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Abstract

In this paper, we outline a general picture of our ongoing work on a compilation and execution framework
for a class of multicore CPUs [10,21,22]. Our focus is to harness the power of concurrency and asynchrony
in one of the major forms of multicore CPUs based on distributed, noncoherent memory [22], using the
well-known technology of type-directed compilation [19]. The key idea is to regard explicit asynchronous
data transfer among local caches as typed communication among processes. By typing imperative processes
with a variant of session types [12,26], we obtain both type-safe and efficient compilation into processes
distributed over multiple cores with local memories.

1 Backgrounds

1.1 Concurrency at the Cores of Computing

In spite of the applications’ increasing reliance on distributed components in the
Internet and the world-wide web, the basic computing paradigm in software de-
velopment has been centring on monolithic, predominantly sequential code. This
fits our hardware, which is a virtually monolithic Von Neumann Machine (VNM),
even though interactions with the distributed services often necessitate the use of
concurrent threads inside a program.
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It is only during the last decade that limiting physical parameters in VLSI man-
ufacturing process [10,21,23] started to push a fundamental change in the internal
environment of computing machinery, from monolithic Von Neumann architectures
to concurrent ones, the so-called chip-level multiprocessing (CMP from now on), giv-
ing rise to CPUs with multiple cores. A multicore CPU is most effectively utilised
by having multiple modules running concurrently, even inside a single application.
Combined with the increasing reliance on distributed components through web ser-
vices and sensor networks, computing is now becoming concurrent inside out.

1.2 A Machine Model for CMP

Following the standard dichotomy in parallel computer architecture [6], a multicore
CPU can be categorised in the spectrum ranging from SMP-like coherent cache
architecture, cf. [16,28], to distributed, non-coherent memory, cf. [22]. In the former,
memory coherence is maintained across multiple cores, while in the latter, sharing
of data among cores is performed by explicit instructions on non-uniform memory
space. This second form is often found in multiprocessor system-on-chips (MPSoCs)
for embedded systems, one of the areas where multicore CPUs are being effectively
deployed centring on a flexible on-chip interconnect.

A non-uniform cache access can be realised by different methods such as cache-
line locking. One basic method employs direct asynchronous data transfer, or Direct
Memory Access (DMA), to an on-chip memory local to each core. A central observa-
tion underlying this approach is that trying to annihilate distance (i.e. to maintain
strict coherence) is too costly, reminiscent of the observations that coherent dis-
tributed shared memory over a large number of nodes in a cluster is hard to provide
as a hardware-level interface to programmers. Thus we regard CMP as distributed
VNMs, without built-in memory coherence mechanisms, along the lines of the LogP
model [5] and PGAS [4].

Because of its efficiency and flexibility, this framework is widely used in MPSoC
for embedded systems, including a major multicore chip [22]. It is a natural model
when we consider CMP as a microscopic form of distributed computing, suggest-
ing its potential scalability when the number of cores per chip increases. Further
it can realise arbitrary forms of data sharing among cores, and in that sense it
is general-purpose. Being efficient and general-purpose, however, this computing
model is also known to be extremely hard and unsafe to program. Indeed, the very
element that makes the major mode of data sharing in this model, DMA, fast and
general-purpose, also makes it unwieldy and dangerous: it involves raw writes of
one memory area to another, asynchronously issued and asynchronously performed.
Communications programming is hard even with high-level, type-safe languages,
leading to bugs such as synchronisation errors and deadlocks. Communications on
distributed CMP are untyped operations which directly (and asynchronously) write
byte sequences to regions of cores’ memories, so that errors in communications eas-
ily destroy the work being conducted in multiple cores. It is thus paramount for
exploiting the power of distributed CMP that we can guarantee safe data transfer
(DMA communication) without compromising its efficiency.

