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Abstract. We present an approach for the validation of Message Passing Inter-
face (MPI) programs. The aim is to type-check programs against session-type
based protocol specifications, enforcing properties such as protocol fidelity, ab-
sence of race conditions or deadlocks. We design and implement a protocol spec-
ification language based on dependent multiparty session types. The language is
equipped with a type formation system and an operational semantics, and its cor-
rectness is ensured by a progress property for well formed types. For verification,
the protocol is translated into the language of VCC, a software verifier for the C
programming language. C+MPI programs are annotated with assertions that help
the verifier either prove or disprove the conformance of programs against proto-
cols. A large part of the necessary annotations are automatically introduced by
an annotator we developed. We successfully validated several publicly available
MPI programs with this approach.

1 Introduction

Message Passing Interface (MPI) [5] is the de facto standard for programming high
performance parallel applications, with implementations that support hundreds of thou-
sands of processing cores. Based on the message passing paradigm, presently there
exists official MPI bindings for C and Fortran. MPI programs adhere to the Single Pro-
gram Multiple Data paradigm, in which a single program specifies the behaviour of
the various processes, each working on different data, and uses calls to MPI primitives
whenever processes need to exchange data. MPI offers different forms of communica-
tion, notably point-to-point, collective, and one-sided communication.

MPI primitives may raise several problems: one can easily write programs that
cause processes to block indefinitely waiting for a message, that exhibit race condi-
tions, or that exchange data of unexpected sorts or lengths. Statically verifying that
programs are exempt from communication errors is far from trivial. The verification of
MPI programs regularly uses advanced techniques such as model checking or symbolic
execution [7,19]. These approaches frequently stumble upon the problem of scalability,
given that the search space grows exponentially with the number of processes. It is often
the case that the verification of real applications limits the number of processes to less
than a dozen [20]. The verification is further complicated by the different communica-
tion semantics for the various MPI primitives [19], or by the difficulty in disentangling
processes’ collective and individual control flow written on a single source file [2].



Fig. 1. Our approach to the verification of C+MPI programs

The approach we take for the verification of MPI programs is based on multiparty
session types [11]. Given an MPI program, we start by specifying the communication
protocol that participants must respect, expressed in a language defined for the pur-
pose. Then, the program is checked against the protocol. If it conforms to the protocol,
properties such as absence of deadlocks, race conditions, or mismatches in the message
exchanges are automatically guaranteed.

Figure 1 illustrates the global view of the protocol specification and verification
process. We defined a formal language to describe protocols based on dependent mul-
tiparty session types, and appropriate to express of the most common patterns of MPI
programs. From a protocol (Protocol description) we generate a C header file that rep-
resents the protocol in a format compatible with the deductive verification tool VCC [4]
(Protocol in VCC syntax). Apart from the protocol, verification is also guided by a set
of predefined contracts for MPI primitives (Annotated MPI library) and by annotations
in the body of the C program (Annotated C+MPI source). Annotations are either auto-
matically generated or, in a typically smaller number, introduced by the programmer.
These aspects form a significant evolution of our previous work [12], where we did not
make use of a formal protocol definition language, and where the process depended
exclusively on manually produced annotations.

The verification process is based on two tools: the first, in the form of an Eclipse
plug-in, checks the good formation of the protocol and generates the C header file with
the Protocol in VCC syntax; the second, in the form of a Clang plug-in, automatically
inserts annotations on C source code, based on the protocol description and on the
manually annotated C+MPI source.

In summary, our contributions are:

– the design and implementation of a language for describing MPI-like protocols
based on dependent multiparty session types;

– the formal static and dynamic semantics for the language;
– a progress result that asserts that well-formed protocols do not deadlock;
– a tool (Eclipse plug-in) for checking the good formation of protocols;
– a tool (Clang plug-in) for automatically inserting annotations in MPI programs,

guided by the protocol description.



The rest of the paper is structured as follows. In the next section we briefly re-
view related work. We then present a program example that illustrates the kind of MPI
primitives we address, and that will serve as a running example (Section 3). We then
present the protocol specification language and its main result (Section 4). The process
of checking C+MPI programs’ conformance against a given protocol is then described
(Section 5). We show benchmarks on a few real-world MPI programs (Section 6). We
conclude the paper with a discussion on future work (Section 7).

2 Related work

Scribble [10,17] is a project closest to ours. Based on the theory of multiparty session
types [11], Scribble describes, from an high level perspective, patterns of message-
passing interactions. Protocols in Scribble describe the interactions from a global view-
point, with explicit senders and receivers, thus ensuring that all senders have a matching
receiver and vice versa. Global protocols are projected into each of their participants’
counterparts, yielding one local protocol for each participant present in the global pro-
tocol. Developers can then implement programs for the various individual participants,
based on the local protocols and using standard message-passing libraries. One such
approach, Multiparty Session C, builds a library of session primitives to be used within
the C language [14]. In this work we slightly depart from multiparty session types and
Scribble by introducing process ranks as participants’ identifiers and collective decision
primitives, allowing for behaviours where all participants decide to enter or to leave a
loop, or choose one of the two branches of a choice point, two patterns impossible to de-
scribe with Scribble. We found these primitives to be in line with the common practice
of MPI programming.

The state-of-the-art in MPI program verification has been recently surveyed [7].
Overall, the aim of verification is diverse and includes the validation of arguments to
MPI primitives and resource usage [22], ensuring interaction properties such as ab-
sence of deadlocks [19,22,23], or asserting functional equivalence to sequential pro-
grams [19,21]. The methodologies employed are also diverse, ranging from traditional
static and dynamic analysis up to model checking and symbolic execution.

The concept of parallel control-flow graphs is proposed in [2] for static analysis of
MPI programs, e.g., as a means to verify sender-receiver matching in MPI source code.
An extension to dynamic analysis is presented in [1]. Dynamic execution analysers such
as DAMPI [22], amongst others that build on top of the popular PNMPI interposition
layer [16], strive for the runtime detection of deadlocks and resource leaks. ISP [23] is
a deadlock detection tool that explores all possible process interleavings, using a fixed
test harness. TASS [18,19] employs model checking and symbolic execution, but is also
able to verify user-specified assertions for the interaction behaviour of the program, so-
called collective assertions, and to verify functional equivalence between MPI programs
and sequential ones [21].



1 int main(int argc, char** argv) {
2 int procs, rank; // Number of processes, process rank
3 MPI_Init(&argc, &argv);
4 MPI_Comm_size(MPI_COMM_WORLD, &procs);
5 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
6 ...
7 if (rank == 0) psize = atoi(argv[1]);
8 MPI_Broadcast(0, &psize, 1, MPI_INT, MPI_COMM_WORLD);
9 lsize = psize / procs;

