
Asynchronous Functional Session Types

Simon Gay and Vasco Vasconcelos

Department of Computing Science TR-2007-251
University of Glasgow May 2007
Glasgow G12 8QQ
Scotland

1

Asynchronous Functional Session Types

Simon Gay1 and Vasco Vasconcelos2

1 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
Email: <simon@dcs.gla.ac.uk>

2 Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa,
1749-016 Lisboa, Portugal. Email: <vv@di.fc.ul.pt>

May 30, 2007

Abstract

Session types support a type-theoretic formulation of structured patterns of com-
munication, so that the communication behaviour of agents in a distributed system
can be verified by static type checking. Applications include network protocols, busi-
ness processes, and operating system services. In this paper we define a multithreaded
functional language with session types, which unifies, simplifies and extends previ-
ous work. There are three main contributions. First: an operational semantics with
buffered channels, instead of the synchronous communication of previous work. Sec-
ond: session type manipulation by means of the standard structures of a linear type
theory, rather than by means of new forms of typing judgement. Third: a notion of
subtyping, including the standard subtyping relation for session types (imported into
the functional setting) and a novel form of subtyping between standard and linear func-
tion types. Our new approach significantly simplifies session types in the functional
setting, clarifies their essential features, and provides a secure foundation for language
developments such as polymorphism and object-orientation, as well as further forms
of static analysis including estimating the size of communication buffers.
Keywords: Session types, functional programming, typechecking, semantics, dis-
tributed programming, specification of communication protocols.

1 Introduction

The concept of service-oriented computing has transformed the design and implementation
of large-scale distributed systems, including online consumer services such as e-commerce
sites. It is now common practice to build a system by gluing together the online services
of several providers: for example, online travel agents, centralised hotel reservation systems,
and online shops. Such systems are characterised by detailed and complex protocols, separate
development of components and re-use of existing components, and strict requirements for
availability and correctness. In this setting, formal development methods and in particular
static analysis are vitally important: for example, the implementor of an online travel agent
cannot expect to test against the live booking systems of the airlines.

This paper concerns one approach to static analysis of the communication behaviour of
agents in a distributed system: session types [13, 14, 17]. In this approach, communication
protocols are expressed as types, so that static typechecking can be used to verify that agents
observe the correct protocols. For example, the type

S = &〈 s e r v i c e : ? Int . ! Int . S , q u i t :End〉

describes the server’s view of a protocol in which the server offers the options service and
quit. If the client selects service then the server receives an integer, sends an integer in
response, and the protocol repeats. If the client selects quit then the only remaining action
is to close the connection. It is possible to statically typecheck a server implementation
against the type S, to verify that the specified options are provided and are implemented
correctly. Similarly, a client implementation can be typechecked against the dual type S, in
which input and output are interchanged.

Early work on session types used network protocols as a source of examples, but more
recently the application domain has been extended to business protocols arising in web
services [22] and operating system services [6]. By incorporating correspondence assertions,
the behavioural guarantees offered by session types have been strengthened and applied
to security analysis [2]. A theory of subtyping for session types has been developed [10]
and adapted for specifying distributed software components [18]. Session types can now be
regarded as an established concept with a wide range of applications.

The basic idea of session types is separate from the question of which programming
language they should be embedded in, although of course a specific system incorporating
session types must be based on a particular language. Much of the research has defined
systems of session types for pi calculus and related process calculi, but recently there has
been considerable interest in session types for more standard language paradigms. Our own
previous work [19, 20] was the first proposal for a functional language with session types.
Neubauer and Thiemann [15] took a different approach, embedding session types within the
type system of Haskell. Session types are also of interest in object-oriented languages; this
situation has been studied formally by Dezani-Ciancaglini et al. [4] and is included in the
work of Fähndrich et al. [6].

In the present paper we define a multithreaded functional language with session types,
unifying and simplifying several strands of previous work, and clarifying the relationship
between session types and standard functional type theory. The contributions of the paper
are as follows.

1. We formalize an operational semantics in which communication is buffered, instead
of assuming synchronization between send and receive. This is similar to, but simpler

1

than, unpublished work by Neubauer and Thiemann [16]. Buffered communication is
also used by Fähndrich et al. [6] but they have not published a formal semantics.

2. We work within the standard framework of a functional language with linear as well
as unlimited types, treating session types as linear in order to guarantee that each
channel endpoint is owned by a unique thread. For example,

receive : ?T.S → T ⊗ S

so that the channel, with its new type, is returned with the received value.

3. We include two forms of subtyping: the standard subtyping relation for session types
[10] and a novel form of subtyping between standard and linear function types [8].

The resulting system provides a clear and secure foundation for further developments such
as polymorphism and object-orientation.

The outline of the rest of paper is as follows. Section 2 uses an example of a business
process to present the language. Section 3 formally defines the syntax and the operational
semantics. Section 4 defines the typing system and Section 5 gives the main results of the
paper. Section 6 discusses related and future work.

2 Example: Business Protocol

We present a small example containing typical features of many web service business proto-
cols [4, 22]. A mother and her young son are using an online book shop. The shop implements
a simple protocol described by the session type

Shop = &〈 add : ?Book . Shop , checkout : ?Card . ? Address .End〉

The branching type constructor & indicates that the shop offers two options: add and
checkout. After add, the shop receives (?) data of type Book, and then returns to the initial
state. After checkout, the shop receives credit card details and an address for delivery, and
that is the end of the interaction. Of course, a realistic shop would offer many more options.

