
Imperative Objects with Dependent Types

Joana Campos
Lasige and Department of Informatics

University of Lisbon, Portugal
jcampos@lasige.di.fc.ul.pt

Vasco T. Vasconcelos
Lasige and Department of Informatics

University of Lisbon, Portugal
vv@di.fc.ul.pt

ABSTRACT
Index refinements (or dependent types over a restricted do-
main) enable the expression of many desirable invariants
that can be verified at compile time. We propose to in-
corporate a system of index refinements in a small, class-
based, imperative, object-oriented language. While rooted
in techniques formulated for dependently-typed functional
languages, our type system is able to capture more than
just value properties and pure computations. Index refine-
ments, combined with a notion of pre- and post-type (i.e.
a type that describes the initial and final state of an ob-
ject), give programmers the ability to reason about effectful
computations. Our type system distinguishes between two
classes of objects, imposing an affine discipline to objects
whose types are governed by indices, as opposed to conven-
tional objects which can be freely shared. We have designed
and implemented an expressive and decidable type system,
which we illustrate through a number of examples.

Keywords
Dependent types, index refinements, classes, mutable ob-
jects

1. INTRODUCTION
Extending the concepts of dependent types to express

and statically verify invariants in imperative, object-oriented
programming is appealing. Since Xi and Pfenning [16], there
has been a considerable interest in the formulation of index
refinement systems that allow programmers to specify and
statically check many desirable properties. However, with
few exceptions, most systems provide frameworks that cap-
ture properties in pure computations, rather than incorpo-
rating effects (mutable state).
This paper presents Dependent Object-oriented Language

(DOL), a new programming language that allows program-
mers to refine types in order to reason about properties
of mutable objects. The language provides a type system
equipped with (1) index refinements using a separate (pure)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

language of indices to describe a variety of properties that
cannot be captured by conventional types, and (2) a no-
tion of pre-1 and post-type that allows programmers to de-
scribe the state of parameters at method entry and exit.
The two features combined enable static checking of pre-
and post-states of objects without the need of introducing
separate Hoare-style specifications. For programmers, this
type-based approach has both the advantage of reducing the
annotation burden and relieving them from the task of guid-
ing the verification process.
We follow the approach found in Dependent ML (DML)

[16], whereby types are parametric on indices drawn from a
separate language of constraints, rather than providing full
dependency on terms of arbitrary types. The result is still an
expressive type system in which typechecking is decidable as
long as indices fall within a decidable theory. In this paper,
we give examples using the integer domain, which is by far
the most explored (decidable) constraint theory. Exploring
the integration of other more expressive domains, possibly at
the cost of typechecking decidability, is one of the directions
we point to in future work.
In DOL, we adopt the “pure” object-oriented program-

ming model, similar to the Smalltalk or Ruby object models,
in order to obtain a simple type system; hence, (1) object
references are the only values in our language (as opposed
to, say, Java that includes primitive values), (2) methods
use a call-by-value strategy only (where values are object
references), and (3) state-modifying methods which do not
return values (similar to void methods) are the only kind of
methods that can be defined in DOL.
Our language allows mutable, unique objects, as well as

shared objects, which can be used in an unrestricted fashion,
since some aliasing is required in practical object-oriented
programming. For this paper, DOL takes the simplest ap-
proach to ownership control by imposing safe destructive
updates on objects whose types are governed by indices.
Shared objects have concrete, conventional types. For these,
the type system does not provide any guarantee. More ad-
vanced approaches that handle these concerns exist in the
literature, and, if desired, could be added to DOL. We iden-
tify one less restrictive approach in future work.
Contributions. The main contributions of this work in-

clude: a formulation of universal and existential dependent
types in a class-based, imperative, object-oriented language;
the introduction of a notion of pre- and post-type, allowing
the type system to track mutable state in method parame-

1Other uses of the term “pre-type” exist in the literature,
namely by Walker [13], which are unrelated to ours.

ters; support for single inheritance whereby a class may ex-
tend another class as long as it satisfies the index constraints
defined by the superclass (it also means that programmers
can define inductive structures in DOL); the definition of a
type system for objects that relies on a decidable domain of
indices and on a simple notion of unique ownership.
Outline. In Section 2, we discuss related work. Section 3

presents some motivating examples. We introduce the for-
mal language in Section 4, and provide some of the rules
in our type system in Section 5. Finally, we conclude in
Section 6, outlining future work.