10 if (rank == 0) read_vector(work, psize);
11 MPI_Scatter(work, lsize, MPI_FLOAT,&local[1],lsize,MPI_FLOAT,0,MPI_COMM_WORLD);
12 int left = (procs + rank - 1) % procs; // Left neighbour
13 int right = (rank + 1) % procs; // Right neighbour
14 int iter = 0;
15 while (!converged(globalerr) && iter < MAX_ITER)) {
16 ...
17 if (rank == 0) {
18 MPI_Send(&local[1], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD);
19 MPI_Send(&local[lsize], 1, MPI_FLOAT, right,0, MPI_COMM_WORLD);
20 MPI_Recv(&local[lsize+1], 1, MPI_FLOAT, right,0, MPI_COMM_WORLD, &status);
21 MPI_Recv(&local[0], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD, &status);
22 } else if (rank == procs - 1) {
23 MPI_Recv(&local[lsize+1], 1, MPI_FLOAT, right,0, MPI_COMM_WORLD, &status);
24 MPI_Recv(&local[0], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD, &status);
25 MPI_Send(&local[1], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD);
26 MPI_Send(&local[lsize], 1, MPI_FLOAT, right,0, MPI_COMM_WORLD);
27 } else {
28 MPI_Recv(&local[0], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD, &status);
29 MPI_Send(&local[1], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD);
30 MPI_Send(&local[lsize], 1, MPI_FLOAT, right,0, MPI_COMM_WORLD);
31 MPI_Recv(&local[lsize+1], 1, MPI_FLOAT, right,0, MPI_COMM_WORLD, &status)
32 }
33 MPI_Allreduce(&localerr, &globalerr, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD);
34 ...
35 }
36 ...
37 if (converged(globalerr)) // Gather solution at rank 0
38 MPI_Gather(&local[1], lsize, MPI_FLOAT,work,lsize,MPI_FLOAT,0,MPI_COMM_WORLD);
39 ...
40 MPI_Finalize();
41 return 0;
42 }

Fig. 2. Excerpt of an MPI program for the finite differences problem (adapted from [6])

3 Running example

Our running example calculates finite differences in one dimension, through the iter-
ative algorithm described in [6]. Given an initial vector X0, it calculates successive
approximations to the solution X1, X2, . . ., until a certain convergence condition it
attained or a pre-defined maximum number of iterations has been reached.

Figure 2 shows the code of a C program, also adapted from [6]. Function main stip-
ulates the behaviour of all processes together; the behaviour of each process may di-
verge based on its process number, designated by rank. The number of processes (procs
in the figure) and the rank of each process are obtained respectively through primitives
MPI_Comm_size and MPI_Comm_rank (lines 4–5). Rank 0 starts by reading the input vector
X0 (line 7) and then distributes the vector by all participants (line 11, call to MPI_Scatter
). Each participant is responsible for the calculation of a local part of the vector.

The program then enters a loop (lines 15–35), specifying point-to-point message
exchanges (MPI_Send, MPI_Recv) between each process and its left and right neighbours,



Fig. 3. Protocol for the finite differences problem

on a ring topology. The various message exchanges distribute boundary values neces-
sary to local calculations. Different send/receive orders for different ranks (lines 18–21,
lines 23–25, and lines 28–31) aim at avoiding deadlock situations, given that we use
blocking (synchronous and unbuffered) primitives, both for the sender and the receiver.
After value exchange, and still inside the loop, the global error is calculated via a reduc-
tion operation and communicated to all participants (MPI_Allreduce, line 33). The loop
ends when the convergence condition is attained, or after a pre-defined number of iter-
ations. Finally, after the loop, if the algorithm converged, rank 0 gathers the solution,
receiving from each participant (including itself) a part of the vector (using MPI_Gather,
lines 37–38).

The code for our running example is extremely sensitive to variations in the structure
of MPI operations. For example, the omission of any message send/receive operation in
lines 18–31 leads to a deadlock where at least one process will be eternally waiting for
a send or receive operation to terminate. Another example: exchanging lines 19 and 20
leads to deadlock where ranks 0 and 1 will be forever waiting for one another.

4 The protocol specification language

The protocols governing communications in an MPI program are described by a dependent-
type language. We informally introduce the language via the protocol type for the run-
ning example. The type is in Figure 3; the syntax of the language is in Figure 4. The
appendix contains the complete definition. Line 2 in Figure 3 introduces the number



of participants, a value larger than 1 since the protocol uses point-to-point communi-
cations. This value is bound to variable p in all participants. In line 3, participant rank
0 broadcasts the dimension of the problem which must be a multiple of p; this value
is bound to variable n in all participants. The values transmitted in messages (charac-
terised by datatypes or index types, D, in Figure 4) are integer or floating points values,
arrays (e.g., float [n]), and refined datatypes. For example, {x:natural|x%p==0} denotes a
non-negative integer that is a multiple of the number of participants p. Datatype natural
is itself an abbreviation for {x:integer|x>=0}.

The type in Figure 3 contains also communication primitives. Line 4 describes an
array distribution operation, initiated by the participant with rank 0, of a floating point
array of size n where each participant k (0 ≤ k < p) receives the k-th part (of length
n/p) of the original array. In the concrete syntax we allow omitting the identifier that
describes the part of the array each participant receives (cf. the syntax for scatter in
Figure 4). Lines 7–8 describe point-to-point message exchanges. In the first case there is
a message exchange between participant rank i and participant rank ( i+1)%p containing
a floating point number.

Line 10 describes an operation where every participant communicates a floating
point number, the maximum of which is calculated and distributed amongst all partici-
pants. allreduce is a derived operator, based on reduce and broadcast. Type allreduce op x:
D is short for reduce 0 op _:D’; broadcast 0 x:D where reduce 0 op x:D describes a collective
operation whereby rank 0 receives the result of applying operator op to a value trans-
mitted by each participant; variable x denotes the kind of values transmitted. Line 13
describes the operation inverse of scatter, gathering on participant 0 an array of length n
comprising sections originating from the various participants. Once again, the concrete
syntax allows omitting the identifier for the sections (cf. Figure 4).

The loop foreach in lines 6–9 is intuitively equivalent to the sequential composition
of p copies of lines 7–8, with i replaced by 0, 1, . . . , p−1. Lines 5 and 12 are examples
of what we call collective control structures. The first case describes a loop where all
participants decide together, but without exchanging any message, whether to continue
or to abandon the loop. The second case describes a choice where every participant
decides jointly (again, without communicating) to continue to line 13 or to line 15.
Line 15 denotes an empty block of operations, skip in Figure 4. Except for val, all
constructors in our language where introduced through the example. val is the dependent
type constructor, abstracting over concrete values on all ranks. It is used mainly to
model constants in the program, including values read from the command line.

Not all types conforming to the grammar in Figure 4 are of interest. The most com-
mon case is related to ranks appearing in types. Examples include: a message to self:
message 2 2 integer; a message to a non-existent participant: message 0 −5 float or size p
:{y: int |y<10}; message 0 10 float. Errors need not be apparent, as in size p: {y:integer|y>1};
broadcast 0 n:natural; message n 0 float where n is not guaranteed to be in the range [0.. p[

unless we replace natural by {x:natural|x<p}.
An excerpt of the rules defining type formation are in Figure 5. All rules are algo-

rithmic, so that they can be straightforwardly implemented. Types are checked against
index contexts Γ , an ordered map from index variables x to datatypes D. A sequent of
the form Γ1 ` T a Γ2 says that type T is well formed on context Γ1 and produces a



T ::= val x : D | message i i D | size x : D |
broadcast i x : D | scatter i x : D | gather i x : D | reduce i op x : D |
loop T | choice T or T | foreach x : i..i T | T ;T | skip

D ::= integer | float | D[i] | {x : D | p}
i ::= x | n | i+ i | max(i, i) | length(i) | i[i] | . . .
p ::= true | i ≤ i | p and p | . . .

op ::= max | min | sum | . . . Γ ::= · | Γ, x : D

Fig. 4. Syntax

Γ1 ` T1 a Γ2 Γ2 ` T2 a Γ3

Γ1 ` T1;T2 a Γ3

Γ ` p :: _ Γ ` i :<: [0..p[ Γ ` D
Γ ` broadcast i x : D a Γ, x : D

Γ ` p :: _ Γ ` i1 :<: [0..p[ Γ ` i2 :<: [0..p[ Γ � i1 6= i2 Γ ` D
Γ ` message i1 i2 D a Γ

Fig. 5. Type formation (selected rules)

context Γ2. The rules for datatype formation, Γ ` D, for proposition formation, Γ ` p,
for index kinding, Γ ` i :: D, for datatype subtying Γ ` D <: D, and for formulae en-
tailment, Γ � p, are either straightforward or standard (cf. [8]) and are described in the
appendix. Notation Γ ` i :<: D combines index kinding with datatyping subtyping,
and abbreviates Γ ` i :: D′ ∧ Γ, x : {y : D | y = i} ` D′ <: D with x, y fresh.