To make the services of the shop available, the global environment should contain a name
whose type is an access point for sessions of type Shop. We express this as shopAccess : [Shop].
A name such as shopAccess is analogous to a URL or an IP address, depending on the kind
of service. The shop will contain an expression accept shopAccess and the shopper will
contain an expression request shopAccess. At runtime these expressions interact to create a
new private channel, which in the shop has type Shop and in the shopper has the dual type
(Shopper = Shop; ! means send)

Shopper = ⊕〈 add : ! Book . Shopper , checkout : ! Card . ! Addres s .End〉

The shop is implemented as a function parameterised on its access point, using an auxiliary
recursive function to handle the repetitive protocol. We do not show how the order is
delivered, and assume the constructors emptyOrder and addBook.

shopLoop : : Shop → Order → Unit
shopLoop s o r d e r =

case s of {
add ⇒ λ s . l e t (book , s) = rece i ve s i n

2

shopLoop s (addBook book o r d e r)
checkout ⇒ λ s . l e t (card , s) = rece i ve s i n

l e t (add re s s , s) = rece i ve s i n
c lose s }

shop : : [Shop] → Unit
shop shopAccess = shopLoop (accept shopAccess) emptyOrder

The case expression combines receiving an option and case-analysis of the option; the code
includes a branch for each possibility.

The mother intends to choose a book for herself, then allow her son to choose a book.
She does not want to give him free access to the channel which accesses the shop, so instead
she gives him a function which allows him to choose exactly one book (of an appropriate
kind) and then completes the transaction. This function plays the role of a gift voucher.
Communication between mother and son is also described by a session type:

Son = ?(Book ! Book) . ! Book .End

and the son has an access point of type [Son].

vouche r : : Card → Address → Shop → Book ! Book
vouche r ca rd add r e s s c book =

l e t c = i f (i s Ch i l d r e n sBook book)
then l e t c = s e l e c t add c i n

send book c
e l s e c i n

l e t c = s e l e c t checkout c i n
l e t c = send ca rd c i n
l e t c = send add r e s s c i n
l e t = c lose c i n
book

mother : : Card → Address → [Shop] → [Son] → Book → Unit
mother ca rd add r e s s shopAccess sonAcces s book =

l e t c = request shopAccess i n
l e t c = s e l e c t add c i n
l e t c = send book c i n
l e t s = request sonAcces s i n
l e t s = send (vouche r ca rd add r e s s c) s i n
l e t (sonBook , s) = rece i ve s i n
c lose s

son : : [Son] → Book → Unit
son sonAcces s book =

l e t s = accept sonAcces s i n
l e t (f , s) = rece i ve s i n
l e t s = send (f book) s i n
c lose s

The complete system is a configuration of expressions in parallel, running as separate
threads, typed in a suitable environment (which should also include the types of all of the

3

functions, as well as mCard etc):

shopAccess : [Shop], sonAccess : [Son] '
〈shop shopAccess〉 ‖ 〈son sonAccess sBook〉

‖ 〈mother mCard mAddress shopAccess sonAccess mBook〉

The example illustrates the following general points about our language, its semantics and
its type system; the details are presented in Sections 3 and 4.

• Channels, such as c in mother, are linear values; session types are linear types. The
linear function type constructor ! appears in the type of voucher because applying
voucher to a channel of type Shop yields a function closure which contains a channel—
hence this function closure must itself be treated as a linear value and given a linear
type. Because of linearity, Son cannot duplicate the voucher and order more than one
book.

• Operations on channels, such as send and select, return the channel after communi-
cating on it. Our programming style is to repeatedly re-bind the channel name using
let ; each c is of course a fresh bound variable. The receive operation returns the value
received and the channel, as a (linear) pair which is split by a let construct. In the
static type system, the channel type returned by, for example, send, is not the same
as the channel type given to it; this reflects the fact that part of the session types is
consumed by a communication operation.

The first novelty of this work is a buffered, asynchronous, operational semantics. Previous
work on functional session types [19] made the two threads involved in a session proceed in
a lock-step fashion. The semantics presented here allows threads to proceed at their own
pace, buffering the communications, thus allowing for efficient process communication, more
in line with, say, socket implementations. For example, the mother may select add and send
the book without blocking; the buffer (queue) for the end-channel c would contain both label
add and the representation of book. This is a very important step, because synchronous
communication is unrealistic; for example, previous work required a server to synchronise
when sending a message to its client.

Observe that the type Shop allows an unbounded sequence of messages in the same
direction, alternating between add labels and book details. The shop would therefore require
a potentially unbounded buffer for incoming messages. However, Fähndrich et al. [6] have
pointed out that if the session type does not allow unbounded sequences of messages in the
same direction then it is possible to obtain a static upper bound on the size of the buffer.
This is also true in our system. For example, the type S in Section 1 yields a bound of 2
because after sending service and an Int, the client must wait to receive an Int. A more
realistic version of the shop example would require an acknowledgement when a book is
added, and this would also lead to a bound on the buffer size.

