementation that closely follows the

specification of the abstract machine in the previous section.

1. Each thread T is compiled into a block of contiguous
instructions. The machine starts with the initial
thread (the program) and an empty store, that is,
with the initial state run T0; in �.

2. The store s is implemented with a heap data-
structure. The environment e of a thread T is
implemented as a table in the heap and is copied
into registers when T is running.

3. Resource closures, Me and Ae, are implemented as
pairs residing in the heap and composed of a
reference to a piece of code, the dispatch table for
M or the code for A, and a table holding the
environment e.

4. The code for an abstraction A is just a block of
contiguous instructions; that of a method map M is
composed of a dispatch table followed by the code
for each method.

5. Tokens Xh~xi, y:lh~xi are implemented as tables in the
heap holding the arguments ~x (plus the label l in the
case of messages).

6. Thread closures Te0e00 in the pool have environments
divided in two tables, arguments e0 and free
variables e00 coming, respectively, from a token and
from a resource (see rules FORK).

7. A new thread closure, c, is added to the thread pool
when a fork occurs. New threads can be started
when the current one ends (rule GC) or when a
context switch occurs (rule SWITCH).

8. The machine halts when the thread pool is empty,
that is, when the final state run � in s is reached.
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7.1 Machine Architecture

We propose a heap based machine architecture (Fig. 5).
Each thread keeps a small amount of state in its environ-
ment, namely, the program counter and the location of the
arguments and free variables in the heap. Global registers
keep track of the top of the heap and of the limits of the
thread pool. Each instance of the program counter register
points into the program area where the code for the
complete program is stored. A set of generic registers,
denoted %i, %j, where i, j are nonnegative integers, is
used to keep the instruction operands. We assume the
number of registers to be as large as needed. Hardware or
software techniques such as register renaming or register
windows may be used to provide this illusion in the real
world. Data is moved between the heap and machine
registers by common load/store instructions. Thus, in a
sense, the instruction set architecture defined below is
RISC-like.

The program area keeps the code for the program, the
byte-code for thread T0, to be executed. The code is divided
in thread blocks and dispatch tables for objects. The heap is a
flat address space where dynamic data-structures are
allocated. Space is allocated in blocks of contiguous
machine words called frames. The machine manipulates
three basic data-structures at runtime: tags (x), tokens
(Xh~yi, lh~yi), and resources (M, A). Tags index shared queues
of message tokens lh~xi and of method closures Me. Message
tokens are implemented as frames holding the label l plus a
variable number of arguments ~x. Method closures Me are
implemented as frames holding a reference to a dispatch
table plus an environment table for the free variables in M.

The thread pool implements a collection of thread closures
~c ready for execution. It is used to account for the limited
resources and performance considerations present in real

machines, imposing an upper bound on the number of
simultaneously active threads. Each thread closure, Te0e00,
holds a reference to the piece of code for T in the program
and references to the parameter (e0) and free variable (e00)
environments in the heap. A new thread, resulting from a
FORK, inherits its environment from the token and the
resource and is placed in the pool waiting to be scheduled
for execution.

Environment variables, x, introduced with NEW are
initially bound to empty queues in the heap and allocated to
generic machine registers. They are discarded after the
thread terminates. Despite their short life span, the tags they
are bound to may continue to exist long after the thread
ends. This is accomplished, for example, when a tag is sent
as an argument to a message targeted outside the scope of
the tag, thus escaping the context of the current thread.

7.2 Special Registers

The machine uses a small set of global registers to control
the main data-structures, namely the heap and the thread
pool. Register %hp (Heap Pointer) points to the next
available position in the heap. Registers %eq and %sq keep
the boundaries of the thread pool. The environment of each
thread is kept in three special local registers. Register %pc
(Program Counter) points to the next instruction to be
executed in the thread. When a program starts, register %pc
is loaded with the address of the first instruction of the
main thread. Registers %f (free variable environment) and
%p (parameter environment) are used to hold references to
the free variable and parameter environments, respectively.

7.3 Instruction Set Architecture

The core instruction set is described below.

frm %i,n Frame allocation
new %i Queue allocation
lw %i,k(%j) Load
sw %i,k(%j) Store
forko %i,%j Fork on object
forkm %i,%j Fork on message
forkd X,%i Fork on definition
switch n Thread switch
newt Load new thread

Heap allocation instructions allocate space for data-
structures. frm %i,n allocates a frame of size n in the
heap and keeps a pointer to it in register %i. new %i creates
a new queue in the heap and keeps a pointer to it in the
register %i.