The rule for the sequential composition in Figure 5 makes the nature of second
context apparent: Γ2, the output of checking T1, is passed as input for checking T2. In
turn, Γ3, the output of checking T2 is the output of the sequential composition. The rule
for broadcast is illustrative of how new index variables are introduced in the outgoing
context. The rule reads the number of participants p (a distinguished datatype variable,
not available to programmers, and introduced by the type formation rule for size) from
the context, checks that i is a valid rank, and that D is well formed. The rule for mes-
sages checks that the “from” and the “to” ranks are valid (are in the range [0..p[) and
different from one another. Datatype D must be well formed. The resulting context is
the incoming context, since no bindings are introduced by the message construct.

Describing the behaviour of a collection of participants, types are naturally equipped
with an operational semantics. Types are endowed with a structural congruence rela-
tion, equating skip;T ≡ T , loop skip ≡ skip, and choice skip or skip ≡ skip. A vector
of types, denoted by ~T or S, describes a state. States evolve via a reduction relation
S → S. Given a type T and a number of participantors n, the initial state of our machine
is given by load(T, n), a vector of n > 1 identical copies of T . A few selected rules
extracted from the reduction relation are in Figure 6. The rule for broadcast is an opera-
tion that synchronises on all types: they must all be of the form broadcast ik x : D;T ′k.
By i ↓ n we mean that index term i evaluates to an integer value n. Such value, the rank
of the root type, must be valid, i.e., 0 ≤ n < |~T | where |~T | denotes the length of the
vector. Given any value v of datatype D, denoted by ` v : D, the resulting types are all
of the form T ′k[v/x], that is, all types evolve to T ′k where v replaces the free occurrences
of x. There are two rules for messages depending on whether the types participate or
not in the reduction. The first rule identifies two types ready to synchronise, of ranks j



Tk = broadcast ik x : D;T ′
k ik ↓ n 0 ≤ n < |~T | ` v : D T ′′

k = T ′
k[v/x]

~T → ~T ′′

|~T1| = j |~T2| = k − j − 1 i1 ↓ j i2 ↓ k i3 ↓ j i4 ↓ k
~T1, (message i1 i2 D;Tj), ~T2, (message i3 i4 D;Tk), ~T3 → ~T1, Tj , ~T2, Tk, ~T3

|~T1| = l i1 ↓ j i2 ↓ k j, k 6= l

~T1, (message i1 i2_;T ), ~T2 → ~T1, T, ~T2

Fig. 6. Operational semantics for machine states (selected rules)

and k. In this case both types advance to their continuations, Tj and Tk, whereas the re-
maining types remain unchanged. The second rule for messages advances the types not
involved in communication. These two rules, perform a sort of on-the-fly projection, in
the parlance of multiparty session types [11].

Equipped with the notions of type formation and reduction, we are in a position to
state our main result, namely that well formed types do not get stuck. We say that a state
is halted when all its types are equivalent to skip.

Theorem 1. If ` T and load(T, n)→∗ S1 then either halted(S1) or S1 → S2.

Proof (outline). The proof is standard, albeit long. We rely on a soundness and on a
type safety result. Soundness (Γ ` S1 and S1 → S2 implies Γ ` S2) follows by
induction on the structure of the derivation for Γ ` S1. It relies, in turn, on results such
as a substitution lemma and weakening. Type safety (Γ ` S1 implies either halted(S1)
or S1 → S2) follows by reductio ad absurdum, by analysing each non-halted stated that
is impeded from progressing.

5 Protocol verification

The conformance of C+MPI programs against protocol specifications is checked by the
VCC tool [4]. The verification process requires (vide Figure 1): (1) a description of the
protocol as defined in Section 4; (2) an annotated MPI library that contains the imple-
mentation of the operational semantics, as (partially) described in Figure 6, and contract
specifications for the MPI primitives that enforce the correct use of the prescribed pro-
tocol; and (3) the C+MPI source code.

The first thing we address is the annotation of the source code in order to persuade
VCC to accept the program. This step includes the replacement of source code that
VCC currently does not support, such as dynamic memory allocation (which we replace
by fixed-size arrays), functions with a variable number of arguments as for example
printf and scanf (which we either remove altogether or provide semantically equivalent
replacements), and floating point operations (which we abstract under function calls).
Moreover, VCC is a tool for verifying concurrent programs, and thus requires fine-
grained annotations regarding memory usage.

Upon completion of this first step, we can focus entirely on protocol verification.
The Eclipse plug-in tool checks that the protocol description is well formed. The tool



1 _(ghost SessionType sessionType =
2 seq(
3 action(size(), intRefin(\lambda \integer p; p > 2), 1),
4 abs(body(\lambda \integer p;
5 seq(
6 action(bcast(0), intRefin(\lambda \integer n; n > 1 && n % p == 0)), 1)),
7 abs(body(\lambda \integer n;
8 seq(
9 action(scatter(0), floatRefin(\lambda float _n2; \true, n)),

10 seq(
11 loop(
12 seq(
13 foreach(0, p - 1, body(\lambda \integer i;
14 seq(
15 message(i, (p + i - 1) % p, floatRefin(\lambda float x; \true, 1)),
16 message(i, (i + 1) % p, floatRefin(\lambda float x; \true, 1))))),
17 action(allreduce(MPI_MAX), floatRefin(\lambda float x; \true, 1)))),
18 choice(
19 action(gather(0), floatRefin(\lambda float x; \true, n)),
20 skip())))))));)

Fig. 7. The protocol for the finite differences problem in VCC syntax

implements the rules described in Figure 5, while using the Z3 SMT solver [13] to
handle the entailment relation (�). If the protocol is well formed, the tool generates a C
header file describing the protocol in VCC format. The next step is to include high-level
annotation marks in the source code identifying collective loops/choices and, in some
cases, also loops for foreach protocols, as well as providing values for the val opera-
tion. At this point, an automatic annotation tool, implemented using the Clang/LLVM
framework [3], expands the high-level annotation marks into a more complex verifica-
tion logic, while generating some complementary annotations. From this point on, VCC
can check the conformance of the C+MPI program against the protocol. We describe
the annotation tool in detail further down in this section.