The second novelty of the paper is the use of conventional functional types to describe
session operations. As such, send is viewed as a function that accepts a value and a channel,
and returns the same channel but in a state where the value has been sent. Similarly, receive
accepts a channel and returns a pair whose first component is the value read from the channel
and whose second component is the same channel in a state where a value has been read. The
type system carefully distinguishes ordinary (unlimited) values from channel (linear) values,
making sure that channel values are not duplicated. The type system supports programming

4

with higher-order functions on channels in a very natural way, as illustrated by the function
voucher in the example.

The third novelty of this paper is the subtyping relation introduced in Section 4. This
combines two ideas. The first is that the standard function type is a subtype of the linear
function type; this is useful for typechecking, as we will explain. The second is the inclusion
of the standard subtyping relation for session types [10] in a functional language.

Variations of the example illustrate these and other features of our language.

Changing the function voucher. The mother decides that voucher should not order the
book; she will complete the order herself. She defines

vouche r book = book

which can have either of the types Book → Book and Book ! Book. We suggest that a type
inference system should produce the type Book → Book. Because we have Book → Book <:
Book ! Book (Section 4), the expression send voucher b is still typable; there is no need to
change the type Son.

Adding options to the session type Shop. The shop adds an option to remove a book
from the order, changing the session type and its dual to

NewShop = &〈 add : ?Book . NewShop ,
remove : ?Book . NewShop ,
checkout : ?Card . ? Address .End〉

NewShopper = ⊕〈 add : ! Book . NewShopper ,
remove : ! Book . NewShopper ,
checkout : ! Card . ! Addres s .End〉

We have Shop <: NewShop and NewShopper <: Shopper. If the type of shopAccess in
the global environment changes to [NewShop] then expression request shopAccess in mother
returns a channel of type NewShopper. The subtyping relationship means that this channel
can still be given to voucher as a parameter.

Using a third-party shipper. Like previous systems of session types, our type system
allows channels to be sent on channels. For example, suppose that the shop uses a separate
service, shipper, to arrange delivery of the order. When shop has received the customer’s
credit card details, it just passes the channel to shipper. When the customer sends her
address, it goes directly to shipper. The session type used for communication between shop
and shipper is as follows; note the occurrence of the session type ?Address.End as the type of
the message.

Sh ippe r = ?(? Address .End) . End

The type Shop is not changed, and therefore mother is unaware of any change.

3 Syntax and Operational Semantics

Most of the syntax of our language was described in the previous section. We rely on a
countable set of term variables x, and on a disjoint countable set of (runtime) end-channels

5

v ::= () | c | λx.e | fix | (v, v) |
request | accept | send | send v | receive | close

e ::= v | x | ee | (e, e) | let (x, x) = e in e | fork e e |
select l e | case e of {li : ei}i∈I

C ::= 〈e〉 | C ‖ C

E ::= [] | Ee | vE | (E, e) | (v, E) | let (x, y) = E in e |
select l E | case E of {li : ei}i∈I

b ::= v | l | closed

B ::= ∅ | B, c *→ (c,"b)

Figure 1: Syntax.

(λx.e)v −→v e{v/x} (R-App)

let (x, y) = (v, v′) in e −→v e{v/x}{v′/y} (R-Split)

fix (λx.e) −→v e{(fix (λx.e))/x} (R-Fix)

Figure 2: Basic reduction.

c, and define values v, expressions e and configurations C as in Figure 1. The operational
semantics of the language is defined via the reduction relation in Figures 2, 3, and 4.

Figure 2 presents intra-thread reduction. Rule R-App describes the application of an
argument to a function, by replacing the parameter x by the argument v by in the body
of the function e (notation e{v/x} denotes this operation). Rule R-Split opens a pair of
values (v, v′) allowing expression e to use each component via variables x and y. Finally,
rule R-Fix expands a recursive function definition.

To simplify the presentation of inter-thread reduction, we rely on two notions: evaluation
contexts (Figure 1) [23] and structural equivalence on configurations. An evaluation context
is an expression with a hole, denoted [], where, intuitively, computation happens “next”.
Syntax E[e] denotes the result of filling the hole of context E with expression e. Rules R-
Thread and R-Fork in Figure 3 describe intra-thread reduction steps, by taking advantage
of this notion. Structural equivalence, the smallest relation satisfying the two rules

C1 ‖ C2 ≡ C2 ‖ C1 (E-Comm)

C1 ‖ (C2 ‖ C3) ≡ (C1 ‖ C2) ‖ C3 (E-Assoc)

allows changing the syntactic order of the components in a configuration. Rules R-Par and
R-Struct in Figure 3 isolate two threads that will engage in inter-thread communication,
via the rules in Figure 4.