While there are other challenges in programming distributed memory CMP, we
identify this issue as a central one, whose solution may offer a basis for solving other
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issues. In the following sections we shall argue for the use of types for interaction for
addressing this issue. Throughout the discussions we consider an idealised model
along the lines of [5], where a chip consists of multiple isomorphic VNMs, of the
same ISA and each with its own memory. Data sharing is through a basic form of
DMA, asynchronous copy of possibly multiple contiguous words from one memory
to another. For simplicity we do not take into consideration either the size of local
memory or the maximum unit of transfer [5], and discuss only a so-called “push”
version of DMA (cf. [22]).

2 From Applications to Typed Communicating Pro-
cesses

2.1 A Type-Directed Compilation Framework

One of the key features of CMP in general, including cache-coherent and distributed
memory variants, is its versatility to host a variety of applications, in size, in gran-
ularity of parallelism, and in the shape of control and data flows. Such applications
may be written using domain specific languages [17,25]. How can we translate these
high-level applications to executables for CMP? The basic idea of our approach is
to stipulate typed communicating processes as a language for an intermediate com-
pilation step, and perform a type-directed compilation [19] onto a typed machine
language for CMP. Schematically:

high-level concurrent languages (L2)

4

typed imperative processes (L1)

4
typed CMP executable (LO)

Above LO, L1, L2 refer to abstraction levels. Each |} stands for one or more type-
preserving compilations. A central idea of the proposed framework is the use of, at
L1, an intermediate concurrent imperative language with types for channel-based
conversations, combined with typed shared memory primitives. For communication
types, it uses a variant of session types [12,26] for multiparty interactions [2,3,13],
into which existing high-level session types can be easily translated, and which
allows efficient and safety-preserving compilation to distributed CMP primitives.
Types at L1 will be generated from types in L2 together with interaction structures
arising in the translation process, as we shall illustrate with a concrete example
below.

2.2 Streaming Example

We take the simple program for stream cipher [24], depicted in Figure 1. Data
Producer and KeyProducer continuously send a data stream and a key stream re-
spectively to Kernel. Kernel calculates their XOR and sends the result to Consumer.
A high-level specification of such an example — specifying kernels and their connec-
tions through asynchronous streams as Kahn’s networks — can be written using a
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Data Producer

Key Producer \_/

Fig. 1. A simple program for stream cipher

DSL for streaming [17,25], which we omit. Our purpose is to translate this program
to a type-safe low-level program for distributed memory CMP.

2.8 Processes with Session Types

We use imperative processes with session types [12,26] as an intermediate language.
Our motivations are two-fold. First it offers an effective source language for compi-
lation into a typed assembly language for CMP, as we shall outline soon. Secondly
it offers an expressive target language into which we can efficiently and flexibly
translate different kinds of high-level programs. This latter aspect is based on the
observation that many concurrent and potentially concurrent programs (such as a
streaming example above) can be represented as a collection of structured conver-
sations, where we can abstract the structure of data movement in their programs
as types for conversations.

Below we show a process representation of the streaming algorithm given above.
In order to illustrate the key ideas, we use a simple translation scheme. In practice
we use a slightly more complex, and more efficient, translation, which we shall
briefly discuss at the end. The kernel initiates a session:

Kernel % def K(d, k,c) = d¥); k!(); d?’(z); k2 (y); &(); ¢z xor y); K(d, k, c)
in a(d, k,c).K{d,k,c)

Observe that the channels d and k are used for Kernel to receive data and keys from
Data Producer and Key Producer, respectively. Before receiving, Kernel notifies
Data/Key Producers that it is ready before receiving data/keys. Such an insertion of
a notification message before the reception of datum is essential for safe translation
into DMA operations, since without them, a datum may be written to a memory
region while that region is being read and/or written by a local process, leading
to inconsistent values. Note also these signals are necessary even when we use the
class of streaming languages with the most regular behaviour such as static and
cyclo-static data flow languages.

