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We present a type system based on session types that works on a conventional pi
calculus. Types are equipped with a constructor that describes the two ends of a single
communication channel, this being the only type available for describing the behaviour of
channels. Session types, in turn, describe the behaviour of each individual channel end,
as usual. A novel notion of typing context split allows for typing processes not typable
with extant type systems. We show that our system guarantees that typed processes do
not engage in races for linear resources. We assess the expressiveness of type system by
providing three distinct encodings—from the pi calculus with polarised variables, from
the pi calculus with accept and request primitives, and from the linear pi calculus—into
our system. For each language we present operational and typing correspondences,
showing that our system effectively subsumes foregoing works on linear and session
types. In the case of the linear pi calculus we also provide a completeness result.

1. Introduction

The pi calculus is a formalism for studying concurrency in programming languages. Intro-
duced in the late eighties as a process algebra (Milner et al., 1992), its has seen multiple
developments tho these days, including type systems that govern the behaviour of pro-
cesses, the topic of this paper. One such class of type systems uses session types. Session
types allow a concise description of protocols by detailing the patterns of the messages ex-
changed in each particular run of the protocol. They were firstly introduced for a dialect
of the pi calculus (Honda et al., 1998; Takeuchi et al., 1994). Later the concept has been
transferred to different realms, including functional (Gay and Vasconcelos, 2010; Vascon-
celos et al., 2006) and object-oriented programming (Capecchi et al., 2009; Coppo et al.,
2007; Dezani-Ciancaglini et al., 2005; Dezani-Ciancaglini et al., 2007; Dezani-Ciancaglini
et al., 2006; Gay et al., 2010; Hu et al., 2008), service oriented computing (Cruz-Filipe
et al., 2008; Bruni and Mezzina, 2008) and operating systems (Fähndrich et al., 2006),
to name a few; the reader is referred to (Dezani-Ciancaglini and de’Liguoro, 2010) for a
recent overview.

In this paper we concentrate on a subset of the pi calculus, as formulated in (Mil-
ner, 1992), and on binary session types. Binary session types describe the interaction of
exactly two partners (or processes) exchanging messages on a bi-directional communica-
tion channel. For example, an interaction on which one partner sends a string, receives
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a boolean value, replies with an integer and finally terminates the interaction, can be
written as !string.?bool.!int.end. In order for the interaction to proceed as planned, the
second partner must first receive a string, then emit a boolean value, and finally receive
an integer before terminating the interaction. Such an interaction is captured by the type
?string.!bool.?int.end, a type that is dual to the one above.

The discussion leads to the conclusion that one single communication channel is en-
dowed with two types, each governing the interaction on one of its two ends. The pi
calculus does not distinguish the two ends of a single channel. In order to capture within
a single type the capabilities of both ends of a channel, our types are pairs (S1, S2) where
S1 describes the behaviour of one end and S2 the behaviour of the other.

We have seen that session types capture patterns of interactions happening on channels.
For such interactions to occur free of interference, the channel must be shared by exactly
two processes. This means that the type that governs the channel’s behaviour must be
linear, and in particular that it cannot be duplicated or discarded. In a world of linear
types only there is no interference, hence no races. This also means that there cannot be
competition for (shared) resources, thus greatly reducing the class of interesting programs
one can write. In addition to linear channels our type system also accounts for shared
(unrestricted, in the terminology of this paper) channels that govern interactions with
shared resources. There are at least two ways one can understand the linear/unrestricted
distinction on channels and on session types. One view classifies a channel as a whole, so
that a channel that was created linear will continue as such during its lifetime. The other
view classifies each interaction point within a protocol individually, so that a channel may,
during its lifetime, behave as linear for a number of interactions and became unrestricted
in its later life. We follow the latter approach for enhanced flexibility (Vasconcelos, 2012).

Processes are typed against contexts formed of typing assumptions on variables. Cen-
tral to linear type systems is the notion of context splitting. In process algebras it is used
to handle parallel composition and message exchange (input and output). For example,
in order to type the parallel composition of two processes under a given context, we
split the context in two parts, and use each part to type each process. The traditional
definition of context splitting sends incoming shared types both ways, and linear types
either way but not both, in order not to duplicate or discard linear information. This is
also the case with our type system. But we go further in this respect.

We have said that channel types are pairs, simultaneously describing the capabilities
of the two ends of the channel. When splitting a context containing a linear type it
is usually necessary to send one capability to the left, and the other to the right. For
example, imagine that S1 in type (S1, S2) describes the input capability of a channel,
whereas S2 the output capability, and that both are linear. The question arises as to
which (pair) type do we send to the left context. Once you have given away the output
capability of a channel end what remains is the capability of performing no further
input/output operations on that particular channel end, a capability which we denote
by end. The context splitting relation we work with allows to split the above type into
(S1, end) and (end, S2). It also allows to split the same type into (S1, S2) and (end, end), so
that the process that uses that channel at type (end, end) cannot perform any interaction
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on the channel. It may however use it for purposes other than interaction (e.g., testing
for equality). The contribution of this paper is a novel type system. Such a system:
— works directly on the pi-calculus (Milner, 1992), as opposed to variants usually found

in the literature of session types (Honda et al., 1998; Gay and Hole, 2005; Vasconcelos,
2012),

— types processes not accepted by existing systems (Gay and Hole, 2005; Giunti and
Vasconcelos, 2010; Honda et al., 1998; Kobayashi et al., 1999; Vasconcelos, 2012),

— guarantees that typed processes do not get stuck at run-time and do not engage in
races for linear resources (Theorem 3.1),

— subsumes previous type systems for the pi calculus, including the pi calculus with
polarities and session types (Gay and Hole, 2005) (hence the conventional pi cal-
culus), the original version of session types (Honda et al., 1998), and the linear pi
calculus (Kobayashi et al., 1999).

The outline of the paper is as follows. The next section discusses the related work, and
puts into perspective the choices we have made. Section 3 briefly recalls the syntax and
operational semantics of the pi calculus, introduces our type system and its main result,
whose proof is then outlined in Section 4. Section 5 tests the flexibility of our type system
by embedding three systems. For each of these languages we prove an operational and a
typing correspondence result. For the linear pi calculus we further provide a completeness
result. Section 6 concludes the paper.