Except for the rules aforementioned, reduction relies on a global data structure, called a
buffer table B, described in Figure 1. Such a structure maps a channel c into a pair, consisting
of another channel (called the peer end-channel of c), and of a sequence of channel values
(called the channel queue). Items in the channel queue can be any value v in the syntax
of the language in Figure 1 (written and read by send and receive expressions), any label l

6

e −→v e′

B, 〈E[e]〉 −→ B, 〈E[e′]〉 (R-Thread)

B, 〈E[fork e e′]〉 −→ B, 〈e〉 ‖ 〈E[e′]〉 (R-Fork)

B, C −→ B′, C ′

B, C ‖ C ′′ −→ B′, C ′ ‖ C ′′ (R-Par)

C ≡ C ′ B, C ′ −→ B′, C ′′ C ′′ ≡ C ′′′

B, C −→ B, C ′′′ (R-Struct)

B, 〈E[request x]〉 ‖ 〈E ′[accept x]〉 −→
B + {c *→ (d, ε), d *→ (c, ε)}, 〈E[c]〉 ‖ 〈E ′[d]〉

(R-Init)

Figure 3: Reduction of configurations I/II.

(written and read by select and case expressions), and the special item closed (used by close
expressions).

Rule R-Init synchronizes two threads trying to start a new connection on a common
name x. Two new end-channels are created, c and d, one for each thread. Also, two new
entries are added to the buffer table, each mentioning its peer end-channel. Symbol ε denotes
an empty queue.

Rules R-Send and R-Select write on the peer end-channel. If d is the peer end-channel
of c, then, rule R-Send enqueues value v in the channel queue of d. On the other hand,
rule R-Select enqueues label l in the channel queue of d. In either case, the result of this
operation is channel c, which can then be used for further interaction.

Rules R-Receive and R-Branch read from the channel queue. Rule R-Receive
dequeues value v at the head of the queue associated to end-channel c; rule R-Branch does
the same for label lj at the head of the queue. The result of the evaluation of expression
receive c is a pair composed of v and channel c itself. On the other hand, the result of the
evaluation of expression case c of {li : ei}i∈I is the application of function ej, body of branch
labelled by lj, to channel c. In either case, channel c can then be used for further interaction,
as in the case of the two read rules above.

There are two rules responsible for closing an end-channel, each inspecting the channel
value at the head of the end-channel. If the special value closed is found, meaning the peer
thread has closed the channel, rule R-CloseClose removes the pair of end-channels from
the buffer table. On the other hand, if the mark is not found at the head of the queue, the
thread enqueues closed in the peer end-channel.

4 Typing

We now introduce a static type system for our language. The syntax of types is defined in
Figure 5.

Session types S will be associated with channels. End is the type of a channel which
cannot be used for further communication; the only possible operation is close. ?T.S is the
type of a channel from which a message of type T can be received; subsequently the channel
is described by type S. Dually, !T.S is the type of a channel on which a message of type T

7

B(c) = (d,) B(d) = (c,"b)

B, 〈E[send v c]〉 −→ B + {d *→ (c,"bv)}, 〈E[c]〉
(R-Send)

B(c) = (d,) B(d) = (c,"b)

B, 〈E[select l c]〉 −→ B + {d *→ (c,"bl)}, 〈E[c]〉
(R-Select)

B(c) = (d, v"b)

B, 〈E[receive c]〉 −→ B + {c *→ (d,"b)}, 〈E[(v, c)]〉
(R-Receive)

B(c) = (d, lj"b) j ∈ I

B, 〈E[case c of {li : ei}i∈I]〉 −→ B + {c *→ (d,"b)}, 〈E[ejc]〉
(R-Branch)

B(c) = (d, closed)

B, 〈E[close c]〉 −→ B \ {c, d}, 〈E[()]〉 (R-CloseClose)

B(c) = (d,"b) "b .= closed B(d) = (c,"b′)

B, 〈E[close c]〉 −→ B + {d *→ (c,"b′ closed)}, 〈E[()]〉
(R-Close)

Figure 4: Reduction of configurations II/II.

S ::= End | ?T.S | !T.S | &〈li : Si〉i∈I | ⊕ 〈li : Si〉i∈I

T ::= S | Unit | T ⊗ T | T → T | T ! T | [S]

Γ ::= ∅ | Γ, x : T | Γ, c : S

Figure 5: Syntax of types.

can be sent; subsequently the type of the channel is S. &〈li : Si〉i∈I is the type of a channel
from which a message can be received, which will be one of the labels li. The subsequent
behaviour of the channel is described by the corresponding type Si. Dually, ⊕〈li : Si〉i∈I is
the type of a channel on which one of the labels li can be sent, with subsequent behaviour
described by Si. Each session type S has a dual type S, defined in Figure 6. The present
paper does not include recursive session types. There is no technical difficulty in including
them, along the lines of [10, 24], but the details are rather long because of the need to define
duality and subtyping coinductively.

General types are denoted by T , including session types S as one case. Because channels
must be controlled linearly, so that each end-channel is owned by a unique thread within
the system, the type system includes constructors for linear pairs T ⊗U and linear functions
T ! U as well as standard functions T → U . Each type is either linear or unlimited, as
defined in Figure 7. The single-valued type Unit is included because it occurs naturally in
the typing of some of the operators of the language; data types such as Int and Bool can
easily be added. The type [S] describes a name that can be used to establish a session. If a
typed name n : [S] occurs in the global environment then a matching request n and accept n
create a channel. On the client side, request n yields a channel endpoint of type S, while on
the server side, accept n yields the peer endpoint of type S.

The type system includes a subtyping relation, defined in Figure 8. Part of this is the
standard definition of subtyping for session types [10], specialized to non-recursive types.

