
A linear account of session types in the pi
calculus

Marco Giunti1 and Vasco T. Vasconcelos2

1 Faculty of Planning, University IUAV of Venice
2 LaSIGE, Faculty of Sciences, University of Lisbon

Abstract. We present a reconstruction of session types in a conven-
tional pi calculus where types are qualified as linear or unrestricted. Lin-
early typed communication channels are guaranteed to occur in exactly
one thread, possibly multiple times. We equip types with a constructor
that denotes the two ends of a same communication channel. In order to
assess the flexibility of the new type system, we provide three distinct
encodings (from the linear lambda calculus, from the linear pi calculus,
and from the pi calculus with polarized variables) into our system. For
each language we present operational and typing correspondences, show-
ing that our system effectively subsumes the linear pi calculus as well as
foregoing works on session types.

1 Introduction

Session types allow a concise description of protocols by detailing the sequence of
messages involved in each particular run of the protocol. Introduced for a dialect
of the pi calculus [6, 13], the concept has been transferred to different realms,
including functional and object-oriented programming and operating systems;
refer to [3] for a recent overview.

By way of motivation, consider a service allowing to create online petitions.
Petition creators receive from the petition service a channel on which they pro-
vide the title of the petition, the petition text and the due date. After the initial
setup, the exact same channel is ready to be distributed among the client’s
acquaintances to collect thousands of signatures, but not without the creator
signing the petition first. The code for the creator can be written as follows,

petitionOnline(p).p title.p description.p dueDate.p signature.(a1 p | . . . | an p)

where x(y) denotes reading value y on channel x, x v denotes sending value v
on channel x, and the vertical bar denotes parallel composition. Each of the
acquaintances (not shown in the example), after reading p on channel ai, can
sign the petition and further distribute the channel at will.

The protocol for channel p can be concisely described by a type T of the form
below, composed of an initial linear part that becomes shared (or unrestricted)
in the later part.

lin !String.lin !String.lin !Date.S where S = un !String.S

The final part is unrestricted because it is desiderable, but not absolutely neces-
sary, that acquaintances (including the petition creator) sign the petition; con-
versely, the initial part is linear because petitions cannot be signed without first
setting up the title, the description and the due date.

In the process above, each channel ai forwards p at type S. Such a channel
may be given the type lin!S.un end, if we require that acquaintances eventually
receive the petition channel; the continuation is un end (the type of a channel
on which no further interaction is possible) allowing channel ai to be discarded
thereafter. Concentrating on the type of petitionOnline, we see that petition
creators need it a type S1 = un?T.S1 so that they may create as many petitions
(of type T) as required. It should be easy to see that the service itself sees the
same channel at the dual type S2 = un!T.S2. The whole system, composed by
the service running in parallel with petition creators can be typed by reconciling
the two end point types S1 and S2 in a single, unordered, channel type of the
form (S1, S2).

The language of the pi calculus, when considered in conjunction with a type
system with session types, is known to require a means to distinguish the two
ends of a session channel (S1 and S2 above) in order to preserve type sound-
ness [4, 5, 17]. Alternative solutions not requiring such a distinction rely on the
restriction of channel passing to bound output. Such systems include the original
formulation of delegation in session types [6] as well as more recent works [2, 11].

Two approaches for distinguishing the ends of a channel are available in the
literature: polarized channel variables [5], and form of channel double binder [15].
In the pi calculus with polarities the two ends of a channel x are distinguished
by labelling each of its ends with a different label: x+ and x− denote the two
ends of channel x. Given that from a given channel name one may find its two
ends, one can restrict (the two ends of) a channel x with the usual pi calculus
restriction operator (νx)P . Typing contexts, however accept two different entries
for the same channel, one labelled with +, the other with −, as in the typing
sequent below.

Γ, x+ : S1, x
− : S2 ` x+ v.P1 | x−(w).P2

A variant of the above work, [15], uses distinct variables to describe the two
ends of a same channel. In this case one cannot obtain the second end of a channel
from the other end. It is restriction that puts together the two channel ends, by
binding them together, as in (νyz)P . The assumptions in typing contexts are
for simple variables, as in the example below where y and z denote the two ends
of a same channel.

Γ, y : S1, z : S2 ` y v.P1 | z(w).P2

The first work can be criticized for using non-conventional typing contexts,
where typing information of a same channel x is split among two different entries,
x+ and x−. The second work uses standard contexts but relies on a new scope
restriction operator that binds two variables together. The goal of this work is
to equip types with a constructor able to denote the two ends of a same channel.
We then have the best of both worlds where we use the standard pi calculus
(Milner et al. [10]) with standard typing sequents.

