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Abstract
Context-free session types describe structured patterns of communication on heterogeneously typed
channels, allowing the specification of protocols unconstrained by tail recursion. The enhanced
expressive power provided by non-regular recursion comes, however, at the cost of the decidability of
subtyping, even if equivalence is still decidable. We present an approach to subtyping context-free
session types based on a novel kind of observational preorder we call X YZW-simulation, which
generalizes X Y-simulation (also known as covariant-contravariant simulation) and therefore also
bisimulation and plain simulation. We further propose a subtyping algorithm that we prove to be
sound, and present an empirical evaluation in the context of a compiler for a programming language.
Due to the general nature of the simulation relation upon which it is built, this algorithm may also
find applications in other domains.
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1 Introduction

Session types, introduced by Honda et al. [31, 32, 50], enhance traditional type systems
with the ability to specify and enforce structured communication protocols on bidirectional,
heterogeneously typed channels. Typically, these specifications include the type, direction
(input or output) and order of the messages, as well as branching points where one participant
can choose how to proceed and the other must follow.

Traditional session types are bound by tail recursion and therefore restricted to the
specification of protocols described by regular languages. This excludes many protocols of
practical interest, with the quintessential example being the serialization of tree-structured
data on a single channel. Context-free session types, proposed by Thiemann and Vascon-
celos [51], liberate types from tail recursion by introducing a sequential composition operator
(_;_) with a monoidal structure and a left and right identity in type Skip, representing no
action. As their name hints, context-free session types can specify protocols corresponding
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11:2 Subtyping Context-Free Session Types

to (simple deterministic) context-free languages and are thus considerably more expressive
than their regular counterparts.

What does it mean for a context-free session type to be a subtype of another? Our answer
follows Gay and Hole’s seminal work on subtyping for regular session types [25], and Liskov’s
principle of safe substitution [39]: S is a subtype of R if channels governed by type S can
take the place of channels governed by type R in whatever context, without violating the
guarantees offered by a type system (e.g. progress, deadlock freedom, session fidelity, etc.).

More concretely, subtyping allows increased flexibility in the interactions between par-
ticipants, namely on the type of the messages (a feature inherited from the subtyped
π-calculus [46]) and on the choices available at branching points [25], allowing a channel to
be governed by a simpler session type if its context so requires. A practical benefit of this
flexibility is that it promotes modular development: the behaviour of one participant may be
refined, while the behaviour of the other is kept intact.

▶ Example 1. Consider the following context-free session types for serializing binary trees.

STree = µs.⊕{Nil: Skip, Node: s;!Int;s}
DTree = µs.&{Nil: Skip, Node: s;?Int;s}

SEmpty = ⊕{Nil: Skip}
SFullTree0 = ⊕{Node: SEmpty;!Int;SEmpty}
SFullTree1 = ⊕{Node: SFullTree0;!Int;SFullTree0}

The recursive STree and DTree types specify, respectively, the serialization and deserialization
of a possibly infinite arbitrary tree, while the remaining non-recursive types specify the
serialization of finite trees of particular configurations. The benefit of subtyping is that it
makes the particular types SEmpty, SFullTree0 and SFullTree1 compatible with the general
DTree type. Observe that its dual, STree, may safely take the place of any type in the right
column. Consider now a function f that generates full trees of height 1 and serializes them
on a given channel end. Assigning it type STree → Unit would not statically ensure that the
fullness and height of the tree are as specified. Type SFullTree1 → Unit would do so, and
subtyping would still allow the function to use an STree channel (i.e., communicate with
someone expecting an arbitrary DTree tree).

Expressive power usually comes at the cost of decidability. While subtyping for regular
session types has been formalized, shown decidable and given an algorithm by Gay and
Hole [25], subtyping in the context-free setting has been proven undecidable by Padovani [43].
The proof is given by a reduction from the inclusion problem for simple languages, shown
undecidable by Friedman [21]. Remarkably, the equivalence problem for simple languages is
known to be decidable, as is the type equivalence of context-free session types [36, 51].

Subtyping context-free session types has until now been considered only in a limited
form, where message types must be syntactically equal [43]. Consequently, the interesting
co/contravariant properties of input/output types have been left unexplored. In this paper,
we propose a more expressive subtyping relation, where the types of messages may vary
co/contravariantly, according to the classical subtyping notion of Gay and Hole. To handle
the contravariance of output types, we introduce a novel notion of observational preorder,
which we call X YZW-simulation (by analogy with X Y-simulation [1]).

While initially formulated in the context of the π-calculus, considerable work has been
done to integrate session types in more standard settings, such as functional languages based
on the polymorphic λ-calculus with linear types [2, 16, 47]. In this scenario, functional types
and session types are not orthogonal: sessions may carry functions, and functions may act
on sessions. With this in mind, we promote our theory to a linear functional setting, thereby
showing how subtyping for records, variants and (linear and unrestricted [22]) functions,



G. Silva, A. Mordido and V. T. Vasconcelos 11:3

Functional and higher-order context-free session types

T, U, V, W ::= Unit | T
m→ U | Lℓ: T Mℓ∈L | S | t | µt.T

S, R ::= ♯T | ⊙{ℓ: T}ℓ∈L | Skip | End | S;R | s | µs.S

Multiplicities, records/variants, polarities and views

m, n ::= 1 | ∗ L·M ::= {·} | ⟨·⟩ ♯ ::= ? | ! ⊙ ::= ⊕ | &

Figure 1 Syntax of types.

usually introduced by inference rules, can be seamlessly integrated with simulation-based
subtyping for context-free session types.

Finally, we present a sound algorithm for the novel notion of subtyping, based on the
type equivalence algorithm of Almeida et al. [4]. This algorithm works by first encoding the
types as words in a simple grammar [36] and then deciding their X YZW-similarity. Being
grammar-based and, at its core, agnostic to types, our algorithm may also find applications
for other objects with similar non-regular and contravariant properties.