8

End = End ?T.S = !T.S ⊕〈li : Si〉i∈I = &〈li : Si〉i∈I

!T.S = ?T.S &〈li : Si〉i∈I = ⊕ 〈li : Si〉i∈I

Figure 6: Duality on session types.

lin(S) lin(T ⊗ T) lin(T ! T)

un(Unit) un(T → T) un([S])

Figure 7: Classification of types as linear (lin) or unlimited (un).

The rest consists of the usual subtyping rules for function types, and a novel subtyping
relationship between standard and linear function types [8], expressed in rule S-FunFun.

Type environments are defined by the grammar in Figure 5. The order of environment
entries is unimportant: regard an environment as a partial function from variables and
channels to types. Write dom(Γ) for the set of variables and channels in Γ; write cdom(Γ)
for the set of channels in Γ; and say that un(Γ) is true of an environment where all types are
unlimited.

In the usual way for a type system with linear types [21], we define a partial operation
of addition on environments. Let α be either a variable x or channel c. If α .∈ dom(Γ)
then Γ + α : T = Γ, α : T . If α : T ∈ Γ and un(T) then Γ + α : T = Γ. In all other cases,
Γ + α : T is undefined. Addition is extended inductively to a partial binary operation on
environments. Typing rules in which environments are added contain an implicit condition
that the addition must be defined.

Typing of expressions is defined in Figures 9 and 10. The typings in Figure 9 should be
understood as schemas, which can be instantiated for any appropriate types. The schemas
for send and receive capture the essence of the way in which we use linear type constructors to
control the use of channels. We treat send as a curried function which is given a value and a
channel and returns the same channel with the type that remains after sending the specified
value. There are two versions of this schema, because the partial application send v contains
v in its closure and therefore we must use a linear function type if v has a linear type. The
receive function is given a channel of appropriate type and returns, with the received value,
the same channel, again with its remaining type. The return type of receive is a linear pair
because S, being a session type, is linear.

The type of close is similar to that of send, but simpler because there is no value to
specify and no channel to return. The functions request and accept return new end-channels
of dual types S and S corresponding to the type [S] of the given name.

Most of the rules in Figure 10 are standard. T-Fork describes spawning a new thread,
whose type is required to be unlimited in order to ensure that the thread completely consumes
any channels that it uses, eventually closing them. T-Select describes sending a label to
select one of the possible behaviours; like send, the channel is returned with the appropriate
type. T-Case requires the case-expression e to be of a branch type; the expressions ei

in each branch must be functions accepting the appropriate channel (of type Ti). T-App
includes application of standard functions, by subsumption.

Figure 12 defines typing of configurations and of buffered configurations, beginning with

9

T <: T
T1 <: T2 T2 <: T3

T1 <: T3
(S-Refl,S-Trans)

U1 <: T1 T2 <: U2

T1 ! T2 <: U1 ! U2

U1 <: T1 T2 <: U2

T1 → T2 <: U1 → U2
T1 → T2 <: T1 ! T2

(S-FunL,S-Fun,S-FunFun)

T1 <: T2 S1 <: S2

?T1.S1 <: ?T2.S2

T2 <: T1 S1 <: S2

!T1.S1 <: !T2.S2
(S-In,S-Out)

I ⊆ J ∀i∈I(Si <: S ′i)

&〈li : Si〉i∈I <: &〈li : S ′i〉i∈J

J ⊆ I ∀i∈J(Si <: S ′i)

⊕〈li : Si〉i∈I <: ⊕〈li : S ′i〉i∈J
(S-Branch,S-Choice)

Figure 8: Subtyping.

() : Unit receive : ?T.S → T ⊗ S

fix : (T → T) → T close : End → Unit

send : T → !T.S ! S request : [S] → S

send : T → !T.S → S if un(T) accept : [S] → S

Figure 9: Typing schemas for constants.

a single thread (containing an expression) and allowing configurations to be combined in
parallel. Again the type of a thread is required to be unlimited. For buffered communications
we have two rules: for a configuration with an empty buffer table and a for a configuration
holding at least the two ends (c, c′) of a channel. This second rule, T-AddBuffers, make
use of definitions from Figure 11.

The first hypothesis of T-AddBuffers say that the buffered configuration without the
selected channel should be typable. The second hypothesis state that the values "b in the
buffer for the channel end c should match the type for c, as seen by configuration C (hence
the Γ(c)). This is expressed via the matches relation, defined in Figure 11. If there is data
in the buffer for c, then the session type of c must allow the data to be received; messages
must have subtypes of the expected types, and labels must correspond to options existing
in a branch type. The closed token indicates that the peer end-channel has been closed, and
therefore c must also be ready to be closed. Intuitively, if Γ ' "b matches S then "b traces a
path through the tree structure of S. This path does not necessarily go all the way to a leaf,
and we define S/"b to be the session type at which "b stops, as illustrated in Figure 11. This
type is used in the final hypothesis of T-AddBuffers, which states that peer end-channels
have dual session types after ignoring the initial parts which match the data in their buffers.
If both buffers are empty, so that input and output synchronized, then the condition would
simply be that if c and c′ are peers then Γ2(c) = Γ2(c′).