During the compilation of stream programs, we also perform standard strip
mining [18], transforming streams into strips of large chunks of data (above, x and
y may as well contain large arrays, say 16KB).

The channel c is used for Consumer to receive the encrypted data from Kernel,
which is also used for notifying its readiness to receive the data. The keyword def
denotes a recursive process; a(d, k,c) is a session initiation establishing a session
between the three parties; d?(x) is an input action at d; and ¢!{(x xor y) is an output
action at c.
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DataProducer and Consumer can be given as follows.

DataProducer % def P(d, k, c) = d?(); d!(data)P(d, k, c) in a(d, k, ¢).P(d, k, c)
Consumer ' def C(d, k,c) = cl) &(data); C{d, k,c) in a(d,k,c).C{d, k,c)

KeyProducer is identical to DataProducer except that it outputs at k rather than
at d.

In all these processes, we assume that output actions of these processes are
asynchronous (no blocking), and that input actions are synchronous. When these
three processes are composed, messages are always consumed in the order they are
produced because of the linearised usage of each channel.

The exchange of messages as above forms a “conversation” among processes,
with a precise structure: this structure we abstract below as a type. The session
type of the Kernel is given as:

T = pt.d!(); k! ();d? (bool); k7 (bool); ¢? (); ! (bool); t

Above pt. T represents a recursive type, k7 (bool) (resp. k! (bool)) denotes the input
(resp. output) of a value of bool-type, and T';7” denotes a sequencing. The type
of the DataProducer is given as pt.d? ();d! (bool);t. Similarly for KeyProducer
and Consumer. Safe parallel composition of communicating code is guaranteed by
checking duality of types: the type of the Kernel and one of the DataProducer
are dual to each other at d, so that there is no communication error occurs at d.
Similarly for k and c.

3 Compiling Typed Processes to Asynchronous CMP

3.1  Type-Directed Compilation

Processes with session types are guaranteed to follow rigorous communication struc-
tures, given as types. By tracing a session type, we know beforehand what and when
process will send and receive as messages, as well as the target remote addresses of
these communications. Using this information, we can replace each message passing
in a typed processes with a direct remote write to the address of a variable in a
core’s local memory in a multicore chip. Since our purpose is to have type-safe
compilation, we use a prototypical programming language targeted at distributed
memory CMP and NoC [1,7], which we call LO for brevity. LO is based on the C
programming language, and features, among others:

* A two-level code structure where the outer level (called a section) encompasses
all the code to run at a core, and the inner level conventional C functions and
variable/data declarations;

* a new type, place, denoting a core; and

e primitives to acquire (the address of a) core (newPlace), to launch a new thread
at some core (spawn), to obtain the current core (here), to asynchronous copy an
array into some other core via DMA (put), and to wait for the completion of an
incoming DMA operation (wait).
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typedef int[1024] Buffer;

typedef struct {} Sync;

typedef struct {Sync xxsync, Buffer xbuffer} Consumerlnit;

typedef struct {Buffer xxbuffer, Sync xsync} Producerlnit;

typedef struct {Producerlnit xdata, Producerlnit xkey, Consumerlnit xcons}
Kernellnit;

section Main () {
void main () {

place mainPlace = here();
place dataProducer = newPlace();
place keyProducer = newPlace();
place consumer = newPlace();
Kernellnit a0;
spawn Kernel(&a0, mainPlace ,dataProducer , keyProducer ,consumer) at mainPlace;
wait(&a0); // session initiation
spawn DataProducer(a0.data, mainPlace) at dataProducer;
spawn KeyProducer(a0.key, mainPlace) at keyProducer;
spawn Consumer(a0.cons, mainPlace) at consumer;