Contributions We address the subtyping problem for context-free session types, proposing:
A syntactic definition of subtyping for context-free session types;
A novel kind of behavioural preorder called X YZW-simulation, and, based on it, a
semantic definition of subtyping that coincides with the syntactic one;
A sound subtyping algorithm based on the X YZW-similarity of simple grammars;
An empirical evaluation of the performance of the algorithm, and a comparison with an
existing type equivalence algorithm.

Overview The rest of this paper is organized as follows: in Section 2 we introduce types, type
formation and syntactic subtyping; in Section 3 we present a notion of semantic subtyping,
to be used as a stepping stone to develop our subtyping algorithm; in Section 4 we present
the algorithm and show it to be sound with respect to the semantic subtyping relation; in
Section 5 we evaluate the performance of our implementation of the algorithm; in Section 6
we present related work; in Section 7 we conclude the paper and trace a path for the work
to follow. The reader can find the rules for type formation and proofs for all results in the
paper in a technical report on arXiv [49].

2 Types and syntactic subtyping

We base our contributions on a type language that includes both functional types and higher-
order context-free session types (i.e., types that allow messages of arbitrary types). The
language is shown in Figure 1. As customary in session types for functional languages [26], the
language of types is given by two mutually recursive syntactic categories: one for functional
types and another for session types. We assume two disjoint and denumerable sets of type
references, with the first ranged over by t, u, v, w, the second by r, s and their union by x, y, z.
We further assume a set of record, variant and choice labels, ranged over by j, k, ℓ.

The first three productions of the grammar for functional types introduce the Unit type,
functions T

m→ U , records {ℓ: Tℓ}ℓ∈L and variants ⟨ℓ: Tℓ⟩ℓ∈L (which correspond to datatypes
in ML-like languages). Our system exhibits linear characteristics: function types contain a
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11:4 Subtyping Context-Free Session Types

multiplicity annotation m (also in Figure 1), meaning that they must be used exactly once
if m = 1 or without restrictions if m = ∗ (such types can also be found, for instance, in
Gay’s proposal [26], in System F◦ [40] and in the FreeST language [2]). Their inclusion in
our system is justified by the interesting subtyping properties they exhibit [22].

Session types !T and ?T represent the sending and receiving, respectively, of a value of
type T (an arbitrary type, making the system higher-order). Internal choice types ⊕{ℓ: Sℓ}ℓ∈L

allow the selection of a label k ∈ L and its continuation Sk, while external choice types
&{ℓ: Sℓ}ℓ∈L represent the branching on any label k ∈ L and its continuation Sk. We stipulate
that the set of labels for these types must be non empty. Type Skip represents no action,
while type End indicates the closing of a channel, after which no more communication can
take place. Type R;S denotes the sequential composition of R and S, which is associative,
right distributes over choices types, has (left and right) identity Skip and left-absorber End.

The final two productions in both functional and session grammars introduce self-references
and the recursion operator. Their inclusion in the two grammars ensures we can have both
recursive functional types and recursive session types while avoiding nonsensical types such
as µt.Unit ∗→ !Unit;t at the syntactical level (avoiding the need for a kinding system).

Still, we do not consider all types generated by these grammars to be well-formed.
Consider session type µr.r;!Unit. No matter how many times we unfold it, we cannot resolve
its first communication action. The same could be said of µr.Skip;r;!Unit. We must therefore
ensure that any self-reference in a sequential composition is preceded by a type constructor
representing some meaningful action, i.e., not equivalent to Skip. This is achieved by adapting
the conventional notion of contractivity (no subterms of the form µx.µx1. . . . µxn.x) [25] to
account for Skip as the identity of sequential composition. This corresponds to the notion of
guardedness in the theory of process algebra (e.g. [28, 42]).

In addition to contractivity, we must ensure that well-formed types contain no free
references. The type formation judgement ∆ ⊢ T , where ∆ is a set of references, combines
these requirements. The rules for the judgement can be found in the technical report [49].

We are now set to define our syntactic subtyping relation. We begin by surveying the
features it should support:
Input and output subtyping Input variance and output contravariance are the central fea-

tures of subtyping for types that govern entities that can be written to or read from, such
as channels and references [45]. They are therefore natural features of the subtyping rela-
tion for conventional session types as well [25]. Observe that ?{A: Int, B: Bool} ≤ ?{A: Int}
should be true, for the type of the received value, {A: Int, B: Bool}, safely substitutes the
expected type, {A: Int}. Observe also that !{A: Int} ≤ !{A: Int, B: Bool} should be true,
because the type of the value to be sent, {A: Int, B: Bool}, is a subtype of {A: Int}, the
type of the messages the substitute channel is allowed to send.

Choice subtyping If we understand external and internal choice types as, respectively, the
input and output of a label, then their subtyping properties are easy to derive: external
choices are covariant on their label set, internal choices are contravariant on their label
set, and both are covariant on the continuation of the labels (this is known as width
subtyping). Observe that &{A: ?Int} ≤ &{A: ?Int, B: !Bool} should be true, for every
branch in the first type can be safely handled by matching on the second type. Likewise,
⊕{A: ?Int, B: !Bool} ≤ ⊕{A: ?Int} should be true, for every choice in the second type can
be safely selected in the first.