Figure 13 shows an abbreviated typing derivation for the function shopLoop from Section 2.
The recursive definition of shopLoop is translated into fix λf.λs.λo.case s of {. . . } in the usual
way. We show part of the typing derivation for the expression within fix.

Typechecking. We typecheck a configuration, that is, a program with an empty buffer
table. The typing rules for buffered configurations (T-Empty, T-AddBuffers, Figure 12)

10

un(Γ) k : T

Γ ' k : T

un(Γ)

Γ, x : T ' x : T

un(Γ)

Γ, c : S ' c : S

Γ ' e : T T <: U

Γ ' e : U
(T-Const,T-Var,T-Chan,T-Sub)

Γ1 ' e1 : T Γ2 ' e2 : U

Γ1 + Γ2 ' (e1, e2) : T ⊗ U

Γ1 ' e1 : T ⊗ U Γ2, x : T, y : U ' e2 : V

Γ1 + Γ2 ' let (x, y) = e1 in e2 : V
(T-Pair,T-Split)

Γ, x : T ' e : U un(Γ)

Γ ' λx.e : T → U

Γ, x : T ' e : U

Γ ' λx.e : T ! U
(T-Abs,T-AbsL)

Γ1 ' e1 : T ! U Γ2 ' e2 : T

Γ1 + Γ2 ' e1e2 : U

Γ1 ' e1 : T Γ2 ' e2 : U un(T)

Γ1 + Γ2 ' fork e1 e2 : U
(T-App,T-Fork)

Γ ' e : ⊕〈li : Ti〉i∈I j ∈ I

Γ ' select lj e : Tj

Γ1 ' e : &〈li : Ti〉i∈I ∀i∈I(Γ2 ' ei : Ti ! T)

Γ1 + Γ2 ' case e of {li : ei}i∈I : T
(T-Select,T-Case)

Figure 10: Typing rules for expressions.

un(Γ)

Γ ' ε matches S

Γ1 ' v : T T <: U Γ2 ' "b matches S

Γ1 + Γ2 ' v"b matches ?U.S

un(Γ)

Γ ' closed matches End

Γ ' "b matches S

Γ ' l"b matches &〈. . . , l : S, . . .〉

S/ε = S
End/closed = End

? .S/ "b = S/"b

&〈. . . , l : S, . . .〉/l"b = S/"b

S

S/"b

"b

If Γ ' "b matches S is defined (by the rules at the top) then we define S/"b by the rules at the
bottom. The diagram illustrates S/"b.

Figure 11: The matches relation.

are only needed to prove type preservation.
It is straightforward to convert the typing rules of Figures 9 and 10, and rules T-Thread

and T-Conf from Figure 12, into a typechecking algorithm, using standard techniques for
type systems with linear and unlimited types [21] (type annotation may be needed for the
bound variable in a lambda abstraction). To make a syntax-directed algorithm, rule T-Abs
should be used in preference to T-AbsL, so that functions are given standard types when
possible. If it turns out that the standard function type was the wrong choice, the subtyping
relation (rule S-FunFun) allows it to be converted to a linear function type when necessary,
as illustrated in Section 2.

5 Type Safety

We prove that the operational semantics preserves typability of buffered configurations, and
then prove an explicit runtime safety theorem.

11

Γ ' e : T un(T)

Γ ' 〈e〉
Γ1 ' C1 Γ2 ' C2

Γ1 + Γ2 ' C1 ‖ C2

Γ ' C

Γ ' ∅, C (T-Thread,T-Conf,T-Empty)

Γ ' B, C Γ1 ' "b matches Γ(c) Γ2 ' "b′ matches Γ(c′) Γ(c)/"b = Γ(c′)/"b′

Γ +Γ 1 + Γ2 ' B ∪ {c *→ (c′,"b), c′ *→ (c, "b′)}, C
(T-AddBuffers)

Figure 12: Typing rules for configurations and buffered configurations.

omitted

s : ?Book.Shop # receive s : Book⊗ Shop

omitted

f : .., o : .., book : Book, s : Shop # f s (addBook book o) : Unit

f : ..., o : ..., s : ?Book.Shop # let (book, s) = ... : Unit

f : ..., o : ... # λs.let (book, s) = ... : ?Book.Shop ! Unit
·
· omitted

· f : ..., o : ... # λs.let (card, s) = ... : !Card.!Address.End ! Unit

f : Shop → Order → Unit, s : Shop, o : Order # case s of {λs.let (book, s) = ..., λs.let (card, s) = ...} : Unit

λf.λs.λo.case s of {...} : (Shop → Order → Unit) → Shop → Order → Unit

Figure 13: Typing derivation for shopLoop (abbreviated).

Lemma 1 If Γ ' e : T and e −→v e′, then Γ ' e′ : T .

Proof: In the usual way, making use of a substitution lemma which takes subtyping into
account. "

Typability of a buffered configuration (B, C) alone does not ensure type preservation or
type safety for the type system does not check that the free channels in C have buffers in
B, hence the condition dom(B) = cdom(Γ) in the two results below.

Theorem 2 (Type Preservation) If Γ ' B, C and dom(B) = cdom(Γ) and B, C −→
B′, C ′, then there exists Γ′ such that Γ′ ' B′, C ′ and dom(B′) = cdom(Γ′).

Proof: (Sketch) By induction on the derivation of B, C −→ B′, C ′ with a case-analysis on
the last rule.