Figure 7 contains the VCC datatype produced by the Eclipse plugin when run on the
protocol for finite differences in Figure 3. In VCC, annotation blocks are expressed by
_(annotation block); the ghost keyword introduces declarations that assist the verifica-
tion process but that have otherwise no impact on the C code. The SessionType datatype
directly implements types T , as in Figure 9 (details in Appendix C). Primitive opera-
tions (e.g., size, val, scatter) are wrapped by a VCC Action datatype constructor that pairs
the operation with the dependent type that characterises the value it uses. This extra
wrapping level eases the writing of the VCC theory. For instance, size p : {x: integer | x
> 1} is represented as action(size(), intRefin(\lambda \integer p; p > 2), 1), where
intRefin introduces an integer refinement type with two arguments: the first \lambda \

integer p; p > 2 encodes an anonymous function of \integer domain that defines the
predicate; the second, indicates the length of the array (1 in this case), given that MPI
primitives exchange data as arrays only. Collective operations (and the foreach loop)
bind a variable in the continuation type (or in the loop body). We make use of VCC
anonymous functions to bind the value in the continuation and to handle substitutions.
For example, size p : {x: integer | x > 1}; T, where T stands for the continuation type of
Figure 3, is encoded as follows, while binding p in T (lines 3–15).
action(size(), intRefin(\lambda \integer p; p > 2), 1),
abs(body(\lambda \integer p; T))



The VCC theory is divided in two parts: the first is a contract-annotated version
of the MPI function signatures that ensures the conformance of the program operations
against a protocol; the second encodes the type reduction relation. We illustrate contract
annotation using the MPI_Send function.
int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, ...

_(ghost GParam gParam)
_(ghost SessionType type_in)
_(out SessionType type_out))

_(requires actionType(head(type_in, gParam->rank)) == send(dest))
_(requires actionLength(head(type_in, gParam->rank)) == count)
_(requires refTypeCheck(refType(head(type_in, gParam->rank)), buf, count))
_(requires datatype == MPI_INT ==> \thread_local_array ((int *)buf, count))
_(requires datatype == MPI_FLOAT ==> \thread_local_array ((float *)but, count))
_(ensures type_out == reduce(type_in, gParam->rank))
...

Contracts are specified in VCC via pre- (requires) and post-conditions (ensures)
clauses. In addition to the parameters defined by the MPI specification, we include
three additional ghost parameters that keep track of the protocol reduction state: gParam,
type_in, and type_out. Parameter type_in represents the type before executing the send

operation, whereas type_out reflects the effect of consuming the send operation (we
use two parameters because VCC does not allow read/write parameters). The gParam

carries the global parameterisation for the verification logic, comprising bounds for the
participant rank and a bound on the total number of participants. The bound on the
number of participants may be redefined (see Section 6). Its definition is as follows.
typedef struct {
int procs;
int rank;
_(invariant rank >= 0 && rank < procs)
_(invariant procs > 1 && procs <= MAX_PROCS)

} GParam;

When checking an MPI_Send operation, the type for the participant under verification
must be of the form message i1 i2 D; T. This naturally induces a pre-condition of the form
∃ SessionType T; seq(message i1 i2 D; T)== type_in. But SMT solvers, in general, do
not perform well with existential quantification, and VCC (which uses the Z3 SMT
solver [13] internally) is not able to assert pre- or post-conditions of this form. We fol-
low a different approach and write a ghost function head that computes the action at the
head of the type, thus avoiding existential quantification. The first three preconditions
for the MPI_Send contract check that the primitive operation at the head of the type is a
send operation targeting the destination dest passed as an argument to MPI_Send, that the
array dimension matches the count parameter, and that the value to be sent (buf) com-
plies with the dependent type specification. Ghost functions actionType, actionLength,
and refType are helper functions that extract information from the head action. Ghost
function refTypeCheck simply applies the lambda function encoding the dependent type
to buf and asserts the function body (with the correct substitution) for all (count) ele-
ments of the buffer. We follow the same route for writing the post-conditions, and make
use of a ghost function reduce, which implements the reduction relation on protocol
types, to advance the type. Notice that both ghost functions head and reduce receive an
extra parameter for the rank of the participant under verification. We need this infor-
mation to handle message operations (cf. Figure 6), in particular to check whether i1



or i2 evaluate to gParam->rank. The last two pre-conditions check that the buf memory
region if valid and has the expected type. The other MPI communication primitives
have similar contracts.

The VCC theory we developed follows the rules presented in Section 4. We il-
lustrate some of its fragments. The verification process visits the program from MPI
initialisation (call to MPI_Init, Figure 2, line 3) to shutdown (MPI_Finalize, same figure,
line 40). A ghost sessionType variable, representing the protocol is initialised by the
contract for primitive MPI_Init. Afterwards, the protocol is progressively reduced (i.e.,
the ghost variable is changed) through the contracts of MPI primitives or annotations
that handle control flow. The goal is that the ghost variable reaches a state congruent
to skip () at the shutdown point (the call to MPI_Finalize). This flow is illustrated by the
contracts for MPI_Init and MPI_Finalize.
int MPI_Init(... _(ghost GParam param) _(out SessionType type_out))
_(ensures type_out == sessionType)
...

int MPI_Finalize(... _(ghost SessionType type_in))
_(ensures congruent(type_in, skip())
...

The congruent predicate is a straightforward implementation of the congruence relation
in Section 4. We now focus on the reduce function, particularly the cases concerning
message reduction. The signature of the function and its axioms are as follows.
_(pure SessionType reduce(SessionType st, \integer rank);)
_(axiom \forall \integer rank, dest; SessionData sd; SessionType t;
reduce(seq(message(rank, dest, sd), t), rank) == t)

_(axiom \forall \integer rank, from; SessionData sd; SessionType t;
reduce(seq(message(from, rank, sd), t), rank) == t)

_(axiom \forall \integer rank, from, to; SessionData sd; SessionType t;
from != rank && to != rank ==>
reduce(seq(message(from, to, sd), t), rank) == next(t, rank))

Following the rules in Figure 6, the first two axioms handle messages from or to
the participant under verification, while the last axiom ignores messages not addressed
to the participant. As for control flow, collective choices and loops in particular, direct
annotations are necessary in the program body. These are automatically generated in a
process detailed below. Here, we focus now on its meaning, using the collective loop of
the finite differences as an example.
_(ghost SessionType body = loopBody(type);)
_(ghost SessionType continuation = next(type,gParam->rank);)
while (!converged(globalerr) && iter < MAX_ITER) {
_(ghost type = body;)
...
_(assert congruent(type, skip())

}
_(ghost type = continuation);

The fragment illustrates the extraction of the protocols corresponding to the loop body

and its continuation. The protocol for the body must be a loop type (as in, e.g., Fig-
ure 7, line 11). The verification procedure asserts that the loop protocol body is reduced
to a term congruent to skip(). After the loop, verification proceeds by using the loop
continuation as the type.

A significant part of the required program annotations are introduced automatically.
The annotator uses the Clang/LLVM [3] framework to traverse the syntactic tree of a C



Original code Annotated code

/* collective choices */
if (_collective_(e)) {
...

} else {
...

}

_(ghost SessionType cIfT = choiceTrue(type);)
_(ghost SessionType cIfF = choiceFalse(type);)
_(ghost SessionType cCont = next(type, gParam->rank);)
if (e) {
_(ghost type = cIfT;)
...
_(assert congruent(type, skip()))

} else {
_(ghost type = cIfF;)
...
_(assert congruent(type, skip()))

}
_(ghost type = cCont;)

/* collective loops */
while (_collective_(e)) {
...