Sequential composition In the classical subtyping relation for regular session types, input
and output types (♯T.S) can be characterized as covariant in their continuation. Although
the same general intuition applies in the context-free setting, we cannot as easily charac-
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Syntactic subtyping (coinductive) T ≤ T

S-Unit
Unit ≤ Unit

S-Arrow
U1 ≤ T1 T2 ≤ U2 m ⊑ n

T1
m→ T2 ≤ U1

n→ U2

S-Rcd
K ⊆ L Tj ≤ Uj (∀j ∈ K)

{ℓ: Tℓ}ℓ∈L ≤ {k: Uk}k∈K

S-Vrt
L ⊆ K Tj ≤ Uj (∀j ∈ L)

⟨ℓ: Tℓ⟩ℓ∈L ≤ ⟨k: Uk⟩k∈K

S-RecL
[µx.T/x]T ≤ U

µx.T ≤ U

S-RecR
T ≤ [µx.U/x]U

T ≤ µx.U

S-In
T ≤ U

?T ≤ ?U

S-Out
U ≤ T

!T ≤ !U

S-ExtChoice
L ⊆ K Sj ≤ Rj (∀j ∈ L)
&{ℓ: Sℓ}ℓ∈L ≤ &{k: Rk}k∈K

S-IntChoice
K ⊆ L Sj ≤ Rj (∀j ∈ K)
⊕{ℓ: Sℓ}ℓ∈L ≤ ⊕{k: Rk}k∈K

S-Skip
Skip ≤ Skip

S-End
End ≤ End

S-InSeq1L
T ≤ U S ≤ Skip

?T ;S ≤ ?U

S-InSeq1R
T ≤ U S ≤ Skip

?T ≤ ?U ;S

S-InSeq2
T ≤ U S ≤ R

?T ;S ≤ ?U ;R

S-OutSeq1L
U ≤ T S ≤ Skip

!T ;S ≤ !U

S-OutSeq1R
U ≤ T S ≤ Skip

!T ≤ !U ;S

S-OutSeq2
U ≤ T S ≤ R

!T ;S ≤ !U ;R

S-ChoiceSeqL
⊙{ℓ: Sℓ;S}ℓ∈L ≤ R

⊙{ℓ: Sℓ}ℓ∈L;S ≤ R

S-ChoiceSeqR
S ≤ ⊙{ℓ: Rℓ;R}ℓ∈L

S ≤ ⊙{ℓ: Rℓ}ℓ∈L;R

S-SkipSeqL
S ≤ R

Skip;S ≤ R

S-SkipSeqR
S ≤ R

S ≤ Skip;R

S-EndSeq1L
End;S ≤ End

S-EndSeq1R
End ≤ End;R

S-EndSeq2
End;S ≤ End;R

S-SeqSeqL
S1;(S2;S3) ≤ R

(S1;S2);S3 ≤ R

S-SeqSeqR
S ≤ R1;(R2;R3)
S ≤ (R1;R2);R3

S-RecSeqL
([µs.S1/s]S1);S2 ≤ R

(µs.S1);S2 ≤ R

S-RecSeqR
S ≤ ([µs.R1/s]R1);R2

S ≤ (µs.R1);R2

Preorder on multiplicities m ⊑ m

m ⊑ m ∗ ⊑ 1

Figure 2 Syntactic subtyping.

terize the variance of the sequential composition constructor (S;R) due to its monoidal,
distributive and absorbing properties. For instance, consider types S1;S2 and R1;R2, with
S1 = !Int;!Bool, S2 = ?Int, R1 = !Int and R2 = !Bool;?Int. Although it should be true that
S1;S2 ≤ R1;R2, we can have neither S1 ≤ R1 nor S2 ≤ R2.

Functional subtyping The subtyping properties of function, record and variant types are
well known, and we refer the readers to Pierce’s book for the reasoning behind them [45].
Succinctly, the function type constructor is contravariant on the domain and covariant
on the range, and the variant and record constructors are both covariant on the type of
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11:6 Subtyping Context-Free Session Types

the fields, but respectively covariant and contravariant on their label sets.
Multiplicity subtyping Using an unrestricted (∗) resource where a linear (1) one is expected

does not compromise safety, provided that, multiplicities aside, the type of the former
may safely substitute the type of the latter. We can express this relationship between
multiplicities through a preorder captured by inequality ∗ ⊑ 1. In our system, function
types may be either linear or unrestricted. Thus, type T1

m→ T2 can be considered a
subtype of U1

n→ U2 if U1 and T2 are subtypes, respectively, of T1 and U2 and if m ⊑ n

(thus we can characterize the function type constructor as covariant on its multiplicity).

The rules for our syntactic subtyping relation, interpreted coinductively, are shown
in Figure 2. Rules S-Unit, S-Arrow, S-Rcd, S-Vrt, S-RecL and S-RecR establish
the classical subtyping properties associated with both functional and equi-recursive types,
with S-Arrow additionally encoding subtyping between linear and unrestricted functions,
relying on a preorder on multiplicities also defined in Figure 2. Rules S-End, S-In, S-Out,
S-ExtChoice and S-IntChoice bring to the context-free setting the classical subtyping
properties expected from session types, as put forth by Gay and Hole [25].

The remaining rules account for sequential composition, which distributes over choice and
exhibits a monoidal structure with its neutral element in Skip and left-absorbing element in
End. We include, for each session type constructor S, a left rule (denoted by suffix L) of the
form S;R ≤ S′ and a right rule (denoted by suffix R) of the form S′ ≤ S;R. An additional
rule is necessary for each constructor over which sequential composition does not distribute,
associate or neutralize (S-InSeq2, S-OutSeq2 and S-EndSeq2). Since we are using a
coinductive proof scheme, we include rules to ‘move’ sequential composition down the syntax.
Thus, given a type S;R, we inspect S to decide which rule to apply next.

▶ Theorem 2. The syntactic subtyping relation ≤ is a preorder on types.

▶ Example 3. Let us briefly return to Example 1. It is now easy to see that STree ≤ SFullTree1:
we unfold the left-hand side and apply rule S-IntChoice. Then we apply the distributivity
rules as necessary until reaching an internal choice with no continuation, at which point we
can apply S-IntChoice again, or until reaching a type with !Int at the head, at which point
we apply S-InSeq2. We repeat this process until reaching STree ≤ SFullTree0, and proceed
similarly until reaching STree ≤ SEmpty, which follows from S-IntChoice and S-Skip.

Despite clearly conveying the intended meaning of the subtyping relation, the rules suggest
no obvious algorithmic intepretation: on the one hand, the presence of bare metavariables
makes the system not syntax-directed; on the other hand, rules S-RecL, S-RecSeqL and
their right counterparts lead to infinite derivations which are not solvable by a conventional
fixed-point construction [25, 45]. In the next section we develop an alternative, semantic
approach to subtyping, which we use as a stepping stone to develop our subtyping algorithm.