1

section Kernel (Kernellnit *xa0, place mainPlace, place dataProducer,
place keyProducer, place consumer) {
Producerlnit al, Producerlnit a2, Consumerlnit a3;
Buffer keys, Buffer buffer, Sync sync;
void main ()
put({&al, &a2, &a3}, a0, mainPlace); // begin session initiation
wait(&al); wait(&a2); wait(&a3);
put(&buffer, al.buffer, dataProducer);
put(&keys, a2.buffer, keyProducer);
put(&sync, a3.sync, consumer); // end session initiation
loop: {
put({}, al.sync, dataProducer);
put({}, a2.sync, keyProducer);
wait(&keys); wait(&buffer);
foreach (i: 0..1023) buffer[i] = buffer[i]
wait(&sync);
put(buffer, a3.buffer, consumer);
jump loop;

keys[i];

33

section DataProducer (Producerlnit xal, place kernel) {
Sync sync, Buffer buffer, Buffer xkernelBuffer;
void main ()
put({&kernelBuffer , &sync}, al, kernel); // begin session initiation
wait(&kernelBuffer); // end session initiation
loop: {
foreach (i: 0..1023) buffer[i] = get_byte()
wait(&sync);
put(buffer, kernelBuffer, kernel);
jump loop;

133

section Consumer (Consumerlnit *a3, place kernel) {
Buffer buffer, Syncx sync;
void main () {
put({&sync, &buffer}, a3, kernel); // begin session initiation
wait(&sync); // end session initiation
loop: {
put({}, sync, kernel);
wait(&buffer);
printf("\nBuffer:\n");
foreach (i: 0..1023) printf("%d ", buffer[i]);
jump loop;

33

Fig. 2. LO code for the streaming example (key producer is similar to data producer)
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Figure 2 presents one possible result of compiling our running example into LO.
As we observed, all typed message passing is replaced by DMA primitives, using
addresses of the variables in the local memory of a target core for remote asyn-
chronous write operations, where the addresses are shared by a session initiation
protocol, which describe below.

Section Main defines a program comprising a single procedure, necessarily named
main. The program is intended to be uploaded at some core and the execution of
the main function started. The first spawn instruction in Main.main copies section
Kernel into the core obtained previously via a call to the newPlace() primitive (which
we assume to block if no core, which may as well be virtualised, is available), and
launches the execution of function Kernel.main.

The session initiation protocol works as follows: Kernel writes in variable a0
(received from Main at spawn time) a struct with space for three fields to be filled by
the two producers and the consumer. These fields are then passed to the respective
places at spawn time. At this point each of the producers/consumer knows the
remote address of a variable in the kernel. These cores can now write in kernel
variables the addresses of the data-structures that are to be shared later, so that
these components can communicate by writing to these shared addresses (for which
the lack of conflict, or racing, is guaranteed by session types).

The data producer section comprises a buffer to hold its data, an empty struct
used as a notification message for safe DMA operation, and a single function (nec-
essarily named main). After session initiation, the core running this program fills
its buffer, waits for a clearance to proceed from the kernel, wait(&sync), and puts
its buffer in the kernel’s memory with a put instruction.

The kernel program declares two buffers (one incoming, another incoming/out-
going). After session initiation, the kernel signals the producers that its buffers can
now be written (the two first put instructions in the loop), and waits for the com-
pletion of the DMA operation (the two next wait instructions). Then fills its buffer
with the XOR of data and key and proceeds to write in the consumer memory,
following the same wait-put protocol used by the producers before writing on the
kernel’s memory.

The consumer should be easy to understand; the code for the key producer,
absent, is similar to the data producer. We have developed a prototype compiler
for LO; the code in Figure 2 was run on a 3 blades of model QS21.

3.2  Shared Channels

The example under consideration does not use shared access to main memory. How-
ever, it is natural that a program which accepts multiple requests at a shared chan-
nel (located at main memory), receives a request, then forks a thread to one of the
available cores. Generally this demands multiple clients to invoke a shared channel
concurrently. In this and related schemes, a shared initial channel can be effectively
realised by the combination of traditional load and store instructions together with
mutual exclusion primitives (lock [29] or compare and swap) and DMAs.
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Our approach is based on a simple premise: session types offer rigorous abstraction
of conversation structures, and, as far as concurrent programs can be represented
as a collection of conversations, we can use their types in order to realise these con-
versations through asynchronous data transfers among local memories of multiple
cores. Processes offer readable, transparent program structures, as well as a target
of translation, and types guarantee type-safety of compiled code, including the lack
of data corruption in spite of direct data transfers to memory regions of local cores.