}
/* similarly for do-while

and for loops */

_(ghost SessionType lBody = loopBody(type);)
_(ghost SessionType lCont = next(type, gParam->rank);)
while (e) ... {
_(ghost type = lBody;)
...
_(assert congruent(type, skip()))

}
_(ghost type = lCont;)

/* foreach */
int v = ...;
...
while (_foreach_(v,e)) {
...

}
/* similarly for do-while

and for loops */

int v = ...;
...
_(ghost STFunc fEval = foreachBody(type);)
_(ghost SessionType fCont = foreachCont(type);)
while (e) ... {
_(ghost type = fEval[v];)
...
_(assert congruent(type, skip())

}
_(ghost type = fCont;)

Table 1. Automated generation of annotations

program and generate a new, annotated, version. The annotator is guided by calls to MPI
primitives (e.g., for the purpose of declaring ghost parameters in function signatures),
and, more importantly, by high-level programmer “hints” that should be understood as
protocol-related annotations. The latter refers to control flow aspects, particularly col-
lective loops/choices, that are hard to infer automatically using standard static analysis
techniques (for this purpose, symbolic execution or model checking may be used [19]).

In any case, the protocol-related annotations are simple marks on the C program,
whereas corresponding annotations produced by the tool are quite more complex, as
illustrated in Table 1. The _collective_ and _foreach_ marks, shown on the left column
of Table 1, are used to match collective loops/choices and (in some cases) foreach pro-
tocols, respectively. From these marks, the annotator produces annotations shown in the
table’s right column, that are in line with the above discussion on protocol reductions.
A _foreach_ mark is necessary when a foreach type is matched against an actual C loop.
This is not the case in our running example, where the foreach protocol (lines 6–9, Fig-
ure 3) requires no C-loop, given that each participant executes a different step of the
protocol foreach loop. Contrast this situation with the protocol below where participant
with rank 0 sends a message to every other rank.

foreach i = 0 . . procs−1 message 0 i f l o a t

The protocol could be matched, for example, by a loop annotated as follows.



if (rank == 0)
for (i = 0; _foreach_(i, i < procs); i++)
MPI_Send (... i ...); // 0 sends to i

else
MPI_Recv (... 0 ...); // receives from 0

Then, the _foreach_ annotation will trigger the generation of annotations as described in
the third row of Table 1. In this case, the loop essentially needs to be explicitly unfolded,
and this is done by the verification logic. The overall job of the annotator, when run on
the running example, is summarised in the appendix, Figure 8.

In spite of our endeavours towards a fully automated verification procedure, pro-
grams typically require complementary annotations that must be introduced manually
by a programmer. A major source for manual annotations concerns the concurrent use
of shared memory (remember that VCC is a tool for the verification of concurrent C
code). For instance, in our running example we need to introduce the following annota-
tions:
while (!converged(globalerr) && iter < MAX_ITER)
_(writes &globalerr)
_(writes \array_range(local, (unsigned) lpsize + 2)) { ... }

The two writes clauses above identify memory that becomes updated within the loop.
Another major source for manual annotations concerns C function contracts, which

VCC requires for modular (compositional) verification. Manual annotations may also
reflect assumptions left implicit by the programmer, but that must be made explicit
for verification. For instance in the C code for the running example (Figure 2, line 7)
we must state that the problem size is a natural number multiple of the number of
participants (cf. Figure 3, line 3).
psize = atoi(argv[1]);
_(assume psize > 1 && psize % procs == 0)

6 Evaluation

We evaluated the verification procedure by using textbook examples [6,9,15] and the
FEVS suite [21]. The protocols for the tests are given in Appendix B. The examples
had to be adjusted for different reasons. In some cases non-blocking communication
primitives (MPI_Isend, MPI_Irecv, MPI_Wait and MPI_Waitall) were replaced by blocking
primitives (MPI_Send and MPI_Recv). Other aspects had to be adjusted due to limitations
of VCC as described in Section 5. We also stripped some sections of code that were
irrelevant for the purpose of protocol verification. The evaluation considers two mea-
sures: the verification time and the comparison between the number of automatically
generated and that of manually introduced annotations.

Table 2 shows the results for the verification time (in seconds) of VCC for each
example, considering different upper bounds on the number of participants. The results
shown correspond to the average time of 5 executions, measured on an Intel 2.4 Ghz
machine with 4 GB of RAM running Windows 7. Empty entries indicate that the veri-
fication did not end complete due to memory exhaustion.

The first observation is the stable performance in the case of Jacobi iteration: all par-
ticipants have the same communication behaviour, the code uses only collective com-
munication operations, and does not include foreach protocols. In all other examples we



Program 2 4 8 16 32 64 128
Diffusion 1-D [21] 6.0 6.6 10.6 60.7 787.9 — —
Finite differences [6] 3.6 4.5 13.5 157.5 — — —
Jacobi iteration [15] 3.9 4.2 4.2 4.3 4.0 4.2 4.2
Laplace solver [21] 10.2 64.0 1205.1 — — — —
N-body simulation [9] 5.0 5.5 6.9 20.1 139.9 1289.9 —
Pi calculation [9] 1.4 2.2 1.7 4.0 20.5 1009.6 —
Vector dot product [15] 4.3 5.3 7.5 60.4 717.1 — —

Table 2. Verification time (seconds)

witness a “participant-explosion” problem. In all of these, a combination of factors is at
stake: point-to-point communications are employed, hence participants exhibit distinct
and in some cases intricate behaviour, and the unfolding of foreach protocols depends
directly on the number of participants.

Program LOC A M A+M M/F
Diffusion 1-D [21] 206 49 10 59 2.0
Finite differences [6] 256 41 14 55 2.3
Jacobi iteration [15] 389 82 57 139 7.0
Laplace solver [21] 120 73 7 80 7.0
N-body simulation [9] 300 88 24 112 3.7
Pi calculation [9] 77 26 1 27 0.5
Vector dot product [15] 146 53 10 63 3.3

A: automated annotations; M: manual annotations; F: number of functions
Table 3. Annotation effort (LOC)

The results for the annotation effort are shown in Table 3. For each example the
table shows the number of lines of code in each program, the number of automatically
and manually generated annotations, the number of annotated functions, and the ratio
of manual annotations per annotated function. The automatic annotations comprise the
definition of the protocol in the VCC protocol header (generated by the Eclipse tool)
and the other automatic annotations generated by the annotator tool. The overall obser-
vation is that the number of manual annotations is significantly lower than the number
of automatic annotations, and that the number of lines of manual annotations per C
function ranges between 2 and 7, a perfectly acceptable number in our view.

7 Conclusion

The results described in this article are part of a larger programme on verification of
message passing, real-world programs. With the infrastructure we have built, we can,
with limited human intervention, verify programs with 400 lines of C code.

We worked with programs taken from text books [6,9,15] and test suits [21], well
known algorithms for which it was relatively simple to generate the protocol, programs
with carefully crafted code that required few manual annotations, and programs that
only work with a somewhat restricted subset of MPI primitives. But even in these cases
we sometimes experienced problems with a large number of participants.