Syntax

b ::= Booleans: P ::= Processes:

true true x v.P output

false false x(x).P input

v ::= Values: P | P composition

b boolean value if v thenP elseP conditional

x variable (νx)P restriction

∗ P replication

0 inaction

Rules for structural congruence

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P ∗ P ≡ P | ∗P
(νx)P | Q ≡ (νx)(P | Q) (νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P

Rules for reduction

x v.P | x(y).Q → P | Q[v/y] [R-Com]

if true thenP elseQ → P if false thenP elseQ → Q [R-IfT] [R-IfF]

P → Q

(νx)P → (νx)Q

P → Q

P | R → Q | R
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
[R-Res] [R-Par] [R-Struct]

Fig. 1. Pi calculus: Syntax and operational semantics

We test the flexibility of our type system by embedding the pi calculus with
polarities and session types [5] (hence the conventional pi calculus [10]). We do
the same for the linear pi calculus [7], and for the linear (call by value) lambda
calculus as in [16]. For each of these languages we prove an operational and a
typing correspondence result. From the two first embeddings we learn that our
type system is an extension of advanced type systems for pi calculi. The em-
bedding of the linear lambda calculus crucially takes linearity into consideration
generating code accordingly (replicated or non replicated) for shared and linear
resources.

The outline of the paper is as follows. The next section recalls the pi calculus
and introduces our type system. Then, the subsequent three sections present the
embeddings of the three languages mentioned above: pi calculus with polarities,
linear pi calculus and linear lambda calculus. The last section presents some
related as well as future work.

2 Pi Calculus

This section introduces the pi-calculus, its syntax and semantics, as well as our
type system. The syntax is in Figure 1. We rely on a set of variables, ranged over

q ::= Qualifiers: a type variable

lin linear µa.S recursive type

un unrestricted T ::= Types:

p ::= Pre Types: bool boolean

?T.S receive S end point

!T.S send (S, S) channel

end termination Γ ::= Contexts:

S ::= End Point Types: ∅ empty context

q p qualified channel Γ, x : T variable binding

Fig. 2. Pi calculus: Types and typing contexts

by x, y, z. Values include variables and the booleans true and false. For processes
we have (synchronous, unary) output and input, in the forms x v.P and x(y).P ,
as well as a parallel composition, conditional, scope restriction, replication and
the terminated process.

The binders for the language appear in parenthesis: x is bound in both y(x).P
and (νx)P . Free and bound variables in processes are defined accordingly, and
so is alpha conversion, substitution of a variable x by a value v in a process P ,
denoted P [v/x]. We follow Barendregt’s variable convention, requiring bound
variables to be distinct from free variables in any mathematical context.

Structural congruence is the smallest relation on processes including the rules
in the same figure. The first three rules say that parallel composition is commu-
tative, associative and has 0 for neutral element. The last rule on the first line
captures the essence of replication as an unbounded number of identical pro-
cesses. The rules in the second line deal with scope restriction. The first, scope
extrusion, allows the scope of x to encompass Q; due to variable convention, x
bound in (νx)P , cannot be free in Q. The other two rules state that restrict-
ing over a terminated process has no effect, and allow exchanging the order of
restrictions.

The reduction reduction is the smallest relation on processes including the
rules in Figure 1. The [R-Com] rule communicates value v from an output
prefixed one x v.P to an input prefixed process x(y).Q; the result is the parallel
composition of the continuation processes, where the bound variable y is replaced
by value v in the input process. The rules for the conditional are straightforward.
The rules in the last line allow reduction to happen underneath scope restriction
and parallel composition, and incorporate structural congruence into reduction.

The syntax of types is described in Figure 2. Types include the boolean type,
end point types and channel types. The novelty with respect linear and session-
based systems for the pi calculus is the introduction of a new type constructor to
describe the two ends of a same channel, (S1, S2), where S1 details the behaviour
of one end, whereas S2 details that of the other end. An end point type S can

be a pre type qualified with lin or un, a recursive type or a type variable. Each
qualifier in a type controls the number of times the channel can be used at that
point: exactly once for lin; zero or more times for un. A pre type of the form
!T.S describes a channel end able to send a value of type T and to proceed as
prescribed by S. Similarly, pre type ?T.S describes a channel end able to receive
a value of type T and continue as S. Pre type end describes a channel end on
which no further interaction is possible. For recursive (end point) types we rely
on a set of type variables, ranged over by a. Recursive types are required to be
contractive, that is, containing no subexpression of the form µa1 . . . µan.a1.

Type equality is not syntatic. Instead, we define it as the equality of regular in-
finite trees obtained by the infinite unfolding of recursive types, modulo pair com-
mutation. The formal definition, which we omit, is co-inductive. In this way we
use types (µa.lin!bool.lin?bool.a, un end) and (un end, lin!bool.µb.lin?bool.lin!bool.b)
interchangeably, in any mathematical context. This allows us never to consider a
type µa.S explicitly (or a for that matter). Instead, we pick another type in the
same equivalence class, namely S[µa.S/a]. If the result of the process turns out
to start with a µ, we repeat the procedure. Unfolding is bound to terminate due
to contractiveness. In other words, we take an equi-recursive view of types [12].