2. Related work

Since the proposal of session types (Honda, 1993; Honda et al., 1998; Takeuchi et al.,
1994) (discussed in Section 5.2) a few variants were put forward, including a system
for a pi calculus with polarities (Gay and Hole, 2005) (discussed in Section 5.1), a sys-
tem for a pi calculus with a double binder for ν-processes and lin/un qualified session
types (Vasconcelos, 2012), and a system for the conventional pi calculus, where the two
input/output capabilities of a channel may be passed in a single message (Giunti and
Vasconcelos, 2010). We also include in our comparison the linear pi-calculus (Kobayashi
et al., 1999) (discussed in Section 5.3), since linear types can be seen as a degenerated
form of session types, where a single message is exchanged. We try to systematise the
relations between these type systems according to the four criteria below.

The two ends of a sin-
gle channel:



are syntactically indistinguishable (Giunti and Vasconcelos,
2010; Honda et al., 1998; Kobayashi et al., 1999); (This
work);

have distinct syntax (Gay and Hole, 2005; Vasconcelos,
2012).

Types describe:



channel end-points (Gay and Hole, 2005; Giunti and Vas-
concelos, 2010; Honda et al., 1998; Kobayashi et al., 1999;
Vasconcelos, 2012);

channels, both ends simultaneously (Kobayashi et al., 1999;
Giunti and Vasconcelos, 2010); (This work).
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The shared/linear dis-
tinction pertains to:


types as a whole (Gay and Hole, 2005; Honda et al., 1998;
Kobayashi et al., 1999);

communication points within a type (Giunti and Vasconce-
los, 2010; Vasconcelos, 2012); (This work).

When a context is
split:



unrestricted (end-point or channel) types go both ways and
linear (end-point or channel) types go either way (Gay and
Hole, 2005; Giunti and Vasconcelos, 2010; Honda et al.,
1998; Vasconcelos, 2012); (This work);

linear channel types go both ways, split as linear end-point
types (Kobayashi et al., 1999; Giunti and Vasconcelos, 2010)
or placed in a pair type with an end component (This work);

unrestricted channel types go both ways, split as unre-
stricted end-point types (Kobayashi et al., 1999) or placed
in a pair type type with an end component (This work).

We now present a few examples that discriminate among these type systems. We write
c true.P for the process that writes true on channel c and continues as P ; c(x).P for the
process that reads a value from c, binds it to x, and continues as P ; 0 for the terminated
process (often omitted in the continuations); and P | Q for the parallel composition of
processes P and Q. All processes below reduce in two or three steps to 0. Process

c true.(c 3 | c 5) | c(x).c(y).c(z)

requires c to be typed with a linear session type (in order to type c true followed by c 3)
that later becomes unrestricted (in order to type the two messages c 3 and c 5 in parallel).
It is typable in (Vasconcelos, 2012) (with the necessary syntactical adjustments), but not
in (Honda et al., 1998), (Gay and Hole, 2005), or (Kobayashi et al., 1999). Process

c d | c(x).(x true | x(y))

is typable in (Giunti and Vasconcelos, 2010) or any other system mentioned above, but
not in (Vasconcelos, 2012) since the two input/output capabilities of a channel (d) are
passed at the same time (on channel c). Notice that the second thread needs both the
input and the output capability of d in order to exchange the true message. Process

c true.c 3 | c(x).c(y) | d c | d(z)

is typable in the system proposed in this paper but not in (Giunti and Vasconcelos, 2010),
since channel c occurs in three parallel threads. Notice that the channel occurs in subject
position† in two threads only, and that the last occurrence of c entails no communication
(channel c is inactive, it can only be passed around). Finally, process

c true | c(x).ifx then (c 5 | c(y)) else0

is not typable in the system proposed in this paper. To see why notice that the session
type of channel c in the second thread must be linear, for it receives a boolean value

† A channel c occurs in subject position in processes of the form c v.P and c(x).P .
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(forced by the conditional) and then exchanges an integer message. Notice also that the
second thread needs both the input and the output capability of channel c in order to
exchange the integer message. But the first parallel composition forces the input/output
capabilities of channel c to be split between the two threads.

The ability to pass part of the functionality of a linear channel and retain the rest
goes beyond what is usually available to session typing systems. In the realm of binary
session types, it was first proposed by the authors (Giunti et al., 2009). The method
is however to be found in several works in the literature; we mention two. Multiparty
session types use a projection operator to extract session types from the global type of a
system (Honda et al., 2008). The conversation calculus includes a type splitting relation
allowing to decompose the type of processes (Baltazar et al., 2013; Caires and Vieira,
2010). In comparison with these systems, the splitting capabilities of our types are quite
limited: from a linear (end point) type all we can do is extract an end type while keeping
the original type. Nevertheless, our splitting relation allows typing processes hitherto not
typable.

(Padovani, 2012) describes the behaviour of processes according to the channels they
use. Session types appear as the restriction of such descriptions with respect to a single
channel. To describe the simultaneous access to a channel by more than one process,
types include a form of parallel composition. Parallel composition of (session) types is
somewhat related to our pair types. The type system guarantees that the two ends of a
session type are always owned by independent processes, contributing towards a progress
result which is not among the aims of the present work.

3. The type system

This section reviews the syntax and the semantics of the pi calculus, introduces our type
system and an extended example, and concludes with a discussion of main result.

3.1. Syntax and operational semantics

The syntax of the pi calculus extended with boolean constants and conditional processes
is in Figure 1. We rely on a countable set of variables, ranged over by x, y, z. Values
include variables and the booleans true and false. For processes we have (synchronous,
unary) output and input, in the forms x v.P and x(y).P , as well as parallel composition,
conditional, scope restriction, replication and the terminated process. Except for the
boolean values and the conditional, our language is exactly that of (Milner, 1992). The
extensions are not strictly necessary for the development of the theory; they merely show
how non-channel values can be incorporated in the language.

The binders for the language appear in parenthesis: x is bound in both y(x).P and
(νx)P . Free and bound variables in processes are defined accordingly, and so is alpha
conversion, and substitution of a variable x by a value v in a process P , denoted P [v/x].
Notice that substitution is not a total function; it is not defined, e.g., for (y false)[true/y].
When writing P [v/x] we assume that the substitution operation involved is defined.
The set of free variables in a process P is denoted by fv(P ). We follow Barendregt’s
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Syntax

v ::= Values: x(x).P input

true true P | P composition

false false if v thenP elseP conditional

x variable (νx)P restriction

P ::= Processes: !P replication

x v.P output 0 inaction

P ≡ P Rules for structural congruence

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P !P ≡ P |!P
(νx)P | Q ≡ (νx)(P | Q) (νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P

P → P Rules for reduction

x v.P | x(y).Q → P | Q[v/y] [R-Com]

if true thenP elseQ → P if false thenP elseQ → Q [R-IfT] [R-IfF]

P → Q

(νx)P → (νx)Q

P → Q

P | R → Q | R
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

[R-Res] [R-Par] [R-Struct]

Fig. 1. Pi calculus: Syntax and operational semantics

variable convention, requiring bound variables to be distinct from free variables in any
mathematical context.