Load/Store instructions move data from the heap into
registers and vice-versa. lw %i,k(%j) copies the word at
the heap frame pointed to by %j and at offset k to the
register %i. sw %i,k(%j) copies the word at the register %i
to the heap frame pointed to by %j, at offset k.

Fork instructions implement reduction. forkd X,%i

creates a new thread running the code labeled by X and
parameters pointed to by register %i. forko %i,%j takes
an object at a frame pointed to by register %i and tries to
reduce at the tag pointed to by register %j. forkm %i,%j

takes a message at a frame pointed to by register %i and
tries to reduce at the tag pointed to by register %j.
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Multithreading instructions manage the execution of the
multiple threads generated by the machine at runtime.
switch n performs a context switch to the nth thread in the
pool and places the current thread back in the pool. newt
terminates the execution of the current thread and loads a
new one from the pool.

The three fork instructions are illustrated in Fig. 6. A
forkd immediately creates a new thread that is added to
the thread pool. A forko instruction generates a method
closure that requires an extra message token to produce a
runnable thread. When (if) such a message arrives, a new
thread is activated and is added to the pool. Finally, forkm
instructions generate message tokens that remain in the
heap waiting for a suitable object resource. When this
happens, a new thread is added to the pool.

These instructions are then complemented with the usual
set of control flow instructions, including relative and
absolute jump instructions, to control the flow within a
thread and primitive instructions for arithmetic and logic
operations. All these instructions are register-to-register, as
is usual in RISC designs.

8 MULTITHREADED CODE

This section sketches the compilation of high level
programming languages into the TTyCO calculus and,
finally, into the assembly of the abstract machine. We claim
that TTyCO can be used as an effective intermediate
representation language for many high level idioms and
that this translation allows implicit parallelism to be
exposed in the form of multithreaded programs.

Several idioms have been encoded into TTyCO, namely a
functional core [28], an idiom for client-server/session
based computing [12], and a language with support for
distribution and code mobility [30]. In the sequel, we will
use an example from a functional language to describe the
compilation scheme for TTyCO. The example consists of the
well-known map function applied to a tree structure.

datatype Tree = { bud, leaf Int, node Tree Tree }

fun map f t = case t of {
bud = bud,
leaf n = leaf (f n),

node l r = node (map f l) (map f r)
}

The above definition can be encoded into a TTyCO

program by a straightforward encoding [28]. We get the

following intermediate representation:

t0[
Map = (f,t,map-reply) t1[

new case-reply; t.valhcase-replyi;
case-reply = {

bud = () t2[
new x; Budhxi; map-reply.valhxi

],
leaf = (n) t3[

new x; f.valhn,xi;
x = {val = (v) t5[

new y; Leafhy,vi; map-reply.valhyi
] }

],
node = (l,r) t4[

new x; Maphf,l,xi;
new y; Maphf,r,yi;
x = {val = (lt) t6[

y = {val = (rt) t7[
new z;Nodehz,lt,rti;map-reply.valhzi

] }
] }

]
}

]
... // use map

]

The Assembly Layout closely follows that of the source

programs in the sense that threads constitute the main

organization block for the code. The code for nested threads

in an assembly program is flattened. A typical code block

for a thread �I1; . . . ; In� is shown below:

thread label [

load arguments

load free variables

code for I1

...
code for In
get new thread

]

Each thread is identified by a unique label. Notice that

the only occasion where lw instructions are used is at the

beginning of the execution of a thread, except for eventual

spilling events. The code for each of the instructions Ii is

composed of a sequence of basic machine instructions.
Compiling objects requires the use of dispatch tables.

They appear in between thread blocks in the assembly code

and are identified by unique labels. Each label in such a

sequence holds a pointer to the code of some method in an

object.

label � fl1; . . . ; lng
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The Compiler is fairly typical in that it recursively
flattens the nested threads in the TTyCO encoding of the

high level construct into a sequence of independent, single

code block, threads.
The breakup into threads is very noticeable in the

intermediate TTyCO code and is even more apparent when
we proceed one further step and compile it to our target

instruction set architecture. Here is the code for the central

object controlling the case statement:

o1 = { t2 , t3, t4 } // the dispatch table

thread t2 [ // the bud case

lw %0,1(%f) // map-reply

new %1 // new x

frm %2,1

sw %1,0(%2)

forkd Bud,%2 // Bud<x>

frm %3,2

sw 0,0(%3)

sw %1,1(%3)

forkm %3,%0 // map-reply.val<x>

newt

]

thread t3 [ // the leaf case

lw %0,0(%p) // n

lw %1,0(%f) // f

lw %2,1(%f) // map-reply

new %3 // new x

frm %4,3

sw 0,0(%4)

sw %0,1(%4)

sw %3,2(%4)

forkm %4,%1 // f.val<n,x>

frm %5,2

sw t5,0(%5)

sw %2,1(%5)

forko %5,%3 // x={val= (v)t5[...]