Type duality plays a central role in the theory of session types, ensuring that
communication between the two ends of a channel proceeds smoothly. Intuitively,
the dual of output is input and the dual of input is output. In particular if S2

is dual of S1, then q?T.S1 is dual of q!T.S2. Session type end is dual of itself.
Rather than providing a co-inductive definition of duality, we start by defining
a function from end-point channels into end-point channels as follows.

q ?T.S = q !T.S q !T.S = q ?T.S q end = q end µa.S = µa.S a = a

Then, to check that a given end point type S1 is dual of another type S2, we first
build the dual of S1 and then check that the thus obtained type is equivalent
to S2. For example, to show that type µa.lin?bool.lin!bool.a is a dual of type
lin!bool.µb.lin?bool.lin!bool.b, we build µa.lin?bool.lin!bool.a = µa.lin!bool.lin?bool.a,
and then show that µa.lin!bool.lin?bool.a = lin!bool.µb.lin?bool.!bool.b. Qualifiers
are important: S and S must be equally qualified so that a linear output process
may find a linear input process to embark in reduction.

Contexts, or type environments, are inductively defined in Figure 2. In a
context Γ, x : T we assume that x does not occur in Γ ; we also assume the various
variable bindings in Γ to be unordered. We define predicate un to be true of a)
the empty context, as well as of b) context Γ, x : bool, context Γ, x : un p, and
context Γ, x : (un p1, un p2), whenever un(Γ).

Typing relies on the context splitting operation described in Figure 3. It
should be easy to understand: unrestricted types are copied into both contexts,
linear types are placed in one of the two resulting contexts. The first four rules
are standard [16], the last three rules are new to this work; the philosophy
however remains the same. We omit three rules, duals to the last three, obtained
by interchanging the end point types in the channel type (e.g., (un p2, lin p1) in
the last rule), for the effect can obtained by a suitable choice of the type in its
equivalence class (recall that pair types are unordered).

Context splitting rules

∅ = ∅ · ∅ Γ = Γ1 · Γ2 T = un p or (un p1, un p2)

Γ, x : T = (Γ1, x : T) · (Γ2, x : T)

Γ = Γ1 · Γ2 T = lin p or (lin p1, lin p2)

Γ, x : T = (Γ1, x : T) · Γ2

Γ = Γ1 · Γ2 T = lin p or (lin p1, lin p2)

Γ, x : T = Γ1 · (Γ2, x : T)

Γ = Γ1 · Γ2

Γ, x : (lin p1, lin p2) = (Γ1, x : lin p1) · (Γ2, x : lin p2)

Γ = Γ1 · Γ2

Γ, x : (lin p1, un p2) = (Γ1, x : (lin p1, un p2)) · (Γ2, x : un p2)

Γ = Γ1 · Γ2

Γ, x : (lin p1, un p2) = (Γ1, x : un p2) · (Γ2, x : (lin p1, un p2))

Typing rules for values

un(Γ)

Γ ` b : bool

un(Γ)

Γ, x : T ` x : T

Γ ` v : (S, un p)

Γ ` v : S
[T-Bool] [T-Var] [T-Strength]

Typing rules for processes

un(Γ)

Γ ` 0

Γ1 ` P1 Γ2 ` P2

Γ1 · Γ2 ` P1 | P2

Γ ` P un(Γ)

Γ ` ∗P [T-Inact] [T-Par] [T-Repl]

Γ1 ` v : bool Γ2 ` P1 Γ2 ` P2

Γ1 · Γ2 ` if v thenP1 elseP2

Γ,x : (S, S) ` P
Γ ` (νx)P

[T-If] [T-Res]

Γ, x : S, y : T ` P (∗)
Γ, x : q?T.S ` x(y).P

Γ1 ` v : T Γ2, x : S ` P (∗∗)
Γ1 · (Γ2, x : q !T.S) ` x v.P [T-In],[T-Out]

Γ, x : (S, S′), y : T ` P (∗)
Γ, x : (q?T.S, S′) ` x(y).P

Γ1 ` v : T Γ2, x : (S, S′) ` P (∗∗)
Γ1 · (Γ2, x : (q !T.S, S′)) ` x v.P

[T-InC],[T-OutC]

(∗) q = un⇒ q?T.S = S (∗∗) q = un⇒ q!T.S = S

Fig. 3. Pi calculus: Typing

Equipped with the notions of type duality, unrestricted contexts, and context
splitting we are ready to introduce the typing rules in Figure 3. The first two
typing rules for values are standard. Rule [T-Strength] is central to our system
with channels described as pairs of types; we discuss it after introducing the
remaining typing rules.