Structural congruence is the smallest relation on processes including the rules in Fig-
ure 1. The first three rules say that parallel composition is commutative, associative and
has 0 for neutral element. The last rule on the first line captures the essence of replication
as an unbounded number of identical processes. The rules in the second line deal with
scope restriction. The first, scope extrusion, allows the scope of x to encompass Q; due
to variable convention, x bound in (νx)P , cannot be free in Q. The other two rules state
that restricting a terminated process has no effect and that the order of restrictions is
irrelevant.

The reduction is the smallest binary relation on processes that includes the rules in
Figure 1. The [R-Com] rule communicates value v from an output prefixed process x v.P
to an input prefix x(y).Q; the result is the parallel composition of the continuation
processes, where, in the input process, the bound variable y is replaced by value v. The
rules for the conditional are straightforward. The rules in the last line allow reduction to
happen underneath scope restriction and parallel composition, and incorporate structural
congruence into reduction.

3.2. Type checking

The syntax of types is described in Figure 2. Types include the boolean type and channel
types. The novelty with respect linear and session-based systems for the pi calculus is
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q ::= Qualifiers: a type variable

lin linear µa.S recursive end point

un unrestricted T ::= Types:

p ::= Pre end point types: bool boolean

?T.S receive (S, S) channel

!T.S send Γ ::= Contexts:

S ::= End point types: ∅ empty context

q p qualified end point Γ, x : T variable binding

end used end point

Fig. 2. Pi calculus: Types and typing contexts

the introduction of a new type constructor to describe the two ends of a same channel,
(S1, S2), where S1 details the behaviour of one end, whereas S2 details that of the other
end. An end point type S can be a pre type qualified with lin or un, the end type, a
recursive type or a type variable. Each qualifier in a type controls the number of times
the channel can be used at a given point: exactly once for lin; zero or more times for un.
A pre type of the form !T.S describes a channel end able to send a value of type T and
to proceed as prescribed by S. Similarly, pre type ?T.S describes a channel end able to
receive a value of type T and continue as S. End point type end describes a channel end
on which no further interaction is possible. For recursive (end point) types we rely on a
set of type variables, ranged over by a. Recursive types are required to be contractive,
that is, containing no sub-expression of the form µa1 . . . µan.a1. We will use the notation
∗?T and ∗!T to indicate respectively the types µa.un?T.a and µb.un!T.b, where we assume
a, b not occurring in T .

End point type equality is not syntactic. Instead, we define it as the equality of regular
infinite trees obtained by the infinite unfolding of recursive types. The formal definition,
which we omit, is co-inductive. In this way we use end point types µa.lin!bool.lin?bool.a and
lin!bool.µb.lin?bool.lin!bool.b interchangeably, in any mathematical context. This allows us
never to consider a type µa.S explicitly (or a for that matter). Instead, we pick another
type in the same equivalence class, namely S[µa.S/a]. If the result of the process turns
out to start with a µ, we repeat the procedure. The procedure is bound to terminate due
to contractiveness. In other words, we take an equi-recursive view of types, see (Pierce,
2002).

Type duality plays a central role in the theory of session types, ensuring that commu-
nication between the two ends of a channel proceeds smoothly. Intuitively, the dual of
output is input and the dual of input is output. In particular if S2 is dual of S1, then
q?T.S1 is dual of q!T.S2. End point type end is dual of itself. Rather than providing a co-
inductive definition of duality, we start by defining a function S from end-point channels
into end-point channels as follows.

q?T.S = q!T.S q!T.S = q?T.S end = end µa.S = µa.S a = a
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Then, to check whether a given end point type S1 is dual of another type S2, we
first build the dual of S1 and then check that the thus obtained type is equivalent
to S2. For example, to show that end point type µa.lin?bool.lin!bool.a is a dual of type
lin!bool.µb.lin?bool.lin!bool.b, we build µa.lin?bool.lin!bool.a = µa.lin!bool.lin?bool.a, and then
show that µa.lin!bool.lin?bool.a = lin!bool.µb.lin?bool.!bool.b. Qualifiers are important: S
and S must be equally qualified so that a linear output process may find a linear input
process to embark in reduction.

Contexts, or typing environments, are defined in Figure 2. In a context Γ, x : T we
assume that x does not occur in Γ; we also assume that the various variable bindings
in Γ are unordered.

We define the un predicate over end point types, types and contexts. For end point
types we have that un(S) holds in the following cases,

un(end) un(un p) un(µa.S) if un(S)

and for types we set un(T ) as follows,

un(bool) un((S1, S2)) if un(S1), un(S2).

The predicate is then extended point-wise to contexts, so that un(Γ) if and only if un(T )

for all x : T in Γ. We say that a type T is unrestricted (or shared) when un(T ), and
similarly for an end point S. We say that an end point S is linear if S is not unrestricted,
that is, if S is equal to a type of the form lin p.

Typing relies on the splitting relation described in Figure 3. Any end point type S
can be split in two: S itself and end, in either order. Unrestricted end point types S,
on the other hand, may be split into two copies of S. In this way we make sure that
linear end point types are never duplicated or eliminated, but we may loose information
about unrestricted end points. For types, bool, as an unrestricted type according to the
definition above, is split into two identical copies. Channel types are split in two by
splitting the two end point types they are formed of. Finally, context splitting is defined
inductively, based on type splitting. The two rules for non-empty contexts allow to “send”
the first component of a linear end point type to the left context, or to the right context.
We often write T1 ◦ T2 for some type T such that T = T1 ◦ T2, if there is such a triple
(T, T1, T2) in the splitting relation, and similarly for end point types S and contexts Γ.

Below we show some examples of type splitting, where L,L1, L2 represent linear types
and U,U1, U2 unrestricted types.