3 Semantic subtyping

Semantic equivalence for context-free session types is usually based on observational equival-
ence or bisimilarity, meaning that two session types are considered equivalent if they exhibit
exactly the same communication behaviour [51]. An analogous notion of semantic subtyping
should therefore rely on an observational preorder. In this section we develop such a preorder.

We define the behaviour of types via a labelled transition system (LTS) by establishing
relation T

a−→ U (“type T transitions by action a to type U”). We follow Costa et al. [16]
in attributing behaviour to functional types, allowing them to be encompassed in our
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Labelled transition system T
a−→ T

L-Unit
Unit Unit−→ Skip

L-ArrowDom
(T m→ U) →d−→ T

L-ArrowRng
(T m→ U) →r−→ U

L-LinArrow
(T 1→ U) →1−→ Skip

L-RcdVrtField
k ∈ L

Lℓ: TℓMℓ∈L
LMk−→ Tk

L-RcdVrt
Lℓ: TℓMℓ∈L

LM−→ Skip

L-Rec
[µx.T/x]T a−→ U

µx.T
a−→ U

L-Msg1
♯T

♯p−→ T

L-Msg2
♯T

♯c−→ Skip

L-Choice
⊙{ℓ: Sℓ}ℓ∈L

⊙−→ Skip

L-ChoiceField
k ∈ L

⊙{ℓ: Sℓ}ℓ∈L

⊙k−→ Sk

L-End
End End−→ Skip

L-MsgSeq1
♯T ;S ♯p−→ T

L-MsgSeq2
♯T ;S ♯c−→ S

L-ChoiceSeq
⊙{ℓ: Sℓ}ℓ∈L;R ⊙−→ Skip

L-SkipSeq
S

a−→ T

Skip; S
a−→ T

L-EndSeq
End;S End−→ Skip

L-SeqSeq
S1; (S2; S3) a−→ T

(S1;S2);S3
a−→ T

L-ChoiceFieldSeq
k ∈ L

⊙{ℓ: Sℓ}ℓ∈L;R ⊙k−→ Sk;R

L-RecSeq
([µs.S/s]S);R a−→ T

(µs.S);R a−→ T
(no rule for Skip)

Actions

a ::= Unit |→d |→r |→1 | End | LMℓ | LM | ♯p | ♯c | ⊙ | ⊙ℓ

Figure 3 Labelled transition system. Letters d, r, p, c in labels stand for “domain”, “range”,
“payload” and “continuation”.

observational preorder. The rules defining the transition relation, as well as the grammar
that generates all possible transition actions, are shown in Figure 3.

In general, each functional type constructor generates a transition for each of its fields
(Unit and End, which have none, transition to Skip). Linear functions, exhibit an additional
transition to represent their restricted use (L-LinArrow), and records/variants include
a default transition that is independent of their fields (L-RcdVrt). The behaviour of
session types is more complex, since it must account for their algebraic properties. Message
types exhibit a transition for their payload (L-Msg1, L-MsgSeq1) and another for their
continuation, which is Skip by omission (L-Msg2, L-MsgSeq2). Choices behave much
like records/variants when alone, but are subject to distributivity when composed (L-
ChoiceFieldSeq). Type End, which absorbs its continuation, transitions to Skip (L-End,
L-EndSeq). Rules L-SeqSeq, L-SkipSeq account for associativity and identity, and rules
L-Rec and L-RecSeq dictate that recursive types behave just like their unfoldings. Notice
that Skip has no transitions.

With the behaviour of types established, we now look for an appropriate notion of
observational preorder. Several such notions have been studied in the literature. Similarity,
defined as follows, is arguably the simplest of them [41, 44].

▶ Definition 4. A type relation R is said to be a simulation if, whenever TRU , for all a

and T ′ with T
a−→ T ′ there is U ′ such that U

a−→ U ′ and T ′RU ′

Similarity, written ⪯, is the union of all simulation relations. We say that a type U
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11:8 Subtyping Context-Free Session Types

simulates type T if T ⪯ U .

Unfortunately, plain similarity is of no use to us. A small example shows why: type
⊕{A: End, B: End} both simulates and is a subtype of ⊕{A: End}, while type &{A: End} does
not simulate yet is a subtype of &{A: End, B: End}. Reversing the direction of the simulation
would be of no avail either, as it would leave us with the reverse problem.

It is apparent that a more refined notion of simulation is necessary, where the direction of
the implication depends on the transition labels. Aarts and Vaandrager provide just such a
notion in the form of X Y-simulation [1], a simulation relation parameterized by two subsets
of actions, X and Y, such that actions in X are simulated from left to right and those in Y
are simulated from right to left, selectively combining the requirements of simulation and
reverse simulation.

▶ Definition 5. Let X , Y ⊆ A. A type relation R is said to be an X Y-simulation if, whenever
TRU , we have:
1. for each a ∈ X and each T ′ with T

a−→ T ′, there is U ′ such that U
a−→ U ′ with T ′RU ′;

2. for each a ∈ Y and each U ′ with U
a−→ U ′, there is T ′ such that T

a−→ T ′ with T ′RU ′.
X Y-similarity, written ⪯X Y , is the union of all X Y-simulation relations. We say that a type
T is X Y-similar to type U if T ⪯X Y U .

Similar or equivalent notions have appeared throughout the literature: modal refine-
ment [38], alternating simulation [7] and, perhaps more appropriately named (for our
purposes), covariant-contravariant simulation [20]. Padovani’s original subtyping relation
for first-order context-free session types [43] can also be understood as a refined form of
X Y-simulation.