For processes, rule [T-Inact] says that the terminated process can only be
typed in an unrestricted context, ensuring that linear channels are given a chance
to be consumed. Rule [T-Par] uses context splitting to partition linearly typed
variables between the two processes: the incoming context is split into Γ1 and
Γ2, and we use the former to type check process P1 and the latter to type check
process P2. Rule [T-Repl] for replication requires the typing context not to
contain linear values, for P may be used an unrestricted number of types. Rule

[T-If] for the conditional process splits the incoming context in two parts: one
used to check the condition, the other to check both branches. The same context
for the two branches is justified by the fact that only one of P1 or P2 will be
executed. Rule [T-Res] allows restricting channels whose end points are dual,
making sure that communication on the channel happens according to the plan.
Allowing to restrict a end point type S type would not break type preservation,
Theorem 1, but we believe that such an alternative rule does not fit well in
a linear system, where we expect linear channels to be given an opportunity
to be consumed. Even though unrestricted end point types cannot be directly
restricted, we can show that, for each derivation of Γ, x : S ` P , there is a
derivation of Γ, x : (S, un p) ` P , thus allowing to apply scope restriction to an
otherwise unrestricted channel end.

We have two rules for input, [T-In] and [T-InC], depending on the type
for channel x in the context. Rule [T-In] deals with end point types. If x is
typed with q ?T.S, we know that the bound variable y is of type T , and we
type check P under the extra assumption y : T . Equally important is the fact
that the continuation uses channel x at continuation type S, that is, process
x(y).P uses channel x at type q ?T.S whereas P may use the same channel this
time at type S. Finally, unrestricted channels, given that they may be shared,
must retain their behavior throughout computation, hence the side condition. A
solution to the equation in the side condition is µa?T.a for a not in T , which
we abbreviate to ∗?T (and similarly for output). Rule [T-InC] follows the same
pattern, consuming one end point and keeping the other unchanged. Similarly
to input, we have two rules for output. Rule [T-Out], splits the context in two
parts, one to check v and the other to check continuation P . Notice that the
context in the conclusion, Γ1 · (Γ2, x : q !T.S) allows to type process xx with a
context x : S with type S such that S = un!S.S.

Rule [T-Strength] allows for a fine grained control of the channel ends
of a given channel. A process holding the two ends of a given channel x, say
(∗!bool, ∗?bool), may pass the output capability only by using [T-Var] followed
by [T-Strength] to obtain Γ, x : (∗!bool, ∗?bool) ` x : ∗!bool and then compose
with rule [T-Out] or [T-OutC] in a process of the form y x.P . The rule is also
fundamental in establishing the main result of this section.

To lighten the syntax in examples, we omit all unrestricted qualifiers and
only annotate linear types. We also omit the trailing un end in types, as well
as the trailing 0 in processes. As an example, consider the type ?(lin!bool).S of
an unrestricted channel that receives a linear channel capable of outputting a
boolean value. The following sequent is easy to establish,

x : ?(lin!bool).S ` x(z).z true | x(w).w false

but only for an appropriate type S. Reading rule [T-In], we realize that S must
be equivalent to ?(lin!bool).S, that is S must be (equivalent to) µa.?(lin!bool).a,
abbreviated to ∗?(lin!bool). Continuing with the example, if P is the above pro-
cess, then P | (νy)x y is not typable, for the linear input capability of chan-
nel y is never exercised. But P | (νy)(x y | y(u)) is typable under context
x : (∗?(lin!bool), ∗!(lin?bool)).

Given that a type (un p1, lin p2) cannot possibly be restricted in a process (cf.
rule [T-Res]), the reader may wonder why we consider them at all. It turns
out that free channel output may lead to situations where a thread holds the
two ends of a same channel [17]. For instance, process z x. | z(w).w(y).x true,
typable under context z : (∗?S, ∗!S), x : (S, S) with S = lin?bool, reduces to
process P = x(y).x true, which we want to type under the same context. By
applying rule [T-InC] to P we obtain a judgment with a un-lin type, namely
z : (∗?S, ∗!S), x : (end, lin!bool) ` x true. A further application of rule [T-OutC]
gets rid of the un-lin type, yielding z : (∗?S, ∗!S), x : (end, end) ` 0 typable under
rule [T-Inact].

We conclude the section with the main result of our system. Reduction pre-
serves typability only for a certain kind of contexts. To understand why reduction
does not preserve typability in the presence of arbitrary contexts, take for P the
process x(z).if z then0 else0 | (νy)x y. We can easily see that P is typable under
the (non balanced) context x : (lin!end.end, lin?bool.end). But P reduces to process
(νy)if y then0 else0 which is not typable. The whole purpose of balancing is to
make sure that the type of y in the output is that of z in the input.