(R-Thread,R-Fork) Straightforward, making use of the usual lemmas on typability of
subterms and replacement of subterms within evaluation contexts [23]. These lemmas are
also used in subsequent cases.

(R-Par,R-Struct) Straightforward, making use of a lemma that structural equivalence
preserves typability.

(R-Init) request x and accept x return channel endpoints c and d of dual types, and
their buffers are empty, so the condition Γ′(c)/ε = Γ′(d)/ε holds.

(R-Send) Γ(c) = Sc and Γ(d) = Sd, and Sc =!T.S ′c where T is the type of v. So the
matching condition means that the buffer of c is empty; also Γ ' "b matches Sd where "b

is the buffer of d. Before the reduction, Sc = Sd/"b, so Sd/"b =?T.S ′d. After the reduction,
Γ′ ' "bv matches Sd, and Sd/"bv = S ′d = S ′c. The remainder of the proof consists of constructing
the necessary typing derivation, in which the part of the environment needed to type v moves
from the typing of C to the typing of B. The case of R-Select is similar.

12

(R-Receive) Γ(c) = Sc =?T.S ′c. The matching condition means that the type of v is a
subtype of T and can be safely received. Before the reduction we have Sc/v"b which is the
same as S ′c/"b after the reduction, so the duality condition is satisfied. The case of R-Branch
is similar.

(R-Close,R-CloseClose) Similar reasoning to R-Send. "
Type safety states important properties of the typed configurations: (1) that channel-

ends occur linearly, (2) that if one channel-end occurs in a configuration, then both ends
have entries in the buffer table, (3,4) that buffers contain the expected data for the processes
willing to read, and (5,6) that let and fix are given the expected values.

Theorem 3 (Runtime Safety) If Γ ' B, C and dom(B) = cdom(Γ), then:

1. Every free channel in c occurs in exactly one thread within C.

2. If C ≡ 〈E[e]〉 ‖ C ′ and e is an operation on channel c, then c and its peer are in B.

3. If C ≡ 〈E[receive v]〉 ‖ C ′ and B(c) contains data, then the first data value is a value
v.

4. If C ≡ 〈E[case c of {li : ei}i∈I]〉 ‖ C ′ and B(c) contains data, then the first data value
is lj for some j ∈ I.

5. If C ≡ 〈E[let (x, y) = v in e]〉 ‖ C ′, then v = (v1, v2).

6. If C ≡ 〈E[fix v]〉 ‖ C ′, then v = λx.e.

Proof: By analyzing the derivation of Γ ' B, C. "

6 Related and Future Work

Singularity is an operating system where processes communicate solely via message pass-
ing [6]. The system is written in Sing#, an extension of language C#, where session types
provide for invariants that enable efficient process communication with low overhead. A
notable feature of the system is the asynchronous operational semantics, similar to what
we formally define in this paper. Neubauer and Thiemann [16] present an asynchronous
semantics for a functional language with session types, where threads communicate via a
pair of streams (end-channels), similarly to Sing# and the present work. They formally
define an operational semantics and a type system, and prove a type soundness result. Our
formulation is simpler.

Dezani-Ciancaglini et al. [4, 5] have ported session types to the world of objects. They
use a synchronous semantics and do not deal with subtyping. The language in [4] enjoys an
interesting progress property, whereby well-typed programs do not starve at communication
points, once a session is established. The price to pay is the impossibility of interleaving
communications on different channels, by the same thread.

Cyclone [11, 12], Vault [3], and adoption and focus [7] are systems based on the C pro-
gramming language that allow protocols to be statically enforced by a compiler. They share
with our work the goal of statically enforcing protocols, but vary greatly in the techniques
used.

13

Cyclone [12] is a C-like type-safe polymorphic imperative language. It features region-
based memory management, and more recently threads and locks [11], via a sophisticated
type system. The multithreaded version requires “a lock name for every pointer and lock
type, and an effect for every function”. Our locks are channels; but more than mutual
exclusion, channels also allow a precise description of the protocol “between” acquiring and
releasing the lock. In Cyclone a thread acquires a lock for a resource, uses the resource in
whichever way it needs, and then releases the lock. Using our language a thread acquires
the lock via a request operation, and then follows a specified protocol for the resource, before
closing the channel obtained with request.

In the Vault system [3] annotations are added to C programs, in order to describe pro-
tocols that a compiler can statically enforce. Similarly to our approach, individual runtime
objects are tracked by associating keys (channels, in our terminology) with resources, and
function types describe the effect of the function on the keys. Although incorporating a form
of selection (⊕), the type system describes protocols in less detail than we can achieve with
session types. “Adoption and Focus” [7], by the same authors, is a type system able to track
changes in the state of objects; the system handles aliasing, and includes a form of polymor-
phism in functions. In contrast, our system checks the types of individual messages, as well
as tracking the state of the channel. Our system is more specialized, but the specialization
allows more type checking in the situation that we handle.

The present authors studied type checking for session types in a functional language [19].
In contrast to the present work, there we used a synchronous semantics and non-standard
function types and typing judgments, where the initial and final types of the channels in-
volved in each operation were made explicit.