We can tentatively define a semantic subtyping relation ≲′ as X Y-similarity, where X
and Y are the label sets generated by the following grammars for aX and aY , respectively.

aX ::= aX Y | ⟨⟩ℓ | &ℓ

aY ::= aX Y |→1 | {}ℓ | ⊕ℓ

aX Y ::= Unit |→d |→r | LM | ♯p | ♯c | ⊙ | End

This would indeed give us the desired result for our previous example, but we still cannot
account for the contravariance of output and function types: we want T = !{A: Int} to be
a subtype of U = !{A: Int, B: Bool}, yet T ≲′ U does not hold (in fact, we have U ≲′ T , a
clear violation of run-time safety). The same could be said for types {A: Int} ∗→ Int and
{A: Int, B: Bool} ∗→ Int. In short, our simulation needs the !p and→d-derivatives to be related
in the direction opposite to that of the initial types. Thus we need to selectively apply a
strong form of contrasimulation as well [48, 52] (the original notion is defined with weak
transitions, a sort of transitions we do not address).

To allow this, we generalize the definition of X Y-simulation by parameterizing it on two
further subsets of actions and including two more clauses where the direction of the relation
between the derivatives is reversed. By analogy with X Y-simulation, we call the resulting
notion X YZW-simulation.

▶ Definition 6. Let X , Y, Z, W ⊆ A. A type relation R is a X YZW-simulation if, whenever
TRU , we have:
1. for each a ∈ X and each T ′ with T

a−→ T ′, there is U ′ such that U
a−→ U ′ with T ′RU ′;

2. for each a ∈ Y and each U ′ with U
a−→ U ′, there is T ′ such that T

a−→ T ′ with T ′RU ′;
3. for each a ∈ Z and each T ′ with T

a−→ T ′, there is U ′ such that U
a−→ U ′ with U ′RT ′;

4. for each a ∈ W and each U ′ with U
a−→ U ′, there is T ′ such that T

a−→ T ′ with U ′RT ′.
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X YZW-similarity, written ⪯X YZW , is the union of all X YZW-simulation relations. We
say that a type T is X YZW-similar to type U if T ⪯X YZW U .

X YZW-simulation generalizes several existing observational relations: X Y-simulation
can be defined as an X Y∅∅-simulation, bisimulation as AA∅∅-simulation (alternatively,
∅∅AA-simulation or AAAA-simulation), and plain simulation as A∅∅∅-simulation.

▶ Theorem 7. For any X , Y, Z, W, ⪯X YZW is a preorder relation on types.

Equipped with the notion of X YZW-similarity, we are ready to define the semantic
subtyping relation for functional and higher-order context-free session types as follows.

▶ Definition 8. The semantic subtyping relation for functional and higher-order context-free
session types ≲ is defined by T ≲ U when T ⪯X YZW U such that X , Y, Z and W are defined
as the label sets generated by the following grammars for aX , aY , aZ and aW , respectively.

aX ::= aX Y |→1 | ⟨⟩ℓ | &ℓ

aY ::= aX Y | {}ℓ | ⊕ℓ

aZ , aW ::= !d |→d
aX Y ::= Unit |→r | LM | ?d | ♯c | ⊙ | End

Notice the correspondence between the placement of the labels and the variance of
their respective type constructors. Labels arising from covariant positions of the arrow and
input type constructors are placed in both the X and Y sets, while those arising from the
contravariant positions of the arrow and output type constructors are placed in both the Z
and W sets. Labels arising from the fields of constructors exhibiting width subtyping are
placed in a single set, depending on the variance of the constructor on the label set: X for
covariance (external choice and variant constructors), Y for contravariance (internal choice
and record constructors). The function type constructor is covariant on its multiplicity, thus
the linear arrow label is placed in X . Finally, default record/variant/choice labels and those
arising from nullary constructors are placed in X and Y, but they could alternatively be
placed in Z and W or in all four sets (notice the parallel with bisimulation, that can be
defined as AA∅∅-simulation, ∅∅AA-simulation, or AAAA-simulation).

▶ Example 9. Let us go back once again to our tree serialization example from Section 1.
Here it is also easy to see that STree ≲ SFullTree1. Observe that, on the side of STree,
transitions by ⊕Nil and ⊕Node always appear together, while on the side of SFullTree1 types
transition first by ⊕Node and then by ⊕Nil. Since ⊕Nil and ⊕Node belong exclusively to Y,
STree is always able to match SFullTree1 on these labels (as in all the others in Y ∪ W, and
vice-versa for X ∪ Z).

▶ Theorem 10 (Soundness and completeness for subtyping relations). Let ⊢ T and ⊢ U . Then
T ≤ U iff T ≲ U .

4 A subtyping algorithm

The notion of subtyping we have outlined is undecidable. This follows from the fact that our
system, albeit different, contains all the features necessary to reconstruct Padovani’s proof of
undecidability [43]. Using just external choices, sequential composition, the Skip type and
recursion, one is able to encode simple grammars [36] as context-free session types, in a way
that language strings correspond to complete LTS traces of types. By exploiting the covariant
width-subtyping in external choices, one can show that subtyping for these types corresponds
to language inclusion, which is known to be undecidable for simple languages [21].
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Despite the undecidability of our subtyping problem, we are still able to devise a sound
(but necessarily incomplete) algorithm for it. In this section we present this algorithm, an
adaptation of the equivalence algorithm of Almeida et al. [4]. At its core, it determines
the X YZW-similarity of simple grammars. Its application to context-free session types is
facilitated by a translation function to properly encode types as grammars. The algorithm
may likewise be adapted to other domains. Much like the original, our algorithm can be
succinctly described in three distinct phases:
1. translate the given types to a simple grammar [36] and two starting words;
2. prune unreachable symbols from productions;
3. explore an expansion tree rooted at a node containing the initial words, alternating

between expansion and simplification operations until either an empty node is found
(decide True) or all nodes fail to expand (decide False).