We define predicate balanced to be true of a) the empty context, and b)
context Γ, x : bool and context Γ, x : (S, S) whenever Γ is balanced.

Theorem 1 (Type Preservation). If Γ1 ` P1 with Γ1 balanced and P1 → P2,
then Γ2 ` P2 with Γ2 balanced.

Proof (Sketch). Albeit standard, the proof is quite long due to the combinatorics
introduced by (the various rules in) context splitting, the lin-un qualifiers and the
four rules for input and for output. We rely on several standard auxiliary results,
including unrestricted context weakening, context strengthening, a substitution
lemma (stating that if Γ1 ` v : T and Γ2, x : T ` P and Γ1 · Γ2 is defined then
Γ1 · Γ2 ` P [v/x]), and balanced context preservation for structural congruence.
In order to proceed by induction on the derivation of the reduction step when
[T-Par] is the last rule, we need a stronger statement that details the relation
between Γ1 and Γ2, namely Γ2 = Γ1 or Γ1 = Γ, x : (q?T.S, q!T.S) and Γ2 =
Γ, x : (S, S).

3 Embedding the Pi Calculus with Polarities

This section shows that our type system embeds the polarity system introduced
by Gay and Hole [5]. Since Gay and Hole show that the pi calculus with polarities
embeds the simply typed pi calculus; by transitivity our language embeds the
simply typed pi calculus as well.

In Figure 4 we present the branch-select free fragment of the pi calculus
with polarities. Variables may be polarized, occurring in processes as well as in
typing contexts as x+ or x− or simply as x. We write xp for a general polarized
name, where p represents an optional polarity. Duality on polarities, written p
exchanges + and −. The new constructors of the language, input and output,

New syntactic forms

P ::= . . . Processes: µa.S recursive type

xp xp.P output S ::= Session types:

xp(x).P input end termination

T ::= Types: ?T.S receive

ˆT standard channel !T.S send

S session channel a type variable

a type variable µa.S recursive type

New reduction rules

xp zq.P | xp(y).Q→p P | Q[zq/y] [R-Com]

Context updating

Γ + xp : S = Γ, xp : S if xp, x 6∈ dom(Γ) and S =?T.S, !T.S, end

Γ + x : T = Γ, x : T if x, x+, x− 6∈ dom(Γ)

Γ, x : T + x : T = Γ, x : T if T =ˆT, bool

Typing rules

Γ completed

Γ `p 0

Γ `p P Γ unlimited

Γ `p ∗P
Γ, x : ˆT `p P

Γ `p (νx)P

Γ, x+ : S, x− : S `p P

Γ `p (νx)P
[T-Inact] [T-Repl] [T-New] [T-NewS]

Γ1 `p P Γ2 `p Q

Γ1 + Γ2 `p P | Q
Γ, x : ˆT, y : T `p P

Γ, x : ˆT `p x(y).P

Γ, xp : S, y : T `p P

Γ, xp : ?T.S `p xp(y).P
[T-Par] [T-In] [T-InS]

Γ, x : ˆT `p P

(Γ, x : ˆT) + yq : T `p x yq.P

Γ, xp : S `p P

(Γ, xp : !T.S) + yq : T `p xp yq.P
[T-Out] [T-OutS]

Fig. 4. Pi calculus with polarities

are in Figure 4; the remaining are taken from Figure 1; the syntactic category
for values in Figure 1 does not contribute to the language.

The reduction relation, denoted by →p, is defined inductively by the rules
in Figure 1 with rule [R-Com] replaced by that in Figure 4. From the above
description it should be obvious that the two languages differ in the (optional)
polarity annotation on (non-bound occurrences of) variables. We define an erase
function that removes from a polarized processes all occurrences of + and −,
to yield a process generated by the grammar in Figure 1. There is an obvious
operational correspondence between the two languages, stated in Theorem 2.
The converse is clearly not true. Take for P the polarized process x+ | x+().
Then erase(P) = x | x() reduces while P does not.

The language of types includes a distinct category S for (linear) session
types. Since we restrict our language to the branch-select free fragment of [5], we
ignore subtyping. Duality is defined as in Section 2, with the appropriate changes
which amount erasing the qualifiers. Typing contexts now gather assumptions on
polarized variables, in addition to simple variables as before. There is however
one restriction on the variables occurring in a context: x and x+ (or x−) cannot
occur simultaneously in a given context Γ , even though x+ and x− may. New
assumptions are added to contexts by means of an update operation +, defined
in Figure 4. Context updating is different from splitting (in Figure 3) on what
concerns unrestricted types: ∅+(x : ˆT) is defined, whereas ∅·(x : un p) is not. We
say that a context is unlimited if it contains no session types, and is completed
if every session in it is end.