2. RELATED WORK
On the basis of index refinements is the notion of depen-

dent type developed by Martin-Löf [8], used in proof assis-
tants, like Coq [4], and by a number of languages, such as
Cayenne [1], Epigram [9], and Idris [3]. With full depen-
dent types, determining whether two types are equal comes
down to determining term equivalence, which is undecid-
able in general. These languages provide different ways to
handle non-terminating programs. The Cayenne system,
for example, becomes semi-decidable by forcing the type-
checker to terminate within a number of prescribed steps.
The Hoare Type Theory (HTT) [10] proposes to extend a
full dependently-typed functional language with an indexed
monadic type in the style of a Hoare triple. While our pre-
and post-types have similarities with the Hoare type, our
work targets the Java-like paradigm, and does not involve
the complexity of higher-order abstraction.
Index refinements as formulated by Xi and Pfenning in

DML [16] reduce typechecking to a constraint satisfaction
problem on terms belonging to index sorts. Their approach,
which is also ours, offers the additional advantage of relative
simplicity of the type system, as well as requiring fewer an-
notations, when compared to full dependent type systems.
Xi later formulated Xanadu [15], a language with a C-like
syntax combining imperative programming with index re-
finements. While closely related, DOL extends the ideas of
Xanadu to a class-based language, which exhibits a rigid
class structure and membership, provides inheritance and
subtyping, and allows reasoning about mutable objects.
X10’s constrained types [11] can also be considered a form

of refinement types. These types are designed around the
notion of constraints on the immutable state of objects. The
core language proposed (CFJ) extends the purely functional
FJ [6]. To our knowledge, support for reasoning about mu-
table objects and effects has not yet been provided.
Other approaches include advanced techniques for veri-

fying software properties. Assertions are one of the most
useful mechanisms, also serving for documenting code. Any
boolean predicate can be used to check software properties,
which makes statically checking assertions undecidable in
general. The pre- and post-types in DOL can be seen as a
(decidable) alternative to a pair of assertions.
ESC [7] and related systems are effective in finding bugs

in Java programs. ESC provides a simple language of anno-
tations to help detect errors at compile time, but the tool
is based on an approach which is not sound nor complete.
However, by combining a range of techniques, it is more ex-
pressive than index refinements. Spec] [2] uses a sound pro-
gramming methodology to check C] programs, which allows
reasoning about object invariants even in a multi-threaded
setting. In DOL, we explore index refinements in an imper-

1 class Account(b:natural) ⇒
2 init :: Empty..Account 0
3 deposit :: m:natural ⇒
4 Account b..Account (b+m), Integer m
5 withdraw :: m:natural ⇒
6 Account (b+m)..Account b, Integer m
7 getBalance :: x:integer ⇒ Account b, Integer x..Integer b
8 balance :: Integer b // the only field
9 init() = balance := 0

10 deposit(amount) = balance.add(amount)
11 withdraw(amount) = balance.sub(amount)
12 getBalance(bal) = bal.copy(balance)
13

14 class SavingsAccount(n:natural, s:{x:natural | x≥ n})
15 extends Account s ⇒
16 init :: Empty..SavingsAccount (n,s),
17 Integer n, Integer s
18 withdraw :: p:natural ⇒
19 Account (s+p)..SavingsAccount (n,s), Integer p
20 minBalance :: Integer n // another field
21 // implementation omitted

Figure 1: A bank account and a subclass

ative, object-oriented language, requiring simple type anno-
tations. These advanced techniques could in principle be
accomodated in our language.