Yoshida and Vasconcelos [24] study two similar π-calculus based systems: that of Honda
et al. [14], and a variant appearing in several subsequent works on session types. They
show that to model “true” channel passing, where one thread may acquire both ends of
a communication channel a formal system is needed where the two ends of the channel
are treated separately. Following an idea by Gay and Hole [10], the authors syntactically
distinguish the two ends of a channel by tagging them with a distinct, plus or minus, polarity.
The same effect is achieved in this work by equipping the entry of a channel in a buffer table
with the peer end-channel (in addition to the buffer itself).

The main areas for future work are to formalize a theory of object-oriented session types
in greater generality than exists at present, and to include polymorphism, either in a simple
ML-style or along the lines of [9]. The relationship with various forms of static analyses,
including type and effect systems [1] should be investigated.

Acknowledgements. This work was partially supported by FEDER, the EU IST proac-
tive initiative FET-Global Computing (project Sensoria, IST–2005–16004), Fundação para a
Ciência e a Tecnologia (via CITI, and project Space–Time–Types, POSC/EIA/55582/2004).

References

[1] T. Amtoft, F. Nielson, and H. R. Nielson. Type and Effect Systems: Behaviours for
Concurrency. IC Press, 1999.

14

[2] E. Bonelli, A. Compagnoni, and E. Gunter. Correspondence assertions for process
synchronization in concurrent communication. Journal of Functional Programming,
15(2):219–247, 2005.

[3] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software. In
Conference on Programming Language Design and Implementation, volume 36(5) of
SIGPLAN Notices, pages 59–69. ACM Press, 2001.

[4] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session types for
object-oriented languages. In European Conference on Object-Oriented Programming,
volume 4067 of Lecture Notes in Computer Science, pages 328–352. Springer, 2006.

[5] M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopolou. A distributed object-
oriented language with session types. In Proceedings of the Symposium on Trustworthy
Global Computing, volume 3705 of Lecture Notes in Computer Science. Springer, 2005.

[6] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, and S. Levi.
Language support for fast and reliable message-based communication in Singularity OS.
In EuroSys2006, ACM SIGOPS, 2006.

[7] M. Fähndrich and R. DeLine. Adoption and focus: practical linear types for imperative
programming. In Conference on Programming Language Design and Implementation,
volume 37(5) of SIGPLAN Notices, pages 13–24, 2002.

[8] S. J. Gay. Subtyping between standard and linear function types.
www.dcs.gla.ac.uk/~simon/publications/StandardLinearSubtyping.pdf.
Manuscript, 2006.

[9] S. J. Gay. Bounded polymorphism in session types. Mathematical Structures in Com-
puter Science, 2007. To appear.

[10] S. J. Gay and M. J. Hole. Subtyping for session types in the pi calculus. Acta Infor-
matica, 42(2/3):191–225, 2005.

[11] D. Grossman. Type-safe multithreading in Cyclone. In Workshop on Types in Language
Design and Implementation, volume 38(3) of SIGPLAN Notices, pages 13–25. ACM
Press, 2003.

[12] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based
memory management in Cyclone. In Conference on Programming Language Design and
Implementation, volume 37(5) of SIGPLAN Notices, pages 282–293. ACM Press, 2002.

[13] K. Honda. Types for dyadic interaction. In CONCUR’93: Proceedings of the Interna-
tional Conference on Concurrency Theory, volume 715 of Lecture Notes in Computer
Science, pages 509–523. Springer, 1993.

[14] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. In ESOP’98: Proceedings of the Euro-
pean Symposium on Programming, volume 1381 of Lecture Notes in Computer Science,
pages 122–138. Springer, 1998.

15

[15] M. Neubauer and P. Thiemann. An implementation of session types. In Practical
Aspects of Declarative Languages (PADL’04), volume 3057 of Lecture Notes in Computer
Science, pages 56–70. Springer, 2004.

[16] M. Neubauer and P. Thiemann. Session types for asynchronous communication. Un-
published, 2004.

[17] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing
system. In PARLE ’94: Parallel Architectures and Languages Europe, volume 817 of
Lecture Notes in Computer Science. Springer, 1994.

[18] A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of software com-
ponents using session types. Fundamenta Informaticae, 73(4):583–598, 2006.

[19] V. T. Vasconcelos, S. Gay, and A. Ravara. Typechecking a multithreaded functional
language with session types. Theoretical Computer Science, 368(1–2):64–87, 2006.

[20] V. T. Vasconcelos, A. Ravara, and S. J. Gay. Session types for functional multithreading.
In CONCUR’04: Proceedings of the International Conference on Concurrency Theory,
volume 3170 of Lecture Notes in Computer Science, pages 497–511. Springer, 2004.

[21] D. Walker. Substructural type systems. In B. C. Pierce, editor, Advanced Topics in
Types and Programming Languages, pages 3–43. MIT Press, 2005.

[22] Web Services Choreography Working Group. Web Services Choreography Description
Language. http://www.w3.org/2002/ws/chor/.

[23] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38–94, 1994.

[24] N. Yoshida and V. T. Vasconcelos. Language primitives and type discipline for struc-
tured communication-based programming revisited: Two systems for higher-order ses-
sion communication. In 1st International Workshop on Security and Rewriting Tech-
niques, ENTCS, 2007. To appear.

16