The typing relation is inductively defined by the rules in Figure 4. Rule
[T-NewS] requires the types for the two channel end points to be of dual types;
contrast with rule [T-Res] in Figure 3: our system merges the two end points
in a single variable and requires the two components of the channel type to be
of dual types. Rules [T-In] and [T-InS] in Figure 4 have their counterpart in
rules [T-In] and [T-InC] in Figure 3. The choice here is not based on whether
the type for the input channel is an end point or a channel type but rather on
whether the qualifier is linear or unrestricted. The same can be said of rules
[T-Out] and [T-OutS].

From the above description it should be obvious that the two systems are
quite close to each other. In order to define the typing correspondence we need to
translate types and contexts for the polarized language (as in Figure 4) to those
in our language (Figure 1). The definition is as follows; recall from Section 2 that
we use ∗?T as an abbreviation for µa.?T.a, for some a not in T . To translate
typing contexts we assume that if both x+ and x− are in Γ then they occur
in contiguous positions (and in this order). The translation of typing contexts
is as follows, where the rules must be tried in the given order; the first rule for
mapping non-empty contexts is for polarized pairs while the second rule is for
single entries.

[[̂ T]] = (∗?[[T]], ∗![[T]]) [[end]] = un end [[∅]] = ∅
[[?T.S]] = lin?[[T]].[[S]] [[a]] = a [[Γ, x+ : S, x− : S′]] = [[Γ]], x : ([[S]], [[S′]])
[[!T.S]] = lin![[T]].[[S]] [[µa.S]] = µa.[[S]] [[Γ, xp : T]] = [[Γ]], x : [[T]]

[[µa.T]] = µa.[[T]]

We are now in a position to state the main result of this section.

Theorem 2 (Polarity-Pi To Pi Correspondence).

1. If Γ `p P then [[Γ]] ` erase(P).
2. If P →p Q, then erase(P) → erase(Q).

New syntactic forms

c ::= Capabilities: T ::= Types:

i input q c T channel

o output bool boolean

io input and output

Combination of types

bool + bool = bool un c1 T + un c2 T = un (c1 ∪ c2)T lin iT + lin oT = lin io T

Combination of contexts

(Γ1 + Γ2)(x) =

8><>:
Γ1(x) + Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)

Γ1(x) if x ∈ dom(Γ1) and x 6∈ dom(Γ2)

Γ2(x) if x ∈ dom(Γ2) and x 6∈ dom(Γ1)

Typing rules for processes

Γ `l P1 Γ `l P2

Γ + v : bool `l if v thenP1 elseP2

Γ, x : q io T `l P

Γ `l (νx)P
[T-If] [T-Res]

Γ, y : T `l P

Γ + x : q iT `l x(y).P

Γ `l P

Γ + x : q oT + v : T `l x v.P
[T-In] [T-Out]

Fig. 5. Linear pi calculus

4 Embedding the Linear Pi Calculus

In this section we analyse (a synchronous variant of) the linear pi calculus [7]
and provide a typing-preserving encoding into our system.

The syntax of linear pi processes and the reduction relation are described in
Figure 1. Figure 5 defines the syntax of types and the typing rules for processes.
Types have now the form q c T where c is a capability formally defined as one of
the following sets.

i = {i} o = {o} io = {i, o}

The linear discipline is imposed by way of a + combination operation over
types, defined in Figure 5. The operator is extended point-wise to typing con-
texts. Notice that context combination is different from the context splitting
operation defined in Figure 3 when in the presence of unrestricted types: context
splitting does not allow composing (Γ1, x : un c T) with Γ2 whenever x 6∈ dom(Γ2)
or when Γ2(x) 6= un c T .

The typing system for the linear pi-calculus is defined by the rules in Figure 3
together with rules [T-Inact], [T-Repl] and [T-Par] in Figure 4. Rule [T-Out]
is an adaptation of that in [7] to the synchronous setting: we let the continuation
be typed with context Γ while in the original paper the premise to the rule is

un(Γ) since the (absent) continuation behaves as 0. We also adapt rule [T-Res]
to require that the restricted channel uses both capabilities; the original system
allows processes of the form (νx)x true to be typed by assigning to channel x
type lin o bool; cf. discussion around rule [T-Res] in Section 2.

The compositional encoding of linear types is defined below and is useful to
understand the reconstruction of session types introduced in Section 2. A linear
input (output) type is embedded as a linear input (output) type whose contin-
uation is un end, meaning that the continuation process cannot further use the
channel. Unrestricted input (output) types are mapped into unrestricted recur-
sive input (output) types. For instance, the type lin i(lin io (un io bool)) is mapped
into the type lin ?(lin !T.un end, lin ?T.un end).un end where T = (∗!bool, ∗?bool).