3. MOTIVATING EXAMPLES
Classes and methods in DOL are parametric on the un-

derlying index language, which refines object types. Depen-
dencies are restricted to terms of index sorts. For example,
in the domain of integers, index sorts comprise the integers
and subsets of index sorts. In the examples, we often use the
sort natural, which abbreviates {x:integer | x≥ 0}. We write
(⇒) to denote the mapping of indices to types. Note that
classes and methods are parametric on universally quanti-
fied variables, although we omit the all quantifier in the ex-
amples; however, we signal the introduction of existentially
quantified variables with exists.
Like Java, DOL supports single class inheritance. The de-

fault superclass Empty, provided by the language, is a con-
crete class which has no fields or methods, except for init.
Instances of this class can be freely shared. In the exam-
ples, we often omit the extends declaration. By convention,
init is the name of the method immediately called after ob-
ject creation to initialise all fields of a class – including the
inherited ones; it is the closest we have to a constructor.

3.1 Example 1: A Bank Account
Figure 1 shows the Account class. It is parametric on index

variable b of sort natural denoting its current balance. The
class exposes its interface in lines 2–8, defining the types of
each class member. In the formal language, the structural
and nominal types are used interchangeably (Account being
a type family).
A method type declares a list of typed indices, a comma-

separated list of parameter types, and no return type (DOL
has only “void”, state-modifying methods). The first param-
eter type by default describes the method’s receiver, which
we often call this. Each parameter type has two compo-
nents, separated by dots (..). The first component is the
pre-type that specifies the exact value of the argument at
method entry. The second component is the post-type that

specifies the argument’s result value. Often, pre- and post-
types are the same, either because the argument state does
not change, or because the argument is a conventional ob-
ject, which the type system does not track (as opposed to
instances of type families). In the examples, we adopt the
convention of omitting the post-type rather than duplicat-
ing it. For instance, the deposit type defined in lines 3–4 is
equivalent to the full type:

deposit :: m:natural ⇒
Account b..Account (b+m), Integer m..Integer m

where Account b..Account (b+m) qualifies this and Integer m..
Integer m qualifies the method’s only argument. As a pre-
condition, the pre-type states what the method requires. As
a postcondition, the post-type states the produced state.
State Modifying Methods. Pre- and post-types im-

pose a sort of usage behaviour. Informally, the Account in-
terface allows an account to be created with no balance and
requires that some funds are deposited before an amount,
less or equal to the current balance, can be withdrawn. The
account’s current balance can be obtained at all times.
We now explain in detail the class interface (lines 2–8),

sometimes referring to method implementations (lines 9–
12). The init constructor returns Account 0 (a type family
application) to describe the newly created object, and re-
quires no existing state (we use Empty at the pre-type place-
holder). deposit can be called on an object of type Account b
and changes its state to Account (b+m); it takes some object
amount and does not change its state. The withdraw method
does, in some sense, the reverse operation: it changes the
receiver’s initial state from Account (b+m) to Account b; it
takes some amount object and does not change it. Finally,
getBalance does not change the receiver’s state, but it takes
some bal referencing an arbitrary integer object (note that
the type family Integer is different from the sort integer), and
changes its state to Integer b. Even though getBalance does
not change the state of the receiver object, the method is
not a “getter” in the sense of Java, since it produces a side
effect on its argument.
We can now see how the typechecker catches a usage vio-

lation on client code that creates an account and calls some
methods on it. We note, on each line, the type environment
configuration:

var a := new Account(); // a: Account 0
a. deposit (100); // a: Account 100
a.withdraw(70); // a: Account 30
var v := 0; // a: Account 30, v: Integer 0
a. getBalance(v); // a: Account 30, v: Integer 30
a.withdraw(50) // Error : 50 > 30