Phase 1 The first phase consists of translating the two types to a grammar in Greibach
normal form (GNF) [27], i.e., a grammar where all productions have the form Y → aZ⃗,
and two starting words (X⃗, Y⃗ ). A word is defined as a sequence of non-terminal symbols.
We can check the X YZW-similarity of words in GNF grammars because they naturally
induce a labelled transition system, where states are words X⃗, actions are terminal symbols
a and the transition relation is defined as XY⃗

a−→P Z⃗Y⃗ when X → aZ⃗ ∈ P. We denote the
bisimilarity and X YZW-similarity of grammars by, respectively, ∼P and ⪯X YZW

P , where
P is the set of productions. We also let ≲P denote grammar X YZW-similarity with label
sets as in Definition 8. The deterministic nature of context-free session types allows their
corresponding grammars to be simple [36]: for each non-terminal Y and terminal symbol a,
we have at most one production of the form Y → aZ⃗.

The grammar translation procedure grm remains unchanged from the original equivalence
algorithm [4], and for this reason we omit its details (which include generating productions
for all µ-subterms in types). However, this procedure relies on two auxiliary definitions
which must be adapted: the unr function (Definition 11), which normalizes the head of
session types and unravels recursive types until reaching a type constructor, and the word
procedure (Definition 12), which builds a word from a session type while updating a set P of
productions.

▶ Definition 11. The unraveling of a type T is defined by induction on the structure of T :

unr(µx.T ) = unr([µx.T/x]T )
unr(End;S) = End

unr(⊙{ℓ: Sℓ}ℓ∈L;R) = ⊙{ℓ: Sℓ; R}ℓ∈L

unr(Skip;S) = unr(S)
unr((µs.S);R) = unr(([µs.S/s]S);R)

unr((S1;S2);S3) = unr(S1;(S2;S3))

and in all other cases by unr(T ) = T .

▶ Definition 12. The word corresponding to a well-formed type T , word(T ), is built by
descending on the structure of T while updating a set P of productions:

word(Unit) = Y , setting P := P ∪ {Y → Unit}

word(U 1→ V ) = Y , setting P := P ∪ {Y →→dword(U), Y →→rword(V ), Y →→1}

word(U ∗→ V ) = Y , setting P := P ∪ {Y →→dword(U), Y →→rword(V )}
word(Lℓ: TℓMℓ∈L) = Y , setting P := P ∪ {Y → LM⊥} ∪ {Y → LMkword(Tk) | k ∈ L}

word(Skip) = ε

word(End) = Y , setting P := P ∪ {Y → End⊥}
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word(♯U) = Y , setting P := P ∪ {Y → ♯pword(U)⊥, Y → ♯c}
word(⊙{ℓ: Sℓ}ℓ∈L) = Y , setting P := P ∪ {Y → ⊙⊥} ∪ {Y → ⊙kword(Sk) | k ∈ L}

word(S1; S2) = word(S1)word(S2)
word(µx.U) = X

where, in each equation, Y is understood as a fresh non-terminal symbol, X as the non-
terminal symbol corresponding to type reference x, and ⊥ as a non-terminal symbol without
productions.

▶ Example 13. Consider again the types for tree serialization in Section 1. Suppose we want
to know whether SFullTree0 ∗→ Unit ≲ STree 1→ Unit. We know that the grammar generated
for these types is as follows, with X0 and Y0 as their starting words.

X0 →→dX1

X0 →→rX5

X1 → ⊕NodeX2X3X2

X1 → ⊕⊥

X2 → ⊕Empty

X2 → ⊕⊥
X3 →!pX4⊥
X3 →!c

X4 → Int
X5 → Unit

Y0 →→dY1

Y0 →→rX5

Y0 →→1

Y1 → ⊕⊥
Y1 → ⊕Empty

Y1 → ⊕NodeY1X3Y1

For the rest of this section let ⊢ T , ⊢ U , (X⃗T , P ′) = grm(T, ∅) and (X⃗U , P) = grm(U, P ′).

▶ Theorem 14 (Soundness for grammars). If X⃗T ≲P X⃗U , then T ≲ U .

Phase 2 The grammars generated by procedure grm may contain unreachable words, which
can be ignored by the algorithm. Intuitively, these words correspond to communication
actions that cannot be fulfilled, such as the part ?Bool in type (µs.!Int;s);?Bool. Formally,
these words appear in productions following what are known as unnormed words.

▶ Definition 15. Let a⃗ be a non-empty sequence of non-terminal symbols a1, . . . , an. Write
Y⃗

a⃗−→P Z⃗ when Y⃗
a1−→P . . .

an−→P Z⃗. We say that a word Y⃗ is normed if Y⃗
a⃗−→P ε for some

a⃗, and unnormed otherwise. If Y⃗ is normed and a⃗ is the shortest path such that Y⃗
a⃗−→P ε,

then a⃗ is called the minimal path of Y⃗ , and its length is the norm of Y⃗ , denoted |Y⃗ |.

It is known that any unnormed word Y⃗ is bisimilar to its concatenation with any other
word, i.e., if Y⃗ is unnormed, then Y⃗ ∼P Y⃗ X⃗. It is also easy to show that ∼P ⊆ ≲P , and
hence that Y⃗ ≲P Y⃗ X⃗. In this case, X⃗ is said to be unreachable and can be safely removed
from the grammar. We call the procedure of removing all unreachable symbols from a
grammar pruning, and denote the pruned version of a grammar P by prune(P).

▶ Lemma 16 (Pruning preserves X YZW-similarity). X⃗ ⪯X YZW
P Y⃗ iff X⃗ ⪯X YZW

prune(P) Y⃗

Phase 3 In its third and final phase, the algorithm explores an expansion tree, alternating
between expansion and simplification steps. An expansion tree is a tree whose nodes are sets
of pairs of words, whose root is the singleton set containing the pair of starting words under
test, and where every child is an expansion of its parent. A branch is deemed successful
if it is infinite or has an empty leaf, and deemed unsuccessful otherwise. The original
definition of expansion ensures that the union of all nodes along a successful branch (without
simplifications) constitutes a bisimulation [35]. We adapt this definition to ensure that such
a union yields an X YZW-simulation instead.