What happens with real-world programs, programs that don not verify some of these
assumptions? We will have, among other things, to a) support more MPI primitives (we



plan to address immediate operations, MPI_Isend, MPI_Irecv and MPI_Wait); b) work to
minimise the number of necessary manual annotations (by using inference techniques),
and c) try to curb the foreach explosion (by using induction, rather than expansion).
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A Running example with annotations

1 int main(int argc, char** argv _ampi_arg_decl) {
2 int procs, rank; // Number of processes, process rank
3 MPI_Init(&argc, &argv);
4 MPI_Comm_size(MPI_COMM_WORLD, &procs);
5 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
6 ...
7 if (rank == 0) {
8 psize = atoi(argv[1]);
9 _(assume psize > 0 && psize % procs == 0)

10 }
11 MPI_Broadcast(0, &psize, 1, MPI_INT, MPI_COMM_WORLD);
12 lsize = psize / procs;
13 if (rank == 0) read_vector(work, psize);
14 MPI_Scatter(work, lsize, MPI_FLOAT,&local[1],lsize,MPI_FLOAT,0,MPI_COMM_WORLD);
15 ...
16 _(ghost SessionType lBody = loopBody(_type);)
17 _(ghost SessionType lCont = next(_type);)
18 while (!converged(globalerr) && iter < MAX_ITER)
19 _(writes &globalerr)
20 _(writes \array_range(local, (unsigned) lpsize + 2))
21 {
22 _(ghost _type = lBody;)
23 if (rank == 0) {
24 MPI_Send(&local[1], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD);
25 MPI_Send(&local[lsize], 1, MPI_FLOAT, right,0, MPI_COMM_WORLD);
26 MPI_Recv(&local[lsize+1], 1, MPI_FLOAT, right,0, MPI_COMM_WORLD, &status);
27 MPI_Recv(&local[0], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD, &status);
28 }
29 else if (rank == procs - 1) { ... }
30 else { ... }
31 MPI_Allreduce(&localerr, &globalerr, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD);
32 _(assert congruent(_type,skip())
33 }
34 _(ghost _type = lCont;)
35 ...
36 _(ghost SessionType cTrue = choiceTrue(_type);)
37 _(ghost SessionType cFalse = choiceFalse(_type);)
38 _(ghost SessionType cCont = next(_type);)
39 if (converged(globalerr)) { // Gather solution at rank 0
40 _(ghost _type = cTrue)
41 MPI_Gather(&local[1], lsize, MPI_FLOAT, work, lsize, MPI_FLOAT, 0,

MPI_COMM_WORLD)
42 ...
43 _(assert congruent(_type, skip()))
44 } else {
45 _(ghost _type = cFalse;)
46 ...
47 _(assert congruent(_type,skip()))
48 }
49 _(ghost _type = cCont)
50 MPI_Finalize();
51 return 0;
52 }

Fig. 8. The program for the finite differences with VCC annotations



B Protocols for the various tests in Section 6

Diffusion
protocol d i f f u s i o n 1 d {

size p : { x : integer | x > 1 } ;
val nx : { x : natural | x % p = 0 } ;
broadcast 0 integer ;
broadcast 0 f l o a t ;
broadcast 0 integer ;
broadcast 0 integer ;
foreach i : 1 . . p−1

message 0 , i f l o a t [ nx / p ] ;
foreach i : 1 . . p−1

message i , 0 f l o a t [ nx / p ] ;
loop {

foreach i : 1 . . p−1
message i , i−1 f l o a t ;

foreach i : 0 . . p−2
message i , i +1 f l o a t ;

choice
foreach i : 1 . . p−1

message i , 0 f l o a t [ nx / p ]
or

{ }
}

}

Finite differences
protocol f d i f f {

size p : { x : integer | x > 1 } ;
broadcast 0 n : { x : posit ive | x % p = 0 } ;
scatter 0 f l o a t [ n ] ;
loop {

foreach i : 0 . . p − 1 {
message i , ( p + i − 1) % p f l o a t ;
message i , ( i + 1) % p f l o a t

} ;
allreduce max f l o a t

} ;
choice

gather 0 f l o a t [ n ]
or

{ }
}



Jacobi iteration
protocol p a r a l l e l _ j a c o b i {

val maxDim : natural ;
size p : { x : integer | x > 1 and maxDim % x = 0 } ;
val n : { y : natural | y <= maxDim and y % p = 0 } ;
scatter 0 f l o a t [ maxDim ∗ n ] ;
scatter 0 f l o a t [ n ] ;
al lgather f l o a t [ n ] ;
loop

al lgather f l o a t [ n ] ;
choice

gather 0 f l o a t [ n ]
or

{ }
}

Laplace solver
protocol l ap lace {

size p : { x : integer | x > 3 } ;
val nx : posit ive ;
val ny : posit ive ;
foreach i : 1 . . p−1 {

foreach j : 1 . . ny−2
message i , 0 f l o a t [ nx ] ;

message p−1, 0 f l o a t [ nx ]
} ;
loop {

message 0 , 1 f l o a t [ 1 0 ] ;
foreach i : 1 . . p−2 {

message i , i−1 f l o a t [ 1 0 ] ;
message i , i +1 f l o a t [ 1 0 ]

} ;
message p−1, p−2 f l o a t [ 1 0 ] ;
allreduce sum f l o a t

}
}

N-body simulation
protocol nbodypipe {

size p : { x : integer | x > 1 } ;
val n : { x : natural | x % p = 0 } ;
al lgather integer [ p ] ;
loop {

loop
choice

foreach i : 0 . . p−1
message i , ( i + 1) % p f l o a t [ n ∗ 4]

or
{ } ;

allreduce min f l o a t
}

}



Pi calculation
protocol p i {

size p : { x : integer | x > 1 } ;
foreach i : 1 . . p−1

message 0 , i posit ive ;
reduce 0 sum f l o a t

}

Vector dot product
protocol p a r a l l e l _ d o t {

size p : { x : integer | x = 4 } ;
val n : { x : natural | x % p = 0 } ;
broadcast 0 integer ;
foreach i : 1 . . p−1

message 0 , i f l o a t [ n / p ] ;
foreach i : 1 . . p−1

message 0 , i f l o a t [ n / p ] ;
allreduce sum f l o a t ;
foreach i : 1 . . p−1

message i , 0 f l o a t
}

C Main VCC definitions for Section 5

Session type representation
// Dependent type support
_(ghost typedef \bool \IRefinement[\integer]);
_(ghost typedef \bool \FRefinement[float]);
_(datatype SessionData {

case intRefin (\IRefinement, \integer);
case floatRefin (\FRefinement, \integer);

})
// MPI primitives and actions
_(datatype Action {

case size(); case val();
case send(\integer); case recv \integer);
case gather(\integer); case scatter(\integer);
case reduce(\integer, MPI_Op); case allreduce(MPI_Op);
case bcast(\integer); case allgather ();

})
// Session type term
_(ghost typedef SessionType STFunc[\integer];)
_(datatype STBody { case body(STFunc);)
_(datatype SessionType {

case skip ();
case action (Action, SessionData);
case message (\integer, \integer, SessionData);
case seq (\SessionType, SessionType);
case choice (SessionType, SessionType);
case loop (SessionType);
case foreach (\integer, \integer, STBody);
case abs (STBody);

})



Structural congruence
_(pure \bool congruent(SessionType, SessionType);)
_(axiom \forall SessionType t; congruent(t,t))
_(axiom \forall SessionType t1,t2,t3;

congruent(t1,t2) && congruent(t2,t3) ==> congruent(t1,t3))
_(axiom \forall SessionType t1,t2,t3;

congruent(seq(seq(t1,t2),t3), seq(t1,seq(t2,t3))))
_(axiom \forall SessionType t; congruent(seq(skip(), t),t))
_(axiom \forall SessionType t; congruent(seq(loop(skip()),t),t))
_(axiom \forall SessionType t; congruent(seq(choice(skip(),skip()),t),t))