Any method implementation (not just client code) must
be correct up to the detail included in the method signature.
For example, the getBalance body (line 12) is typechecked
starting from an initial type environment, where this and bal
are given the defined pre-types (line 7), and ending with a
(different) final environment where the types of this and bal
are required to conform to the defined post-types.
Base Types. DOL does not distinguish between values

which are objects and values of primitive types, typically
found in Java-like languages. However, it provides native
classes, such as Integer that defines a set of useful methods,
including add, sub, or copy that makes a copy of the internal
state of the given object to the receiver. Technically, the
program constant 0 (line 9), distinct from the index value 0

1 class Node ⇒ {}
2 class Nil extends Node ⇒
3 init :: Empty..Nil
4 class Cons extends Node ⇒
5 init :: Empty..Cons, Node, Transaction
6 next :: Node // fields
7 value :: Transaction
8 // implementation omitted
9 class SList(n:natural) ⇒

10 init :: Empty..SList 0
11 addFirst :: SList n..SList (n+1), Transaction
12 remFirst :: SList (n+1)..SList n
13 get :: i:{x:natural | x<n} ⇒
14 SList n, Integer i, Transaction
15 filter :: SList n, Predicate,
16 SList 0..(exists m:{x:natural | x≤ n} ⇒ SList m)
17 head :: Node // fields
18 count :: Integer n
19 // implementation omitted

Figure 2: A dependently-typed singly linked list

(line 2), is syntactic sugar for the object reference returned
by new Integer(), whereas the number 3 is short for a reference
t such that t := new Integer(); t.inc(); t.inc(); t.inc().
Indexed Classes and Subtyping. Class SavingsAccount

(Figure 1) extends Account. It is parametric on two index
variables (line 14): the additional index n of type natural
denotes a minimum opening deposit and balance for the ac-
count, constraining the type of index s, which keeps track of
the account’s current balance. Declaring that SavingsAccount
extends Account s allows the typechecker to determine the
relationship between the index variables of the subclass and
the index variables of its direct superclass.
A class inherits from its superclass all the fields and meth-

ods that are not overridden. A method in a subclass is
allowed to override a method with the same name that is
present in the superclass. In the example, the typechecker
verifies that the withdraw type in the subclass (lines 18–19)
is a valid subtype of the corresponding method type in the
superclass (lines 5–6). The notion of subtyping of methods
relies on the usual contravariance of the argument’s initial
type and covariance of the resulting one.
Controlled Aliasing. The potential sources of alias-

ing problems in DOL are assignment and parameter pass-
ing. Given a: Account 30 and another reference a2, it is easy
to show that the code a2 := a; a2.withdraw(30); a.withdraw(5)
would break the invariant of object a, since the type sys-
tem is no longer able to use the object’s type to keep track
of its state. To deal with assignment, we disallow aliasing
of objects whose type is governed by indices, making ob-
ject a acquire type Empty after its value is “written” to a2.
However, since state changes are made explicit in method
signatures, we do not need to empty an object in parameter
passing (when it is just “read”).

3.2 Example 2: A Singly Linked List
We introduce in Figure 2 a singly linked list of transac-

tions. The SList class is parametric on index n of type natural
used to track the list size and provide safe methods. Infor-
mally, the class interface (lines 10–18) specifies that a list is
created empty, and that methods remFirst and get may only
be called if an item was first added to the list.
Shared Types. Inheritance and shared types allow us to

P ::= L1 . . . Ln (programs)
L ::= class C : Π∆ / Cx̄.T isM (classes)

M ::= {lk(yk) = tk
k∈1...n} (methods)

T ::= C | {lk : Tk
k∈1...n}

| Πx : I.T | Σx : I.T | T i
| T × T | T..T (types)

t ::= s | y.l := s | y.l := (new C)s̄
| (s.l)s | if s = s then t else t
| while s = s do t | t; t (terms)

s ::= y | y.l (references)
I ::= integer | {x : I | p} (index types)
i ::= x | n | i+ i | max(i, i) (index terms)
p ::= i ≤ i | p ∧ p (propositions)