▶ Definition 17. The X YZW-expansion of a node N is defined as the minimal set N ′ such
that, for every pair (X⃗, Y⃗ ) in N , it holds that:
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1. if X⃗ → aX⃗ ′ and a ∈ X then Y⃗ → aY⃗ ′ with (X⃗ ′, Y⃗ ′) ∈ N ′

2. if Y⃗ → aY⃗ ′ and a ∈ Y then X⃗ → aX⃗ ′ with (X⃗ ′, Y⃗ ′) ∈ N ′

3. if X⃗ → aX⃗ ′ and a ∈ Z then Y⃗ → aY⃗ ′ with (Y⃗ ′, X⃗ ′) ∈ N ′

4. if Y⃗ → aY⃗ ′ and a ∈ W then X⃗ → aX⃗ ′ with (Y⃗ ′, X⃗ ′) ∈ N ′

▶ Lemma 18 (Safeness property for X YZW-simulation). Given a set of productions P,
X⃗ ⪯X YZW

P Y⃗ iff the expansion tree rooted at {(X⃗, Y⃗ )} has a successful branch.

The simplification stage consists of applying rules that safely modify the expansion tree
during its construction, in an attempt to keep some branches finite. The rules are iteratively
applied to each node until a fixed point is reached, at which point we can proceed with
expansion. To each node N we apply three simplification rules, adapted from the equivalence
algorithm [4]:
1. Reflexivity: omit pairs of the form (X⃗, X⃗);
2. Preorder: omit pairs belonging to the least preorder containing the ancestors of N ;
3. Split: if (X0X⃗, Y0Y⃗ ) ∈ N and X0 and Y0 are normed, then:

Case |X0| ≤ |Y0|: Let a⃗ be a minimal path for X0 and Z⃗ the word such that Y0
a⃗−→P Z⃗.

Add a sibling node for N including pairs (X0Z⃗, Y0) and (X⃗, Z⃗Y⃗ ) in place of (X0X⃗, Y0Y⃗ );
Otherwise: Let a⃗ be a minimal path for Y0 and Z⃗ the word such that X0

a⃗−→P Z⃗. Add
a sibling node for N including pairs (X0, Y0Z⃗) and (Z⃗X⃗, Y⃗ ) in place of (X0X⃗, Y0Y⃗ ).

When a node is simplified, we keep track of the original node in a sibling, thus ensuring
that along the tree we keep an “expansion-only” branch.

The algorithm explores the tree by breadth-first search using a queue of node-ancestors
pairs, thus avoiding getting stuck in infinite branches, and alternates between expansion and
simplification steps until it terminates with False if all nodes fail to expand or with True if
an empty node is reached. The following pseudo-code illustrates the procedure.

subG(X⃗, Y⃗ , P) = explore(singletonQueue(({(X⃗, Y⃗ )}, ∅), P)
where explore(q, P) =

if empty(q) then False % all nodes failed to expand
else let (n, a) = front(q) in

if empty(n) then True % empty node reached
else if hasExpansion(n, P) % then expand, simplify and recur

then explore(simplify(expand(n, P), a ∪ n, dequeue(q)), P)
else explore(dequeue(q), P) % otherwise, discard node

▶ Example 19. The X YZW-expansion tree for Example 13 is illustrated in Figure 4.

Finally, function subT puts all the pieces of the algorithm together:

subT (T, U) = let (X⃗, P ′) = grm(T, ∅), (Y⃗ , P) = grm(U, P ′) in subG(X⃗, Y⃗ , prune(P))

It receives two well-formed types T and U , computes their grammar and respective starting
words X⃗ and Y⃗ , prunes the productions of the grammar and, lastly, uses function subG to
determine whether X⃗ ≲P Y⃗ .

The following result shows that algorithm subT is sound with respect to semantic
subtyping relation on functional and higher-order context-free session types.

▶ Theorem 20 (Soundness). If subG(X⃗T , X⃗U , prune(P)) returns True, then T ≲ U .
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Figure 4 An X YZW-expansion tree for Example 13, exhibiting a finite successful branch.

5 Evaluation

We have implemented our subtyping algorithm in Haskell and integrated it in the freely
available compiler for FreeST, a statically typed functional programming language featuring
message-passing channels governed by context-free session types [2, 3, 6]. The FreeST
compiler features a running implementation of the type equivalence algorithm of Almeida et
al. [4]. With our contributions, FreeST effectively gains support for subtyping at little to no
cost in performance. In this section we present an empirical study to support this claim.

We employed three test suites to evaluate the performance of our algorithm: a suite
of handwritten pairs of types, a suite of randomly generated pairs of types, and a suite of
handwritten FreeST programs. We focus on the last two, since they allow a more robust and
realistic analysis. All data was collected on a machine featuring an Intel Core i5-6300U at
2.4GHz with 16GB of RAM.

To build our randomly generated suite we employed a type generation module, imple-
mented using the Quickcheck library [15] and following an algorithm induced from the
properties of subtyping, much like the one induced by Almeida et al. [4] from the properties
of bisimilarity. It includes generators for valid and invalid subtyping pairs. We conducted
our evaluation by taking the running time of the algorithm on 2000 valid pairs and 2000
invalid pairs, ranging from 2 to 730 total AST nodes, with a timeout of 30s (ensuring it
terminates with either True, False or Unknown). The results are plotted in Figure 5a.
Despite the incompleteness of the algorithm, we encountered no false negatives, but obtained
188 timeouts. We found, as expected, that the running time increases considerably with the
number of nodes. When a result was produced, valid pairs took generally longer.

Randomly generated types allow for a robust analysis, but they typically do not reflect
the types encountered by a subtyping algorithm in its most obvious practical application,
a compiler. For this reason, we turn our attention to our suite of FreeST programs, comprised
of 286 valid and invalid programs collected throughout the development of the FreeST
language. Programs range from small examples demonstrating particular features of the
language to concurrent applications simulating, for example, an FTP server.