newt

]

thread t4 [ // the node case

lw %0,0(%p) // l

lw %1,1(%p) // r

lw %2,0(%f) // f

lw %3,1(%f) // map-reply

new %4 // new x

frm %5,3

sw %2,0(%5)

sw %0,1(%5)

sw %4,2(%5)

forkd Map,%5 // Map<f,l,x>

new %6 // new y

frm %7,3

sw %2,0(%7)

sw %1,1(%7)

sw %6,2(%7)

forkd Map,%7 // Map<f,r,y>

frm %8,3

sw t6,0(%8)

sw %3,1(%8)

sw %6,2(%8)

forko %8,%4 // x={val= (lt)t6[...]

newt

]

9 CONCLUSIONS AND FURTHER WORK

Multithreading is an important technique that is very likely
to migrate to hardware in the next generations of micro-
processors, opening new possibilities in the exploitation of
fine-grained parallelism in applications. From a program-
ming point of view, process-calculi provide a suitable
paradigm not only to formally model such systems but also
to provide compilation schemes that naturally break down
high level programs into ISA level threaded code particu-
larly suitable for these hardware architectures.

The programming languages more akin to TTyCO also
derive from the realm of the process calculi. Pict [24] is a
pure concurrent programming language based on the
asynchronous �-calculus. The runtime system is based on
Turner's abstract machine specification [27]. The basic
programming abstractions are processes and names (tags).
Processes communicate by sending values along shared
names. Objects in Pict are less efficient than in TTyCO. They
require more heap space and have a more complex method
invocation protocol, involving two messages. Turner's
machine also uses replication for persistent data, producing
substantially more heap garbage than TTyCO, which uses
recursion.

Another related language is Join, an implementation of
the Join calculus [9]. Names (tags), expressions, and
processes are the basic abstractions. Join programs are
composed of processes, communicating asynchronously on
names and producing no values, and expressions evaluated
synchronously and producing values. Join introduces a
powerful extensionÐthe join-pattern. Patterns combine
names, input processes, and replication into a single
construct. A join-pattern defines a synchronization pattern
between input processes waiting on a collection of names.

On the more conventional side, Cilk is the project most
akin to ours. Cilk [5] is an efficient multithreaded runtime
system developed at MIT. Cilk computations may be
viewed as directed acyclic graphs that evolve in time.
Programs are composed of a sequence of procedures, each of
which is broken into a sequence of one or more threads.
Threads are nonblocking, which means a thread cannot
spawn children and wait for their results. The computation
evolves in a data-flow fashion. The Cilk language is an
extension to C that provides an abstraction of threads in
explicit continuation-passing style. Cilk programs are
preprocessed to C code and then linked with a runtime
library.

Currently, we have a sequential implementation of a
fine-grained, object-based language based in the TTyCO
calculus. This kernel language features objects, asynchro-
nous method invocations, and threads as main abstractions.
The language is strongly, implicitly typed and supports
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parametric polymorphism. The abstract machine is imple-
mented in the form of a compact, portable, and self-
contained byte-code emulator. The semantics is provided
by the formal model presented in Section 5, which itself
grows from Turner's work on the �-calculus. The main
novelty is the introduction of explicit threads as computa-
tional units. This makes compiler support for very fine-
grained multithreading possible as it exposes parallelism at
the ISA level.

We have shown, through a set of experiments, that our
implementation is quite efficient even by comparison with
systems that compile directly to C or native code [15], [16].
TTyCO performs close to Pict [24] and Oz [26] in programs
that are mainly functional, whereas, in programs with
nontrivial object data structures, it outperforms them both
in speed and heap usage.

The work on the TTyCO language focuses on three areas.
First, we aim at implementing a fully multithreaded system
starting from the current sequential implementation. Using
this model, we wish to study the opportunities for fine-
grained parallelism, namely in the presence of simple
interleaving and true thread parallelism. Finally, an inter-
esting point concerns the implications of multithreaded
execution in the development of type systems that could
allow interesting type driven optimizations.
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