Session type reductions
_(pure SessionType head (SessionType st, \integer rank);)
_(pure SessionType reduce(SessionType st, \integer rank);)
// Reduction through congruence
_(axiom \forall SessionType t1,t2,t3; \forall \integer rank;
congruent(seq(t1,t2),t3) ==> head(seq(t1,t2),rank) == head(t3,rank))

_(axiom \forall SessionType t1,t2,t3; \forall \integer rank;
congruent(seq(t1,t2),t3) ==> reduce(seq(t1,t2),rank) == reduce(t3,rank))

// Point to point messages (on-the-fly projection)
_(axiom \forall \integer rank, dest; SessionData sd; SessionType t;
head(seq(message(rank, dest, sd), t), rank) == action(send(dest),sd))

_(axiom \forall \integer rank, dest; SessionData sd; SessionType t;
reduce(seq(message(rank,dest, sd), t), rank) == t)

_(axiom \forall \integer rank, from; SessionData sd; SessionType t;
head(seq(message(from, rank, sd), t), rank) == action(recv(from),sd))

_(axiom \forall \integer rank, from; SessionData sd; SessionType t;
reduce(seq(message(from, rank, sd), t), rank) == t)

_(axiom \forall \integer rank, from, to; SessionData sd; SessionType t;
from != rank && to != rank ==>
head(seq(message(from, to, sd), t), rank) == head(t, rank))

_(axiom \forall \integer rank, from, to; SessionData sd; SessionType t;
from != rank && to != rank ==>
reduce(seq(message(from, to, sd), t), rank) == reduce(t, rank))

// MPI primitives and actions
_(axiom \forall Action p; \forall SessionData sd; \forall SessionType t;

\forall \integer rank;
head(seq(action(p, sd), t), rank) == action(p,sd))

_(axiom \forall Action p; \forall SessionData sd; \forall SessionType t;
\forall \integer rank;

reduce(seq(action(p, sd), t), rank) == t)
// For-each protocols
_(axiom \forall SessionType t; \forall STFunc b;

\forall \integer lo,hi,rank;
lo > hi ==> head(seq(foreach(lo,hi,body(b)),t), rank) == head(t,rank))

_(axiom \forall SessionType t; \forall STFunc b;
\forall \integer lo,hi,rank;

lo > hi ==> reduce(seq(foreach(lo,hi,body(b)),t), rank) == reduce(t,rank))
_(axiom \forall SessionType t; \forall STFunc b;

\forall \integer lo,hi,rank;
lo <= hi ==>

head(seq(foreach(lo,hi,body(b)),t),rank)
== head(seq(b[lo], seq(foreach(lo+1,hi,body(b)),t)), rank))
_(axiom \forall SessionType t; \forall STFunc b;

\forall \integer lo,hi,rank;
lo <= hi ==>

reduce(seq(foreach(lo,hi,body(b)),t),rank)
== reduce(seq(b[lo], seq(foreach(lo+1,hi,body(b)),t)), rank))
// Choices and loops
_(axiom \forall SessionType t1,t2; \forall \integer rank;

reduce(seq(loop(t1),t2), rank) == t2)
_(axiom \forall SessionType t1,t2,t3; \forall \integer rank;

reduce(seq(choice(t1,t2),t3), rank) == t3)



D The type language

Syntax The type language is generated by the grammar in Figure 9. It relies on two base
sets: that of variables (denoted x, y, z), and integer values (j, k, l,m, n). There is one
distinguished variable, p, not available in the programmer’s syntax. We use it to denote
the number of processes. Variable binding is as follows. Types foreach x : i1..i2 T and
val x : D;T bind the free occurrences of x in T . Similarly for size, broadcast, scatter,
gather, and reduce. Datatype {x : D | p} binds the occurrences of x in p.

Type formation Type, datatype, and proposition formation are defined by the rules in
Figure 10. These relations rely on index kinding, datatype subtype and formulae en-
tailment, all defined in Figure 11. Notation Γ + x : D, replaces the entry for x in Γ ,
by x : D, if x is in Γ ; otherwise just adds x : D to Γ . We assume all operators are
equipped with a type signature, denoted op : ~D′ → D. All rules are algorithmic. We
annotate each system with its mode. For example, type formation expects a context and
a type and delivers a type, denoted by mode: IIO.

Operational semantics Figure 12 introduces values and machine states. We rely on a
further base set: floating point values, denoted by f . Figure 13 introduces the typing
rules for values and machine states. Figure 14 presents the rules for structural congru-
ence. Notation |~T | denotes the length of vector ~T . The operational semantics rely on an
evaluation function, i ↓ n where i is an index type and n is a integer value. If i contains
variables, evaluation is undefined. The operational semantics for states is in Figure 15.

Derived constructs Type constructors allgather and allreduce are derived. The syntactic
expansion, type formation rules and reduction rules are in Figure 16.

Main result The main result is Theorem 4. We build the result gradually.

Lemma 1 (Weakening). If Γ ` D1 then Γ, x : D2 ` D1

Lemma 2 (Agreement).

1. If Γ ` i :: D then Γ ` D
2. If Γ ` D1 <: D2 and Γ ` D1 then Γ ` D2

Lemma 3. If Γ1 ` T1 a Γ2 and T1 ≡ T2 then Γ1 ` T2 a Γ2.

Lemma 4 (Substitution lemma). If Γ1, x : D ` T a Γ2 and ` v : D then Γ1 `
T [v/x] a Γ2

The load function builds the initial machine state.

load(T, n) , T, . . . , T (n > 1 copies)

Lemma 5 (Load). If Γ1 ` T a Γ2 then Γ1 ` load(T, n) a Γ2.

We write Γ ` S when Γ ` S a Γ ′ for some uninteresting Γ ′.



Types

T ::= val x : D | size x : D | message i i D | broadcast i x : D |
scatter i x : D | gather i x : D | reduce i op x : D |
loop T | choice T or T | foreach x : i..i TT ;T | skip

Datatypes (index types)

D ::= integer | float | D[i] | {x : D | p}

Index terms

i ::= x | n | i+ i | max(i, i) | length(i) | i[i] | . . .

Index propositions

p ::= true | i ≤ i | p and p | . . .

Index contexts

Γ ::= · | Γ, x : D

Shorthand

nat , {x : integer | x ≥ 0}

[i1..i2[ , {x : integer | i1 ≤ x and x < i2} with x not in i1, i2

Fig. 9. Syntax of types

Theorem 2 (Soundness). If Γ ` S1 and S1 → S2 then Γ ` S2.

For type safety we rely on the halted predicate:

halted(~T ) , Tk ≡ skip (∀0 ≤ k < |~T |)

Theorem 3 (Type safety). If Γ ` S1 then either halted(S1) or S1 → S2.

Theorem 4 (Main result). If ` T and load(T, n) →∗ S1 then either halted(S1) or
S1 → S2.