∆ ::= ε | ∆, x : I (index contexts)

Figure 3: User’s syntax

ctype(Empty) = {init : Empty}
class C : Π∆ / Dx̄′.T isM ∆ = x̄ : Ī , x̄′ : J̄

ctype(D) = Π∆′.U x̄′ : J̄ ` θ : ∆′

ctype(C) = Π∆.(T + (Uθ)[Cx̄/D])
C.l = U implies ε ` T <: U

override(C, l, T)

Figure 4: Auxiliary definitions

write singly linked lists inductively in terms of the Nil and
Cons classes, derived from the Node abstract class. In DOL,
a class without an init method is like an abstract class in
Java, since it cannot be instantiated. Rather than use null
which is not a value in DOL, we adopt a functional style
approach. The list is defined using field head of the shared
type Node, denoting all possible forms of nodes. An empty
list is one in which head references an instance of Nil, while
in a non-empty list the field references an instance of Cons,
containing two fields: one that refers to a transaction and
another one that refers to the next node.
Existential Types. All the types that we have seen

so far are universally quantified, since these are by far the
most common. The filter signature (lines 15–16) provides an
example of an existential type. The method must be called
on an object of type SList n, which does not change. It takes
a predicate of type Predicate, and an empty list that changes
to a state described by type (exists m:{x:natural | x≤ n} ⇒
SList m). The existential quantifier can only constrain the
resulting list size to be smaller or equal to the current list
size, since its exact size is unknown.

4. FORMAL LANGUAGE
We present the user’s syntax in Figure 3. To represent

universally quantified types of classes and methods in the
internal syntax, we use Π as a dependent product restricted
to indices. The existential type takes the form of dependent
sums, with Σ quantifying existentially over index variables.
A class has a structural representation as a dependent record

∆ ` T
class C : Π∆′ / Dx̄.T isM (Wf-Class)

∆ ` C
∀ 1 ≤ k ≤ n ∆ ` Tk (Wf-Record)

∆ ` {lk : Tk
k∈1...n}

∆ ` I ∆, x : I ` T
(Wf-Π)

∆ ` Πx : I.T
∆ ` I ∆, x : I ` T

(Wf-Σ)
∆ ` Σx : I.T

∆ ` T <: Πx : I.T ′ ∆ ` i : I (Wf-App)
∆ ` T i

∆ ` T1 ∆ ` T2 (Wf-×)
∆ ` T1 × T2

∆ ` T1 ∆ ` T2 (Wf-..)
∆ ` T1..T2

Figure 5: Rules for type formation

type of the form Π∆.T , where ∆ is a context of typed in-
dex variables and T represents a record of member types.
A class declaration class C : Π∆ / Dx̄.T isM introduces a
class named C that extends (/) a superclass Dx̄, where the
variables in x̄ are declared in ∆. Methods are defined in M .
Terms are fairly standard, including references, assignment
to fields, method calls, the conditional, the loop, and the
sequential term composition. We omit local variables found
in the examples. We always use the letter y to distinguish
object identifiers from index identifiers x, used only in types.
To simplify the typing rules, every method declares exactly
one parameter, except for the constructor that, in the spirit
of FJ [6], always takes one parameter for each field, including
all the inherited ones.
Types. A type classifies a class, a method or an object.

It can be of the following seven forms:

• A class name C is a nominal object type induced by
classes, commonly found in most mainstream object-
oriented languages. We permit its use as a type alias
[12] for the structural representation of a parametrised
record type.

• A record type {lk : Tk
k∈1...n} exposes the class mem-

bers. Nominal types are inherently recursive, therefore
C may occur in any Tj for 1 ≤ j ≤ n. The class name
provides for the recursion fixed point.