[[lin iT]] = lin?[[T]].un end [[lin oT]] = lin![[T]].un end

[[un iT]] = ∗?[[T]] [[un oT]] = ∗![[T]]
[[q ioT]] = ([[q iT]], [[q oT]]) [[bool]] = bool

The main result of this section establishes the correspondence between the
two systems.

Theorem 3 (Linear-Pi To Pi Correspondence). If Γ `l P then [[Γ]] ` P .

5 Embedding the Linear Lambda Calculus

This section shows that the call-by-value linear lambda calculus can be faithfully
encoded in our language. We follow the presentation of Walker [16], except that
we use an implicitly typed language.

The syntax of the language is in Figure 6; we rely on the set of variables
introduced in Section 2 for the pi calculus; the missing non-terminal symbols,
q, b and so on, are in Figure 1. Values are qualified, linear or unrestricted,
and include boolean values and abstractions. Terms are variables, values, and
applications and are evaluated in an abstract machine with an explicit store.
The store is a sequence of variable-value pairs, treated as a map from variables
into values. To simplify the presentation of the evaluation relation, we use an
auxiliary function, S

q∼ x that deallocates the value associated with variable x in
S when the qualifier q is lin, and leaves S unchanged otherwise. The evaluation
reduction copies values into the store, associating them with a fresh variable
(rule [E-val]). For function application the value associated with the function
is looked upon in the store; if linear it is then deallocated (rule [E-app]). The
remaining two rules implement the call-by-value strategy. We denote by →λ the
reduction relation in Figure 6.

For typing, rule [T-Var] is that of the pi-calculus (Figure 3). Rule [T-Bool]
contrasts with its homonymous in Figure 3 in that values in the linear lambda
calculus are qualified, the type of a value inheriting the qualifier of the value.
The remaining two rules, for abstraction and application, are standard in the
linear lambda calculus; notice the q(Γ) in rule [T-abs] requiring an unrestricted

Syntax

v ::= Values: p ::= Pretypes:

q b boolean bool boolean

q λx.M abstraction T → T function

M ::= Terms: T ::= Types:

x variable q p qualified pretype

v value S ::= Stores:

MM application ∅ empty store

S, x 7→ v store binding

Store deallocation

(S1, x 7→ v, S2)
lin∼ x = S1, S2 S

un∼ x = S

Evaluation

(S; v)→λ (S, x 7→ v;x)
S(x1) = qλy.M

(S;x1x2)→λ (S
q∼ x1;M [x2/y])

[E-val] [E-app]

(S;M1)→λ (S′;M ′1)

(S;M1M2)→λ (S′;M ′1M2)

(S;M)→λ (S′;M ′)

(S;xM)→λ (S′;xM ′)
[E-fun] [E-arg]

Typing

un(Γ)

Γ, x : T `λ x : T

un(Γ)

Γ `λ q b : q bool
[T-Var] [T-Bool]

Γ, x : T1 `λ M : T2 q(Γ)

Γ `λ qλx.M : q T1 → T2

Γ1 `λ M1 : q T1 → T2 Γ2 `λ M2 : T1

Γ1 · Γ2 `λ M1M2 : T2

[T-abs] [T-app]

Fig. 6. Linear lambda calculus

function to contain only unrestricted free variables (un(Γ) is defined in Section 2;
lin(Γ) is true).

For the translation we rely on a polyadic variant of the pi language, allowing
channels to carry an arbitrary (but fixed) number of values. The extension is
straightforward to incorporate: for processes we need polyadic output and input,
x(~x).P and x~v.P ; for types (pre types, rather) we need ?〈~T 〉.S and !〈~T 〉.S. The
extension can be incorporated in the base theory or added as an encoding [15].

On what concerns the translation of types below, the interesting cases are the
two forms of arrow types. An unrestricted T1 → T2 type is translated as a pair
of types: the ∗?X part caters for the resource (the function proper) and the ∗!X
for its clients. Channels describing functions carry a pair X of values: the first
element in the pair is the argument to the function ([[T1]] in X); the second is a
channel that will convey the result and that will be used exactly once (a linear
channel of type lin![[T2]].un end). The type for linear resources is similar, only that

they are linear, rather than unrestricted. The translation of terms follows that
of Milner [9] with two exceptions. On the one hand, the value qualifiers are
taken into consideration in the translation: a linear value is translated into a
simple output (in the case of a boolean value) or a simple input (in the case of
an abstraction); only for unrestricted values replication is used. On the other
hand, applications of the form xM are partially evaluated, allowing for a simple
operational correspondence (cf. [14]).