Type formation, Γ ` T a Γ , mode: IIO

Γ ` D
Γ ` val x : D a Γ, x : D

Γ ` D Γ, x : D � x > 1

Γ ` size x : D a Γ, x : D + p : D

Γ ` p :: _ Γ ` i :<: [0..p[ Γ ` D
Γ ` broadcast i x : D a Γ, x : D

Γ ` p :: _ Γ ` i :<: [0..p[ Γ ` D op : ~D′ → D

Γ ` reduce i op x : D a Γ, x : D
Γ ` p :: _ Γ ` i1 :<: [0..p[ Γ ` i2 :<: {y : integer | y = p} Γ ` D[i2]

Γ ` scatter i1 x : D[i2] a Γ, x : D[i2 ÷ p]
(see scatter)

Γ ` gather i1 x : D[i2] a Γ, x : D[i2 ÷ p]
Γ ` p :: _ Γ ` i1 :<: [0..p[ Γ ` i2 :<: [0..p[ Γ � i1 6= i2 Γ ` D

Γ ` message i1 i2 D a Γ
Γ1 ` i1 :<: integer Γ1 ` i2 :<: integer Γ1, x : [i1..i2] ` T a Γ2

Γ1 ` foreach x : i1..i2 T a Γ1

Γ ` skip a Γ
Γ1 ` T1 a Γ2 Γ2 ` T2 a Γ3

Γ1 ` T1;T2 a Γ3

Γ ` T a Γ
Γ ` loop T a Γ

Γ1 ` T1 a Γ2 Γ1 ` T2 a Γ2

Γ1 ` choice T1 or T2 a Γ2

Datatype formation, Γ ` D, mode: II

Γ ` integer Γ ` float
Γ ` D Γ ` i :<: nat

Γ ` D[i]

Γ ` D Γ, x : D ` p
Γ ` {x : D | p}

Proposition formation, Γ ` p, mode: II

Γ ` p1 Γ ` p2
Γ ` p1 and p2

Γ ` i1 :<: integer Γ ` i2 :<: integer
Γ ` i1 ≤ i2

Fig. 10. Type, datatype, proposition formation



Index kinding, Γ ` i :: D, mode: IIO

Γ1 ` D
Γ1, x : D,Γ2 ` x :: D Γ ` n :: integer

Γ ` i1 :<: integer Γ ` i2 :<: integer
Γ ` i1 + i2 :: integer

Γ ` i1 :: D[i3] Γ ` i2 :<: [0..i3[

Γ ` i1[i2] :: D
Γ ` i1 :: D[i2]

Γ ` length(i1) :: integer

Datatype subtyping, Γ ` D <: D, mode: III, rules tried in order

Γ ` integer <: integer Γ ` float <: float
Γ � 0 ≤ i1 ≤ i2 Γ ` D1 <: D2

Γ ` D1[i1] <: D2[i2]

Γ ` D1 <: D2 Γ, x : D1 � p
Γ ` D1 <: {x : D2 | p}

Γ ` D1 <: D2

Γ ` {x : D1 | p} <: D2

Formulae entailment, Γ � p, mode: II

Γ ` p forms(Γ ) � p
Γ � p

Abbreviation, Γ ` i :<: D, mode: III

Γ ` i :: D′ Γ, x : {y : D | y = i} ` D′ <: D x, y fresh
Γ ` i :<: D

Formulae in a context, forms(Γ ) = {p}, mode: IO

forms(·) , forms(x : integer) , forms(x : float) , {true}

forms(x : {y : D | p}) , forms(x : D) ∪ {[y/x]p}

forms(Γ1, Γ2) , forms(Γ1) ∪ forms(Γ2)

forms(x : D[i]) , x.length = i, 0 ≤ y < i→ (forms(z : D) ∧ x[y] = z) with y, z fresh

Fig. 11. Index kinding, datatype subtyping, formulae entailment

Values
v ::= n | f | [~v]

Machine states
S ::= T1, . . . , Tn (n > 0)

Fig. 12. Runtime syntax

Value typing, ` v : D

` n : integer ` f : float
` v1 : D . . . ` vn : D

` [v1, . . . , vn] : D[n]

State formation, Γ ` S
Γ ` T1 . . . Γ ` Tn

Γ ` T1, . . . , Tn

Fig. 13. Value and state typing



skip;T ≡ T loop skip ≡ skip choice skip or skip ≡ skip

Fig. 14. Structural congruence

Tk = val x : D;T ′
k ` v : D T ′′

k = ~T ′
k[v/x]

~T → ~T ′′

|~T1
~T2| = p− 1

~T1, (size x : D;T ), ~T2 → ~T1, T [p/x], ~T2

|~T1| = j |~T2| = k − j − 1 i1 ↓ j i2 ↓ k i3 ↓ j i4 ↓ k
~T1, (message i1 i2 D;Tj), ~T2, (message i3 i4 D;Tk), ~T3 → ~T1, Tj , ~T2, Tk, ~T3

|~T1| = l i1 ↓ j i2 ↓ k j, k 6= l

~T1, (message i1 i2 D;T ), ~T2 → ~T1, T, ~T2

Tk = broadcast ik x : D;T ′
k ik ↓ n 0 ≤ n < |~T | ` v : D T ′′

k = T ′
k[v/x]

~T → ~T ′′

Tk = reduce ik op x : D;T ′
k ik ↓ n 0 ≤ n < |~T | ` vk : D T ′′

k = T ′
k[vk/x]

~T → ~T ′′

Tk = scatter ik x : D[i′k];T
′
k ik ↓ n 0 ≤ n < |~T | i′k ↓ |~T | ` vk : D[n÷ |~T |] T ′′

k = T ′
k[vk/x]

~T → ~T ′′

Tk = gather ik x : D[i′k];T
′′
k ik ↓ n 0 ≤ n < |~T | i′k ↓ |~T | ` vk : D[n÷ |~T |] T ′′

k = T ′
k[vk/x]

~T → ~T ′′

Tk = choice T ′
k or T ′′

k ;T
′′′
k

~T → ~T ′; ~T ′′′
k

Tk = choice T ′
k or T ′′

k ;T
′′
k

~T → ~T ′′; ~T ′′′

Tk = loop T ′
k;T

′′
k T ′′′

k = T ′
k; loop T ′

k;T
′′
k

~T → ~T ′′′

Tk = loop T ′
k;T

′′
k

~T → ~T ′′

i1 ↓ j i2 ↓ k j ≤ k
~T1, (foreach x : i1 i2 T ;T ′), ~T2 → ~T1, (T [j/x]; foreach x : i1+1 i2 T ;T ′), ~T2

i1 ↓ j i2 ↓ k j > k

~T1, (foreach x : i1 i2 T ;T ′), ~T2 → ~T1, T ′, ~T2

T ≡ T ′

~T1, T, ~T2 → ~T1, T ′, ~T2

Fig. 15. Operational semantics for machine states, S → S



Types

allgather x : D , foreach y : 0..p− 1 (gather y x : D)

allreduce op x : D , reduce 0 op _ : D′; broadcast 0 x : D where op : ~D′ → D

Type formation, Γ ` T

Γ ` p :: _ Γ ` i :<: {z : integer | z%p = 0} Γ ` D[i]

Γ ` allgather x : D[i] a Γ, x : D[i]

Γ ` D op : ~D′ → D

Γ ` allreduce op x : D a Γ, x : D

Reduction, S → S

Tk = allreduce op x : D;T ′
k ` v : D T ′′

k = T ′
k[v/x]

~T → ~T ′′

Tk = allgather x : D[i];T ′
k i ↓ |~T | ` v : D[|~T |] T ′′

k = T ′
k[v/x]

~T → ~T ′′

Fig. 16. Derived constructs
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