(U1, U2) = (U1, U2) ◦ (U1, U2) (U1, U2) = (end, U2) ◦ (U1, end)

(L1, L2) = (end, end) ◦ (L1, L2) (L1, L2) = (L1, end) ◦ (end, L2)

(L,U) = (L,U) ◦ (end, U)

What we do not have is duplication or elimination of linear types,

(L1, L2) 6= (L1, L2) ◦ (L1, L2)

(L1, L2) 6= (L1, end) ◦ (end, end)
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S = S ◦ S End point type splitting rules

S = S ◦ end S = end ◦ S un p = un p ◦ un p

T = T ◦ T Type splitting rules

bool = bool ◦ bool
R = R1 ◦R2 S = S1 ◦ S2

(R,S) = (R1, S1) ◦ (R2, S2)

Γ = Γ ◦ Γ Context splitting rules

∅ = ∅ ◦ ∅ Γ = Γ1 ◦ Γ2 T = T1 ◦ T2

Γ, x : T = (Γ1, x : T1) ◦ (Γ2, x : T2)

Γ = Γ1 ◦ Γ2 T = T2 ◦ T1

Γ, x : T = (Γ1, x : T1) ◦ (Γ2, x : T2)

Γ + (x : T ) = Γ Context update rule

(Γ, x : T1) + (x : T2) = Γ, x : T1 ◦ T2

Γ ` v : T Typing rules for values

un(Γ)

Γ ` true : bool
un(Γ)

Γ ` false : bool
un(Γ)

Γ, x : T ` x : T
[T-True] [T-False] [T-Var]

Γ ` P Typing rules for processes

un(Γ)

Γ ` 0

Γ1 ` P1 Γ2 ` P2

Γ1 ◦ Γ2 ` P1 | P2

Γ ` P un(Γ)

Γ `!P
[T-Inact] [T-Par] [T-Repl]

Γ1 ` v : bool Γ2 ` P1 Γ2 ` P2

Γ1 ◦ Γ2 ` if v thenP1 elseP2

Γ,x : (S, S) ` P
Γ ` (νx)P

[T-If] [T-Res]

Γ1 ` x : (q?T.S, S′) (Γ2 + x : (S, S′)), y : T ` P q = un⇒ q?T.S = S

Γ1 ◦ Γ2 ` x(y).P
[T-InL]

Γ1 ` x : (S′, q?T.S) (Γ2 + x : (S′, S)), y : T ` P q = un⇒ q?T.S = S

Γ1 ◦ Γ2 ` x(y).P
[T-InR]

Γ1 ` x : (q !T.S, S′) Γ2 ` v : T Γ3 + x : (S, S′) ` P q = un⇒ q!T.S = S

Γ1 ◦ Γ2 ◦ Γ3 ` x v.P
[T-OutL]

Γ1 ` x : (S′, q !T.S) Γ2 ` v : T Γ3 + x : (S′, S) ` P q = un⇒ q!T.S = S

Γ1 ◦ Γ2 ◦ Γ3 ` x v.P
[T-OutR]

Fig. 3. Pi calculus: Type checking

or the complete elimination of types,

T 6= (end, end) ◦ (end, end) when T 6= (end, end).

We also need an operation to update a given context Γ, x : T1 with a context en-
try x : T2, yielding a context where x is associated with the type T such that T =

T1 ◦ T2. The operation is partial, given the nature of type splitting. Some examples:
Γ, x : (end, U) + (L,U) = Γ, x : (L,U), and Γ, x : (L1, end) + (end, L2) = Γ, x : (L1, L2),
and Γ, x : (end, end) + (end, end) = Γ, x : (end, end). The operation is used to type the
continuation process in the rules for input and output prefixes.

Equipped with the notions of type duality, unrestricted contexts, and context splitting
and updating we are ready to introduce the typing rules in Figure 3. Those for values are
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straightforward: the type of a boolean value is bool (rules [T-True] and [T-False]) and
that of a variable is read from the context (rule [T-Var]). In both cases, the “unused”
part of the context Γ must be unrestricted, so that linear values may be consumed.

For processes, rule [T-Inact] says that the terminated process can only be typed in an
unrestricted context, thus ensuring that linear channels are not discarded. Rule [T-Par]
uses context splitting to partition the context between the two processes: the incoming
context is split into Γ1 and Γ2, and we use the former to type check process P1 and the
latter to type check process P2. Rule [T-Repl] for replication requires the typing context
not to contain linear values, for P may be used an unbounded number of times. Rule
[T-If] for the conditional process splits the incoming context in two parts: one used to
check the condition, the other to check both branches. The same context for the two
branches is justified by the fact that only one of P1 or P2 will be executed. The rules for
values require Γ1 to be unrestricted. Linear types, if present in the conclusion Γ1 ◦ Γ2

come from Γ2, the context for the two branches. Rule [T-Res] allows restricting channels
whose end points are dual, making sure that communication on the channel happens
according to the plan.

There are two rules for input processes, [T-InL] and [T-InR], depending on whether
the input end of the type for x presents itself on the left or on the right. Rule [T-InL],
splits the incoming context in two: one to type x, the subject of communication, the other
to type P , the continuation process. The type for x must be of the form (q?T.S, S′); the
continuation process is typed at a context containing an entry y : T for the bound variable.
The new type for x is obtained by adding to the type of x in Γ2 a type composed of
the continuation S and the unused end point type S′. The table below summarises the
various possibilities that match rule [T-InL]. Notice that the new type for x is constant
in all four cases, regardless of how the context was split.

(Γ1 ◦ Γ2)(x) Γ1(x) Γ2(x) Γ2(x) ◦ (S, S′)

(lin?T.S, L) (lin?T.S, L) (end, end) (S,L)

(lin?T.S, L) (lin?T.S, end) (end, L) (S,L)

(lin?T.S, U) (lin?T.S, U) (end, end) (S,U)

(lin?T.S, U) (lin?T.S, end) (end, U) (S,U)

(lin?T.S, U) (lin?T.S, U) (end, U) (S,U)

(un?T.S, L) (un?T.S, L) (end, end) (S,L)

(un?T.S, L) (un?T.S, end) (end, L) (S,L)

(un?T.S, L) (un?T.S, L) (un?T.S, end) (S,L)

(un?T.S, L) (un?T.S, end) (un?T.S, L) (S,L)

(un?T.S, U) (un?T.S, U) (end, end) (S,U)

(un?T.S, U) (un?T.S, end) (end, U) (S,U)

(un?T.S, U) (un?T.S, U) (un?T.S, end) (S,U)

(un?T.S, U) (un?T.S, end) (un?T.S, U) (S,U)

(un?T.S, U) (un?T.S, U) (un?T.S, U) (S,U)

(un?T.S, U) (un?T.S, U) (end, U) (S,U)
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The proviso in the typing rules for prefixes, q = un ⇒ q?T.S = S, is necessary when
we compose, e.g., (end, U) in Γ2 with (S,U) in the last line of the table above. Would
un?T.S be an arbitrary unrestricted type, we would be able to type the continuation at
an arbitrary type S = end ◦ S. Take for example S = lin?bool.end, so that the type under
consideration becomes un?T.lin?bool.end. A channel that starts with an unrestricted type
to become linear is always unsound. To see why, further take Γ = x : (un?T.S, un!T.S)

and P = x(y).x(z). It should be easy to see that Γ ` P , and also Γ ` !P | x v. But
!P | x v reduces to process !P | x(z) which is not typable under x : (S, S). The converse, a
linear-to-unrestricted evolution, is sound since no interference with the session is possible.