• A type family Πx : I.T is a type that maps elements
of index type I to elements of the main type T , where
x may occur free in T . It can be used to build up class
and method types.

• An existential type Σx : I.T classifies objects of type
T where x of index type I represents some unknown
value in T .

• A type application T i instantiates a type family.

• A pair of types of the form T×T is used for parameters,
where the first one classifies this, implicitly passed to
the method.

• A parameter type of the form T..T defines a relation-
ship between two components, the pre-type and a pos-

∆ ` T <: U
(S-ClassL)

∆ ` C <: ctype(C)
(S-ClassR)

∆ ` ctype(C) <: C
(S-Refl)

∆ ` T <: T
class C : Π(x̄ : Ī , x̄′ : J̄) �Dx̄′.T isM ∆ ` ī : Ī

(S-Sub)
∆ ` Cī <: D

∀1 ≤ k ≤ n ∆ ` Tk <: Uk (S-Record)
∆ ` {lk : Tk

k∈1...n+m} <: {lk : Uk
k∈1...n}

∆ ` T [i/x] <: U ∆ ` i : I
(S-ΠL)

∆ ` Πx : I.T <: U
∆, x : I ` T <: U

(S-ΠR)
∆ ` T <: Πx : I.U

∆ ` i : I (S-β)
∆ ` (Πx : I.T)i <: T [i/x]

∆, x : I ` T <: U
(S-ΣL)

∆ ` Σx : I.T <: U
∆ ` T <: U [i/x] ∆ ` i : I

(S-ΣR)
∆ ` T <: Σx : I.U

∆ ` T <: U ∆ |= i
.= j

(S-App)
∆ ` T i <: Uj

∆ ` T1 <: U1 ∆ ` T2 <: U2 (S-×)
∆ ` (T1 × T2) <: (U1 × U2)

∆ ` U1 <: T1 ∆ ` T2 <: U2 (S-..)
∆ ` (T1..T2) <: (U1..U2)

∆ ` T1 <: T2 ∆ ` T2 <: T3 (S-Trans)
∆ ` T1 <: T3

Figure 6: Subtyping rules

` L
ε ` ∆ ∆ ` Dx̄, T this : C `D M

(T-Class)
` class C : Π∆ / Dx̄.T isM

Γ `D l(y) = t

C.l = Π∆.(T1..T2)× (U1..U2) override(D, l, C.l)
∆; this : T1, y : U1 ` t : Empty a this : T3, y : U3

∆ ` T1, T3, U3 <: ctype(C), T2, U2 (T-Meth)
this : C `D l(y) = t

Figure 7: Rules for program formation

sibly different post-type, representing the state of an
object at method entry and exit.

Index Constructs. We include only a subset of the pos-
sible index constructs: variables, integer literals, addition of
index terms, and a function that returns the greater of two
index terms. Index types I comprise the integer type and
the refinement type of the form {x : I | p}, constrained by a
predicate p. Context ∆ maps index variables to index types,
and is used as a type environment of index identifiers.

5. TYPE SYSTEM
For space reasons, we have omitted from this paper a

number of details related to index binding and substitu-
tion in types (extended pointwise to multiple substitution
θ), as well as proofs of soundness via subject reduction and
progress properties.
Static Semantics. We typecheck our language with re-

spect to two type environments, ∆ (already mentioned), and
Γ mapping object identifiers to ordinary types. The main
judgements consist of ∆ ` I and ∆ ` T for checking type
formation, ∆ ` I <: J and ∆ ` T <: U for checking the
subtype relation, and ∆ ` i : I and ∆; Γ1 ` t : T a Γ2
for term typing. The latter shows that t may change the
types contained in Γ1 (for example, by assigning values to
objects or by calling methods on them), giving rise to the
final environment Γ2. In the typing rules, we assume given
the semantically defined judgement ∆ |= p.
We need a few auxiliary functions, defined in Figure 4, for

looking up a class type, and for checking method overriding.
We also use the following notation for interpreting paths in
record types and type environments.