There are several topics which we could not discuss in this paper. We however
briefly touch one topic, which is important for practice. The process-based repre-
sentation of streaming programs we presented in the previous section is inefficient
due to the lack of asynchrony: the processing and transfer of data are done strictly
in turn, so that processors waste time whenever transfer is taking place. Thus it
fails to make the best of throughput inherent in distributed memory CMP. We thus
transform the protocol structure slightly.

For brevity we consider three-party interactions, from a single source to the
kernel to the consumer, and only present the session type of the kernel. Let s be a
channel used for data-transfer with the right-hand side, while k is with the left-hand
side; and “s < ReadyA;” (resp. “s > ReadyA”) sends (resp. receives) a signal which
tells A is empty.

5 <l ReadyA; s <1 ReadyB;
ut.s? (T); k > ReadyA; k! (T'); s < ReadyA; s7 (T'); k > ReadyB; k! (T'); s < ReadyB; t

This type says: first it sends signal to s; then it gets the data into A from s; once
the data transfer is completed and it gets the signal to tell A is free from k, then
it starts transferring the data to k; similarly for B. But we do not wish to wait for
A to receive the signal from the right-hand-side to start receiving the data into B
from the left-hand-side via s. In fact, using the subtyping relation discussed in [20],
the following type can match with the above type.

pt.s > ReadyA; s > ReadyB; s! (T'); s! (T'); t

This scheme is essentially the standard double buffering technique used in stream/-
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media processing and high-performance, multicore computing [14,15]. We depict its
general protocol structure in Figure 3. Using the new session type, stream programs
can now get compiled into their (type-safe) double-buffering implementations. Here
processing can be continuously done while communications (data transfer by DMA)
are being performed, while synchronisation signals are making these communica-
tions safe. Thus we obtain both the type and communication safety and efficiency
comparable to the standard untyped double buffering code. Observe also that, while
this new translation does change the communiction behaviour of each component,
the whole application still preserves the same input/output behaviour.

5 Conclusion

The transformation of the initial simple translation into the one based on double
buffering suggests flexibility in compilation and execution of concurrent programs in
CMP and other extremely concurrent computing environments, opening new oppor-
tunities and challenges. We need more flexibility and generality in type structures
for capturing varied protocols (for example our recent aforementioned work [20]
discusses a subtyping relation on multiparty session types which are generalised to
capture asynchrony as found in the double buffering process above), new compi-
lation and static analysis techniques, new runtime architectures which can cater
for, for example, dynamic allocations of hardware resources to processes, and new
abstractions. Research from multiple directions (here we only refer to [4,8,9] among
many closely related and/or complementary works) will be needed to explore the rich
field of structured concurrent programming. We expect that basic type structures
associated with language constructs will play a fundamental role in this problem
domain, based on which other analysis and validation methods can be exploited.

We are currently working on the experiments of the general framework pro-
posed in the present paper. It centres on a simple imperative concurrent language
equipped with multiparty session communications and their types, which is close to
the language we discussed in Section 3. The language, combined with two other as-
sociated languages, is intended to serve as an intermediate language (roughly of level
L1 in Section 2), to which typed high-level concurrent languages such as X10 [4],
StreamlIt [27] and others are compiled into. The details of this language and its
typing system are discussed in the full version [11]. Among others, the framework
implements a series of type-directed translation steps from high-level typed con-
current languages into C-code targeted at the Cell architecture, using IBM’s QS21
blade servers and their compiler architecture.
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