Rules [T-OutL] and [T-OutR] are similar, only that we split the context in three
parts, the first to type x, the subject of communication, the second to type v, the object
of communication, and the last to type P , the continuation process. If v is a linear
channel end, splitting makes sure the continuation process keeps the channel at an end
type. Splitting is quite flexible: given a (L1, L2) type, we may pass (L1, L2) and keep
(end, end) (or vice versa), or pass (L1, end) and keep (end, L2) (or vice versa).

3.3. An extended example

Consider a service allowing to create online petitions, cf. (Vasconcelos, 2011). Petition
creators receive from the petition service provider a channel on which they supply the
title and the description of the petition, as well as the due date. After the initial setup,
the exact same channel is ready to be distributed among the client’s acquaintances to
collect thousands of signatures, but not without the creator signing the petition first.
The code for the creator can be written in the pi calculus as follows,

P
def
= onlinePetition(p).p 〈title〉.p 〈description〉.p 〈dueDate〉.P ′

P ′
def
= p 〈signature〉.(a1 〈p〉 | . . . | an 〈p〉)

where we added brackets to output prefixes in order to increase readability. Each of the
acquaintances (not shown in the example), after reading p on channel ai, can sign the
petition by writing on channel p, and further distribute the channel at will. The code for
the service provider is below:

Q
def
= !(νp)onlinePetition 〈p〉.Q′

Q′
def
= p(title).p(description).p(dueDate).!p(signature).ProcessSignatures

Replication allows an unbounded number of copies to be available, since the service must
be accessible to multiple clients. For each copy, the service provider starts by creating
a new petition channel p. One of its end points is then sent to the client via a message
onlinePetition 〈p〉, while the other is kept for further interaction in the continuation Q′.

The challenge is to let the client P and the service Q establish a (private) session
on channel p and later allow the exact same channel to become shared by all potential
petition signatories. Before seeing how this can be handled by our system, two consider-
ations are in order. First note that the linear-to-unrestricted evolution of end point types
is sound whereas the opposite is not (cf. discussion at end of Section 3.2). Second, we
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stress two invariants of our linear discipline: types of the form (S1, S2) with S1, S2 linear
enforce the read/write use of a channel in at most two threads, while types of the form
(S, end) and (end, S) with S linear enforce read/write operations in exactly one thread.

The type T1 below describes the behaviour of the petition channel p as used by pro-
cess P . The entry on the left says that exactly two string messages followed by a date
message date must be sent, after which an unbounded number of string messages may
be exchanged. Conversely, the entry on the right denies any read/write operation on the
channel.

T1
def
= (lin!string.lin!string.lin!date.∗!string, end)

We observe that T1 does not guarantee that acquaintances (including the petition creator)
sign the petition: this may be desirable, but not absolutely necessary. However, the
linearity of the initial part enforces that any signed petition has a title, a description and
a due date.

To guarantee that the communication proceeds as planned, the service should exhibit a
compatible behaviour. This is attested by the type T2 of channel p as used in the service’s
continuation Q′.

T2
def
= (end, lin?string.lin?string.lin?date.∗?string)

The fact that the right end point type of T2 is dual to the left end point type of T1
ensures a form of safety—that reduction does not get stuck (in rules [R-IfT], [R-IfF]
and [R-Com]) and that processes do not engage in races for linear resources—as we show
at the end of the section. Finally, the petition channel p, created by scope restriction in
process Q, has type T , defined below.

T
def
= (lin!string.lin!string.lin!date.∗!string, lin?string.lin?string.lin?date.∗?string)

The reader will see that T is built by reconciling the left entry of T1 with the right
entry of T2. Conversely, by means of the splitting rule T = T1 ◦ T2 the left entry of T is
delegated while the right entry of T is kept. By assigning the type (∗!T1, ∗?T1) to channel
onlinePetition we can type check the parallel composition of the petition creator and the
service provider. The details are below.

We start with a derivation for the client process P , where context Γ1 contains the
entries ai : (∗!(∗!string, end), end), onlinePetition : (∗!T1, ∗?T1), as well as title, description,
signature of type string, and dueDate of type date. Notice that Γ1 is unrestricted.

[T-Inact]
Γ1, p : (∗!string, end) ` 0

[T-OutL]
Γ1, p : (∗!string, end) ` a1 〈p〉.0

[T-Inact]
Γ1, p : (∗!string, end) ` 0

[T-OutL]
Γ1, p : (∗!string, end) ` a2 〈p〉.0

[T-Par]
Γ1, p : (∗!string, end) ` a1 〈p〉 | a2 〈p〉

[T-OutL]
Γ1, p : (∗!string, end) ` P ′

[T-OutL]
Γ1, p : (lin!date.∗!string, end) ` p 〈dueDate〉.P ′

[T-OutL]
Γ1, p : (lin!string.lin!date.∗!string, end) ` p 〈description〉.p 〈dueDate〉.P ′

[T-OutL]
Γ1, p : T1 ` p 〈title〉.p 〈description〉.p 〈dueDate〉.P ′

[T-InR]
Γ1 ` P

We now consider a derivation for service Q, where we take for Γ2 an unrestricted
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context compatible with Γ1, i.e., a context such that Γ1 ◦ Γ2 is defined. We further
abbreviate the identifiers for the bound input variables, take Ps as a shorthand for process
ProcessSignatures, and assume Γ2, p : (end, ∗?string), t : string, r : string, d : date, s : string `
Ps.