[[q bool]] = q bool [[x]]p = p x

[[un T1 → T2]] = (∗?X, ∗!X) [[v]]p = (νx)([[x 7→ v]] | p x)
[[lin T1 → T2]] = (lin?X.un end, lin!X.un end) [[xM]]p = (νr)([[M]]r | r(y).x yp)

where X = 〈[[T1]], lin![[T2]].un end〉 [[MN]]p = (νs)([[M]]s | s(x).(νr)(
[[∅]] = 0 [[N]]r | r(y).x yp))

[[S, x 7→ v]] = [[S]] | [[x 7→ v]] [[S;M]] = (ν dom(S))([[S]] | [[M]])
[[x 7→ q b]] = [[q]]x b [[un]] = ∗

[[x 7→ qλyM]] = [[q]]x(yp).[[M]]p [[lin]] = the empty string

We are now in a position to state the main result of this section. Let →∗ be the
reflexive and transitive closure of the reduction relation → defined in Figure 1.

Theorem 4 (Linear-Lambda to Pi Correspondence).

1. If Γ `λ M : T , then [[Γ]], p : lin![[T]].un end ` [[M]]p.
2. If (S;M)→λ (S′;M ′), then [[S;M]]→∗ [[S′;M ′]].

6 Conclusion

As mentioned in the introduction, the pi calculus equipped with a polarity-based
typing system [5] and the (double binder) pi calculus equipped with a conven-
tional typing system [15] are the works closest to ours. Here we try to obtain the
same results, relying on the traditional pi calculus equipped with a conventional
type system. Towards this end we introduce an unordered pair constructor de-
noting, at type level, the two ends of a same channel. In order to distinguish
linear from unrestricted variables we use type qualifiers applied to pre types,
inspired by Walker’s presentation of substructural type systems [16]. Caires and
Pfenning take a different approach, closely adhering to linear logic, treating all
variables as linear and using exponential “!” to describe shared resources [1].

Algorithmic type checking is left for further work; the language with double
binders [15] is equipped with such a system. Gay and Hole address the problem of
polarity inference for closed processes under certain restrictions [5]. Particularly
promising is the Fo (“F-pop”) system by Maruzak et al. [8], where a kinding
system, instead of type qualifiers, simplifies the use of linearity in functional
programming languages, including a novel form of subtyping between linear and
unrestricted kinds, which we would like to explore.

Acknowledgments. This work was supported by FCT/MCTES via projects
PTDC/EIA–CCO/105359/2008 and CMU–PT/NGN44–2009–12. The authors
would like thank Simon Gay and Nils Gesbert for insightful comments and the
anonymous referees for constructive criticisms and detailed comments.

References

1. Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions.
In this volume.

2. Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca
Padovani. Foundations of session types. In PPDP, pages 219–230. ACM, 2009.

3. Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and session types:
an overview. In WS-FM’09, volume 6194 of LNCS, pages 1–28. Springer-Verlag,
2010.

4. Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous, and
Nobuko Yoshida. Objects and session types. Information and Computation,
207(5):595 – 641, 2009.

5. Simon J. Gay and Malcolm J. Hole. Subtyping for session types in the pi calculus.
Acta Informatica, 42(2/3):191–225, 2005.

6. Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and
type disciplines for structured communication-based programming. In ESOP’98,
volume 1381 of LNCS, pages 22–138. Springer-Verlag, 1998.

7. Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-
calculus. ACM Transactions on Programming Languages and Systems, 21(5):914–
947, 1999.

8. Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. Lightweight linear types in
system Fo. In TLDI, pages 77–88. ACM, 2010.

9. Robin Milner. Functions as processes. Mathematical Structures in Computer Sci-
ence, 2(2):119–141, 1992.

10. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
part I/II. Information and Computation, 100:1–77, September 1992.

11. Luca Padovani. Session types at the mirror. EPTCS, 12:71–86, 2009.
12. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
13. Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-based Language

and its Typing System. In PARLE, volume 817 of LNCS, pages 398–413. Springer-
Verlag, 1994.

14. Vasco T. Vasconcelos. Lambda and pi calculi, CAM and SECD machines. Journal
of Functional Programming, 15(1):101–127, 2005.

15. Vasco T. Vasconcelos. SFM 2009, volume 5569 of LNCS, chapter Fundamentals of
Session Types, pages 158–186. Springer-Verlag, 2009.

16. David Walker. Advanced Topics in Types and Programming Languages, chapter
Substructural Type Systems. MIT Press, 2005.

17. Nobuko Yoshida and Vasco T. Vasconcelos. Language primitives and type dis-
cipline for structured communication-based programming revisited: Two systems
for higher-order session communication. In SecReT’07, volume 171(4) of ENTCS,
pages 73–93. Elsevier Science Publishers, 2007.