Definition 1 (Locations in record types).

• We write (T + U) to denote a record type V such that
l : T ′ ∈ V means either l : T ′ ∈ T , or l : T ′ ∈ U when
l : T ′ /∈ T .

• If T , {lk : Tk
k∈1...n}, then lj : Tj ∈ T and T.lj , Tj

for any 1 ≤ j ≤ n.

• If class C : Π∆ / Dx̄.T isM and T.l = Π∆′.T ′, then
C.l = Π∆,∆′.T ′.

Definition 2 (Locations in environments).

• If Γ = Γ1, y : T1,Γ2, then Γ{y 7→ T2} , Γ1, y : T2,Γ2.

• If Γ = Γ1, y : {lk : Tk
k∈1...n},Γ2, then Γ{y.lj 7→ T ′} ,

Γ1, y : {lk : T ′
k

k∈1...n},Γ2 where T ′
k = Tk for k 6= j and

T ′
j = T ′ for any 1 ≤ j ≤ n.

The rules for checking type formation (Figure 5) are stan-
dard for dependently-typed systems, except that they rely
on the class definition rather than on a conventional system
of kinds. In particular, Wf-App may seem unusual, since it
uses the subtyping rules to check the kind of type T .
Subtyping rules are presented in Figure 6. Reflexivity and

transitivity are explicitly expressed by rules. S-ClassL/R
allow a nominal type C to be used in place of its structural
type, obtained by function ctype(C) (Figure 4). S-Sub de-
fines a relation between a class and its superclass as one
where the class may define more index parameters than its
superclass. In rules S-ΠL and S-ΣR, the index term i is
“guessed” by the external constraint solver, closely follow-
ing Dunfield’s approach [5]. The β-reduction for types is
included via rules S-β and S-App. The remaining rules are
congruences, including S-.., contravariant on the argument’s
initial type (input) and covariant on the final one (output).
The typing rule for classes (Figure 7) checks the forma-

tion of components of each class. T-Meth uses the typing
judgement for terms, checking conformance of types in the
final environment against the defined post-types. Figure 8
presents the typing rules for terms. T-Var is used to ac-
cess an identifier, either this or a parameter, while T-Field

∆; Γ1 ` t : T a Γ2

∆ ` Γ y : T ∈ Γ
(T-Var)

∆; Γ ` y : T a Γ
∆; Γ ` y.l : T ′ a Γ ∆; Γ ` s : T i a Γ

(T-AffAssign)
∆; Γ ` y.l := s : Empty a Γ{y.l 7→ T i}{s 7→ Empty}

∆; Γ ` y : T a Γ
(T-Field)

∆; Γ ` y.l : T.l a Γ
∆; Γ ` y.l : C a Γ ∆; Γ ` s : C a Γ

(T-UnAssign)
∆; Γ ` y.l := s : Empty a Γ

C.init = Π∆′.T ′ × Ū ..Ū ′ ∆ ` θ : ∆′ ∆; Γ ` y.l, s̄ : T, Ūθ a Γ
(T-NewAssign)

∆; Γ ` y.l := (new C)s̄ : Empty a Γ{y.l 7→ T ′θ}{s̄ 7→ Ū ′θ}
∆; Γ ` s1 : T a Γ T.l = Π∆′.(T1..T2)× (U1..U2)

l 6= init ∆ ` θ : ∆′ ∆ ` T <: T1θ ∆; Γ ` s2 : U1θ a Γ
(T-Call)

∆; Γ ` (s1.l)s2 : Empty a Γ{s1 7→ T2θ}{s2 7→ U2θ}
∆; Γ1 ` s1, s2 : T1 a Γ1 ∆; Γ1 ` t1, t2 : T2 a Γ2 (T-If)

∆; Γ1 ` if s1 = s2 then t1 else t2 : T2 a Γ2

∆; Γ ` s1, s2 : T1 a Γ ∆; Γ ` t : T2 a Γ
(T-While)