We began by integrating the algorithm in the FreeST compiler, placing next to every call
to the original algorithm [4] (henceforth equivT) a call to subT on the same pairs of types. We
then ran each program in our suite 10 times, collecting and averaging the accumulated running
time of both algorithms on the same pairs of types. We then took the difference between
the average accumulated running times of subT and equivT, obtaining an average difference
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(a) Performance on valid and invalid subtyping
pairs

(b) Performance comparison against the ori-
ginal equivalence algorithm

Figure 5 Performance evaluation and comparison.

of -3.85ms, with a standard deviation of 7.08ms, a minimum difference of -71.29ms and a
maximum difference of 8.03ms (subT performed faster, on average). Figure 5b illustrates
this comparison by plotting against each other the accumulated running times (for clarity,
those in the 20-100ms range) of both algorithms during the typechecking phase of each.

The data collected in this evaluation suggests that replacing the original equivalence
algorithm [4] with the subtyping algorithm in the FreeST typechecker generally does not
incur an overhead, while providing additional expressive power for programmers.

6 Related work

Session types emerged as a formalism to express communication protocols and statically
verify their implementations [31, 32]. Initial formulations allowed only pairwise, tail-recursive
protocols, earning such types the ‘binary’ and ‘regular’ epithets. Since then, considerable
efforts have been made to extend the theory of session types beyond the binary and regular
realms: multiparty session types allow sessions with multiple participants [33], while context-
free session types [51] and nested session types [18] allow non-regular communication patterns.
Our work is centered on context-free session types, which have seen considerable development
since their introduction, most notably their integration in System F [2, 47], an higher-order
formulation [16], as well as proposals for kind and type inference [5, 43].

Subtyping is a standard feature of many type systems, and the literature on the topic
is vast [8, 10, 13, 14, 17, 19, 37]. Its conventional interpretation, based on the notion of
substitutability, originates from the work of Liskov [39]. Multiple approaches to subtyping
for regular session types have been proposed, and they can be classified according to the
objects they consider substitutable: channels versus processes (the difference being most
notable in the variance of type constructors). The earliest approach, subscribing to the
substitutability of channels, is that of Gay and Hole [25]. It is also the one we follow. A later
formulation, proposed by Carbone et al. [12], subscribes to the substitutability of processes.
A survey of both interpretations is given by Gay [24]. The interaction between subtyping
and polymorphism for regular session types, in the form of bounded quantification, has
been investigated by Gay [23]. Horne and Padovani study subtyping under the linear logic
interpretation of regular session types [34], showing that it preserves termination of processes.

Subtyping for session types has spread beyond the regular realm. Das et al. [18] introduce
subtyping for nested session types, show the problem to be undecidable and present a
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sound but incomplete algorithm. In the context-free setting, the first and, to the best of
our knowledge, only formulation before our work is that of Padovani [43]. It proposes a
simulation-based subtyping relation, proves the undecidability of the subtyping problem and
provides a sound but incomplete algorithm. This undecidability proof also applies to our
system, as it possesses all the required elements: width-subtyping on choices, sequential
composition and recursion. The subtyping relation proposed by Padovani contemplates
neither input/output subtyping nor functional subtyping. Furthermore, its implementation
relies on the subtyping features of OCaml, the implementation language. In contrast, we
propose a more expressive relation, featuring input/output subtyping, as well as functional
subtyping. Furthermore, we provide an also sound algorithm that is independent of the
implementation language.

Our subtyping relation is based on a novel form of observational preorder, X YZW-
simulation. There is, as far as we know, no analogue in the literature. It is a generalization of
X Y-simulation, introduced by Aarts and Vaandrager in the context of learning automata [1]
but already known, under slightly different forms, as modal refinement [38], alternating simu-
lation [7] and covariant-contravariant simulation [20]. The contravariance on the derivatives
introduced by X YZW-simulation is also prefigured in contrasimulation [48, 52], but the
former uses strong transitions whereas the latter uses weak ones. There is a vast literature
on other observational relations, to which Sangiorgi’s book provides an overview [48].

Our algorithm decides the X YZW-similarity of simple grammars [36]. It is an adaptation
of the bisimilarity algorithm for simple grammars of Almeida et al. [4]. To our knowledge,
these are the only running algorithms of their sort. Henry and Sénizergues [29] proposed an
algorithm to decide the language equivalence problem on deterministic pushdown automata.
On the related topic of basic process algebra (BPA), BPA processes have been shown to be
equivalent to grammars in GNF [9], of which simple grammars are a particular case. This
makes results and algorithms for BPA processes applicable to grammars in GNF, and vice-
versa. A bisimilarity algorithm for general BPA processes, of doubly-exponential complexity,
has been proposed by Burkart et al. [11], while an analogous polynomial-time algorithm for
the special case of normed BPA processes has been proposed by Hirschfield et al. [30].

7 Conclusion and future work

We have proposed an intuitive notion of subtyping for context-free session types, based
on a novel form of observational preorder, X YZW-simulation. This preorder inverts the
direction of the simulation in the derivatives covered by its W and Z parameters, allowing it
to handle co/contravariant features of input/output types. We take advantage of the fact
that X YZW-simulation generalizes bisimulation to derive a sound subtyping algorithm from
an existing type equivalence algorithm.

Despite its unavoidable incompleteness, stemming from the undecidability of our notion
of subtyping, our algorithm has not yielded any false negatives. Thus, we conjecture that
is partially correct: it may not halt, but, when it does, the answer is correct. We cannot,
however, back this claim without a careful analysis of completeness and termination, which
we leave for future work. We believe such an analysis will advance the understanding of the
subtyping problem by clarifying the practical reasons for its undecidability.

As shown by Thiemann and Vasconcelos [51], support for polymorphism and polymorphic
recursion is paramount in practical applications of context-free session types. Exploring the
interaction between polymorphism and subtyping in the context-free setting, possibly in the
form of bounded quantification, is therefore another avenue for future work.
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