Γ2, p : (end, ∗?string), t : string, r : string, d : date, s : string ` Ps
[T-InR]

Γ2, p : (end, ∗?string), t : string, r : string, d : date ` p(s).Ps
[T-Repl]

Γ2, p : (end, ∗?string), t : string, r : string, d : date `!p(s).Ps
[T-InR]

Γ2, p : (end, lin?date.∗?string), t : string, r : string ` p(d).!p(s).Ps
[T-InR]

Γ2, p : (end, lin?string.lin?date.∗?string), t : string ` p(r).p(d).!p(s).Ps
[T-InR]

Γ2, p : T2 ` Q′ [T-OutL]
Γ2, p : T ` onlinePetition 〈p〉.Q′

[T-Res]
Γ2 ` (νp)onlinePetition 〈p〉.Q′

[T-Repl]
Γ2 ` Q

We finally glue the results and conclude, by applying [T-Par], that Γ1 ◦ Γ2 ` P | Q.
We mentioned before that type end describes a channel end point on which no further

interaction (read or write) is possible. This does not mean that a process that knows a
given channel end point at type end cannot use it at all; it only means that read/write
operations are barred. What other operations are then available on such an end point?
In the simple form of pi calculus studied in this paper the only remaining operation
is sending the channel around. We can nevertheless think of other operations, such as
testing the channel for equality. Suppose that the petition server keeps track of the titles
of all petitions so far created. Further suppose that channel dbSet is used to write a pair
channel-title in the database. Upon the reception of the title, the server may update the
database as follows.

Q′′
def
= p(title).dbSet 〈p, title〉.p(description).p(dueDate) . . .

Once again, the splitting relation allows to type this variant of the server. When typing
the sub-process starting at dbSet 〈p, title〉, the type T ′2 = (end, lin?string.lin?date.∗?string)

of channel p is split in two: T ′2 itself and (end, end). Type T ′2 is used to type the continu-
ation as before, whereas type (end, end) is used to pass p to the database. Taking D for
(∗!(end, end), ∗?(end, end)), Γ for dbSet : D, p : T ′2, and using rule [T-OutL] we have the
following derivation.

dbSet : D, p : (end, end) ` dbSet : D dbSet : D, p : (end, end) ` p : (end, end) Γ ` p(d) . . .

Γ ` dbSet 〈p〉.p(d) . . .

The database cannot use p to read or to write, but may store p in some data structure
or compare it for equality, for example. The ability to pass part of the functionality of a
linear channel and retain the rest goes beyond what is usually available to session typing
systems, e.g. (Gay and Hole, 2005; Honda et al., 1998; Vasconcelos, 2012), (see Section 2).

3.4. Well-typed programs do not go wrong

Reduction preserves typability, but not for arbitrary contexts. To understand the sit-
uation, take for P the process x(z).if z then0 else0 | (νy)x y. We can easily see that P
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is typable under the context x : (lin!(end, end).end, lin?bool.end). But P reduces to process
(νy)if y then0 else0 which is not typable (at all). The reader may have noticed the pecu-
liarity of the type for channel x: one end point sends (end, end), the other expects a bool.
This context is not balanced : the type of one end point is not dual to the type of the
other. The whole purpose of balancing is to make sure that the type of y in the output
matches that of z in the input. A similar phenomenon happens with structural congru-
ence. Take for T the type (lin!bool.end, ∗!bool), then process x true |!x true is typable under
context x : T , but the structural congruent process !x true is not. Once again, requiring
balanced contexts solves the problem.

Requiring duality of the two end point types only makes sense when both end point
types are “active”, i.e., may engage in communications. An end point type end allows no
further interaction at the end point, hence cannot be responsible for situations such as
those depicted above. There is no reason to judge as unsafe process x(y) when typed
under context x : (∗!T , end). The balanced predicate for types is defined as below. The
predicate is then extended point-wise to typing contexts. This is in essence the notion
of (Gay and Hole, 2005) transposed to our setting.

balanced(S, S) balanced(S, end) balanced(end, S)

Notice that bool is not balanced, for it would allow to type, under balanced contexts,
processes that we will judge unsafe, namely x : bool ` ifx thenP elseQ. In short, processes
typed under balanced contexts may have free channel variables but not free boolean
variables. The types for the free channel variables are composed of two dual end points,
or else one of them is end.

Given that type preservation is only certain under balanced contexts and that un-
balanced types cannot possibly be restricted by rule [T-Res], the reader may wonder
why we consider them at all. It turns out that unbalanced contexts are needed in cer-
tain derivations, in particular in situations where a thread holds the two ends of a same
channel (Yoshida and Vasconcelos, 2007). For instance, process z x | z(w).w(y).x true,
typable under context z : (∗?S, ∗!S), x : (S, S) with S = lin?bool, reduces to process
P = x(y).x true, which we want to type under the same context. By applying rule [T-InL]
to P we obtain a judgement with a un-lin type, namely z : (∗?S, ∗!S), x : (end, lin!bool) `
x true. A further application of rule [T-OutR] gets rid of the un-lin type, yielding
z : (∗?S, ∗!S), x : (end, end) ` 0 typable under rule [T-Inact]. We thus observe the pres-
ence of unbalanced contexts in a derivation tree conducting to a sequent with a balanced
context.

We now discuss the sort of (malformed) processes our type system filters. The first
obvious case happens when a conditional process tries to test a channel, rather than
a boolean value. Examples include processes of the form ifx thenP elseQ that do not
occur under an input prefix on x. The second case happens when two processes try
to communicate via rule [R-Com] but the substitution is not defined, as in x true |
x(y).y false. Other than that there are no explicit run-time errors, since we work with a
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monadic pi calculus‡. Errors related to the intended (linear) usage of channels are to be
found on how a typing context classifies channels. For example, we classify as malformed
a process that writes twice on x in parallel (as in x true | x false), if it is typed under
a context that associates x to (lin!bool.S1, S2) or to (S1, lin!bool.S2), but are willing to
accept the process if the type of x is (∗!bool, S) or (S, ∗!bool).

It can be easily shown, by induction on the structure of processes, that for each process
P there are k ≥ 0 and x1, . . . xk, Q,R such that P ≡ (νx1) . . . (νxk)(Q | R). For our main
result we need the notion of multi-step reduction. We say that P reduces in zero steps to
Q if P ≡ Q, and that P reduces in n+ 1 steps to Q if P → R and R reduces in n steps
to Q. By using typing preservation (Theorem 4.10) and rule [T-Res], we can show that,
if Γ ` P and P reduces in zero or more steps to (νx1) . . . (νxk)(Q | R) then there are
T1, . . . , Tn such that x1 : T1, . . . xn : Tn ` Q | R, where 0 ≤ k ≤ n. Notice that variables
xk+1, . . . xn are either free or do not occur at all in the initial process P . This justifies
the formulation of our type safety theorem.