∆; Γ ` while s1 = s2 do t : Empty a Γ
∆; Γ1 ` t1 : T1 a Γ2 ∆; Γ2 ` t2 : T2 a Γ3 (T-Seq)

∆; Γ1 ` t1; t2 : T2 a Γ3

∆; Γ1 ` t : T2 a Γ2 ∆ ` T2 <: T1 (T-Sub)
∆; Γ1 ` t : T1 a Γ2

Figure 8: Rules for typing terms

is the rule for accessing an instance variable. A reference
to an object of an index refined type acquires type Empty
after appearing on the right-hand side of an assignment in
T-AffAssign, thus implementing safe destructive updates
(cf. T-UnAssign). The ownership discipline is also sup-
ported by T-Call which updates the final type environment
with post-types, thus tracking the effects that the method
produces on its arguments. Rules T-If and T-While use a
simple reference equality.
Operational Semantics. Indices are simply an artifact

of the type system; they do not exist on runtime. For this
reason, rules in the operational semantics do not introduce
additional complications.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented an object-oriented lan-

guage with index refinement types, designed to support the
verification of mutable objects. Our examples illustrate the
main strengths and limitations of an approach that adopts
a restricted form of dependent types as an approximation
to decidable typechecking. We are currently implementing
a prototype compiler for DOL, and studying the integration
of richer index languages in domains of interest. We also
expect to handle the aliasing concern in DOL by providing
an alternative, less restrictive approach to affine types. To
relax the notion of uniqueness, we intend to introduce an
indirection into type environments in the style of [14].

7. REFERENCES
[1] L. Augustsson. Cayenne a language with dependent

types. In ICFP, pages 239–250. ACM Press, 1998.
[2] M. Barnett, K. R. M. Leino, and W. Schulte. The

Spec# programming system: An overview. In
Construction and Analysis of Safe, Secure and
Interoperable Smart devices, pages 49–69, 2005.

[3] E. Brady. Idris, a general-purpose dependently typed
programming language: Design and implementation.
Journal of Functional Programming, 23:552–593, 2013.

[4] The Coq reference manual, version 8.4, 2012.
[5] J. Dunfield. A Unified System of Type Refinements.

PhD thesis, Carnegie Mellon University, 2007.

CMU-CS-07-129.
[6] A. Igarashi, B. C. Pierce, and P. Wadler.

Featherweight Java: a minimal core calculus for Java
and GJ. TOPLAS, 23(3):396–450, 2001.

[7] K. R. M. Leino. Extended static checking: A ten-year
perspective. In Informatics – 10 Years Back. 10 Years
Ahead, pages 157–175, 2001.

[8] P. Martin-Löf. Intuitionistic Type Theory.
Bibliopolis-Napoli, 1984.

[9] C. McBride. Epigram: Practical programming with
dependent types. In Advanced Functional
Programming, volume 3622, pages 130–170. Springer,
2004.

[10] A. Nanevski, J. G. Morrisett, and L. Birkedal. Hoare
type theory, polymorphism and separation. Journal of
Functional Programming, 18(5-6):865–911, 2008.

[11] N. Nystrom, V. Saraswat, J. Palsberg, and
C. Grothoff. Constrained types for object-oriented
languages. In OOPSLA, pages 457–474. ACM, 2008.

[12] B. C. Pierce. Types and programming languages. MIT
Press, 2002.

[13] B. C. Pierce. Advanced Topics in Types and
Programming Languages. The MIT Press, 2004.

[14] F. Smith, D. Walker, and J. G. Morrisett. Alias types.
In ESOP, pages 366–381, 2000.

[15] H. Xi. Imperative programming with dependent types.
In LICS, pages 375–387. IEEE Press, 2000.

[16] H. Xi and F. Pfenning. Dependent types in practical
programming. In POPL, pages 214–227. ACM Press,
1999.