Theorem 3.1 (Main result). If Γ ` P with balanced(Γ) and P reduces in zero or more
steps to (νx1) . . . (νxk)(Q | R) then none of the following cases happen:

— Q = ifxi thenQ′ elseQ′′,
— Q = xi v.Q

′ | xi(y).Q′′ and Q′′[v/y] is not defined,
— Q = xi v.Q

′ | xi v′.Q′′ and Ti = (lin!T ′.S1, S2),
— Q = xi v.Q

′ | xi v′.Q′′ and Ti = (S1, lin!T ′.S2),
— Q = xi(y).Q′ | xi(y).Q′′ and Ti = (lin?T ′.S1, S2),
— Q = xi(y).Q′ | xi(y).Q′′ and Ti = (S1, lin?T ′.S2),

where x1 : T1, . . . xn : Tn ` Q | R, for all 0 ≤ i, k ≤ n, and all T1, . . . , Tn.

4. Proof of the main result

This section presents an outline of the proof of Theorem 3.1. After a few general lemmas
about context splitting, we build towards the result that structural congruence preserves
typability, by proving standard results such as weakening and strengthening. Before es-
tablishing soundness, we still need a substitution lemma.

In the following, we use the notation dom(Γ) and range(Γ) to denote respectively the
set of variables and the set of types in Γ. The unrestricted closure of an end point is defined
as U(lin p) = end and U(S) = S if un(S). The unrestricted closure of a type is defined
as U(S1, S2) = (U(S1),U(S2)), and U(bool) = bool. The notion is then extended point-
wise to typing contexts. Unrestricted closure is idempotent when applied to unrestricted
contexts.

Lemma 4.1. If un(Γ) then U(Γ) = Γ.

Proof. The result follows from the fact that U(T ) differs from T only when T contains
a linear end point type.

‡ This exact observation motivates the introduction of the polyadic pi calculus (Milner, 1993).
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Lemma 4.2 (Properties of context splitting). Let Γ = Γ1 ◦ Γ2.

1 Γ3 = Γ2 ◦ Γ1, for some Γ3.
2 If Γ1 = Γ3 ◦ Γ4, then Γ5 = Γ4 ◦ Γ2 and Γ = Γ3 ◦ Γ5, for some Γ5.
3 Γ = U(Γ) ◦ Γ and Γ = Γ ◦ U(Γ).
4 dom(Γ) = dom(Γ1) = dom(Γ2).
5 If balanced(Γ) then balanced(Γ1) and balanced(Γ2).

Proof. A straightforward induction on the length of Γ.

Lemma 4.3 (Unrestricted type weakening). Let T be an unrestricted type and U
an unrestricted end point type.

1 If Γ ` v : T ′ then Γ, x : T ` v : T ′.
2 If Γ ` P then Γ, x : T ` P .
3 If Γ, x : (S, end) ` P then Γ, x : (S,U) ` P .
4 If Γ, x : (end, S) ` P then Γ, x : (U, S) ` P .

Proof. A simple case analysis in the first case, and induction on the structure of P in
remaining.

Corollary 4.4 (Unrestricted context weakening). If Γ1 ` P and un(Γ2) and Γ =

Γ1 ◦ Γ2 then Γ ` P .

Proof. We note that Γ1 differs from Γ in a number of end point types that are equal
to end in range(Γ1) and equal to U in range(Γ). By repeated applications of Lemma 4.3
we obtain the desired result, Γ ` P .

Lemma 4.5 (Strengthening).

1 If Γ, x : T ` v : T ′ and x 6= v then Γ ` v : T ′ and un(T ).
2 If Γ, x : T ` P and x 6∈ fv(P ) then Γ ` P and un(T ).

Proof. A simple case analysis in the first case, and induction on the structure of P in
the second.

To show that structural congruence preserves typability, we need a preliminary lemma
that we will use to close the case of replication.

Lemma 4.6. Let L be a linear end point type and R = end or R = L.

1 If Γ1, x : (L, S) ` P then Γ2, x : (end, R) 0 P ;
2 If Γ1, x : (S,L) ` P then Γ2, x : (R, end) 0 P .

Proof. By induction on the structure of the derivation. We draw an example for the
first item; the remaining cases are similar. Assume that Γ, z : (L, S) ` x(y).P . When the
derivation ends with [T-InL], we know that Γ, z : (L, S) = Γ1 ◦ Γ2, Γ1 ` x : (q?T.S′, S′′)

and Γ2 +x : (S′, S′′)), y : T ` P . When z 6= x the case follows directly from the induction
hypothesis. Otherwise, when z = x, we know that q = lin and L = lin ?T.S′. For R = end
or R = lin!T.S′, a case analysis shows that there does not exist a rule to terminate a
derivation of Γ′, x : (end, R) ` x(y).P .
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Lemma 4.7 (Structural congruence preserves typability). If Γ ` P and balanced(Γ)

and P ≡ Q then Γ ` Q.

Proof. The proof follows by an analysis of the axioms in the definition of the relation ≡.
The axioms for associativity, commutativity, and the neutral of parallel composition
follow from the basic results about context splitting, Lemma 4.2 items 1–3. The case of
(νx)0 ≡ 0 is straightforward to establish. The case of (νx)(νy)P ≡ (νy)(νx)P follows by
the fact that contexts are considered up to permutations of its entries.

The case of axiom !P ≡ P |!P , when read from left to right, relies on Lemma 4.1 and
Lemma 4.2 item 3. When read right-to-left, we know from rules [T-Par],[T-Repl] that
Γ = Γ1 ◦ Γ2 and Γ1 ` P , Γ2 `!P , where the latter implies Γ2 ` P and un(Γ2). Next we
show that un(Γ1). The case Γ1 = ∅ is clear. Otherwise let Γ1(x) = T . From Lemma 4.2.5
and the definition of context splitting, we know that T is balanced. Distinguish two cases:
when T = bool we have un(bool); otherwise T = (S,R) and the rules for context splitting,
the hypothesis Γ2 ` P and Lemma 4.6.1 tell us that un(S), while the splitting rules, the
hypothesis Γ2 ` P , and Lemma 4.6.2 tell us that un(R), and in turn un(S,R). We apply
Corollary 4.4 to Γ2 `!P and infer the desired result, Γ `!P .

In the case of axiom (νx)P | Q ≡ (νx)(P | Q), the variable convention tells us that x 6∈
fv(Q) and also that x 6∈ Γ. When read left-to-right, we know from rules [T-Par],[T-Res]
that Γ1, x : (S, S) ` P and Γ2 ` Q with Γ = Γ1 ◦ Γ2. We start by weakening the sequent
Γ2 ` Q by introducing x : (S′, S′) where S′ is S if un(S), else end. It is then easy to see that
(Γ1, x : (S, S)) ◦ (Γ2, x : (S′, S′)) is defined and equal to Γ, x : (S, S). Conclude the case
with rules [T-Par],[T-Res]. For the right-to-left case, the same two rules give us that
Γ, x : (S, S) = Γ1 ◦ Γ2 and Γ1 ` P and Γ2 ` Q. We now analyse Γ1 and Γ2. Lemma 4.2
item 4 tells us that Γ1,Γ2 are of the form Γ′1, x : T1, Γ′2, x : T2, and Lemma 4.5 tells
that T2 is unrestricted and that Γ′2 ` Q. When S = lin p we apply [T-Res] and infer
Γ′1 ` (νx)P . Otherwise, we have un(S), and four cases arise, corresponding to T = (S, S)

or T = (end, end) or T = (S, end) or T = (end, S). In the first two cases we apply
[T-Res] and infer Γ′1 ` (νx)P . In the last two we use weakening (Lemma 4.3) to obtain
Γ′1, x : (S, S) ` P . Conclude with rule [T-Par].

Lemma 4.8 (Inversion of the splitting relation). Let T1 be a type of the form
(q1!T ′1.S1, q2?T ′2.S2). If Γ = (Γ1, x : T1) ◦ Γ2, then x : T1 ∈ Γ and x : T2 ∈ Γ2, where T2 is
of one of the four forms below.

1 (end, end)

2 T1 when q1 = q2 = un
3 (q1!T ′1.S1, end) when q1 = un
4 (end, q2?T ′2.S2) when q2 = un

Proof. Directly from the definition of context splitting.

Note that there is an obvious dual lemma where x : (q2?T ′2.S2, q1!T ′1.S1) ∈ Γ and T2 is
(end, q1!T ′1.S1) in case 3, and is (q2?T ′2.S2, end) in case 4.

Lemma 4.9 (Substitution). If Γ1 ` v : T and Γ2, x : T ` P and Γ3 = Γ1 ◦ Γ2, then
P [v/x] is defined and Γ3 ` P [v/x].
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Proof. The proof is by induction on the typing derivation and uses weakening and
strengthening (Lemmas 4.3, 4.5). The proof is elaborate but straightforward. The result
P [v/x] follows by rules [T-InL],[T-InR],[T-OutL],[T-OutC], where it is required to
type the subject x of an input or an output at channel type (S1, S2) by using [T-Var];
thus T = bool implies x not occurring as subject, as required.

Theorem 4.10 (Type preservation). If Γ1 ` P1 with Γ1 balanced and P1 → P2,
then Γ2 ` P2 and Γ2 balanced and

1 Γ1 = Γ2, or
2 Γ1 = Γ3, x : (q!T.S, q?T.S) and Γ2 = Γ3, x : (S, S), or
3 Γ1 = Γ3, x : (q?T.S, q!T.S) and Γ2 = Γ3, x : (S, S).

Furthermore, in the last two cases, if q = un then q!T.S = S.

Proof. The proof is by induction on the derivation for the reduction. Notice that Γ2 is
balanced in any case.

When the derivation ends with rule [R-IfT] or [R-IfF] we use Corollary 4.4. When
reduction ends with rule [R-Struct] we use Lemma 4.7.

When reduction ends with rule [R-Par] we have Γ = Γ1 ◦ Γ2 and Γ1 ` P and Γ2 ` Q.
We apply Lemma 4.2 item 5 and infer balanced(Γ1). Given the induction hypothesis we
know that Γ′1 ` P ′. Distinguish the three situations as in the statement of the theorem.
For the first, Γ1 = Γ′1, complete the proof with the [T-Par] rule. The two remaining
cases are similar; we concentrate on the second (of the three). We know by induction
that Γ1 = Γ3, x : (q!T.S, q?T.S) and Γ′1 = Γ3, x : (S, S). Further distinguish two cases:
q = lin and q = un. When q = lin we know that Γ1 ◦ Γ2 = (Γ3, x : (lin!T.S, lin?T.S)) ◦
(Γ′2, x : (end, end)) = Γ3 ◦ Γ′2, x : (lin!T.S, lin?T.S), hence Γ′1 ◦ Γ2 = Γ3 ◦ Γ′2, x : (S, S) as
required. When q = un, we know that Γ1 ◦ Γ2 = (Γ3, x : (un!T.S, un?T.S)) ◦ (Γ′2, x : T ).
There are four cases for T , namely (un!T.S, un?T.S), (un!T.S, end), (end, un?T.S) and
(end, end). In all cases, Γ1 ◦ Γ2 = Γ3 ◦ Γ′2, x : (un!T.S, un?T.S) hence Γ′1 ◦ Γ2 = Γ3 ◦
Γ′2, x : (un!T.S, un?T.S). But in this case, the induction hypothesis also tells us that
un!T.S = S as required.

When the derivation ends with rule [R-Res] we know that Γ, y : (S, S) ` P from
Γ ` (νy)P . The induction hypothesis tells us that Γ2 ` P ′ for Γ2 in the conditions of the
theorem. We distinguish two cases. When y = x, we know that Γ = Γ3 and apply rule
[T-Res] to complete the case. Otherwise, we know that Γ3 = Γ′3, y : T and we apply rule
[T-Res] to obtain Γ′3, x : T2 ` (νy)P ; it should be easy too see that Γ′3, x : T2 is in the
form required by the theorem.

When the derivation ends with rule [R-Com], there are two derivations to consider:
[T-Par] preceded by [T-OutL] and [T-InR], or [T-Par] preceded by [T-OutR] and
[T-InL]. We concentrate on the former, the latter is similar. From the derivation we learn
that

1 Γ = Γ′1 ◦ Γ′′1 ◦ Γ′′′1 ◦ Γ′2 ◦ Γ′′2 ,
2 Γ′1 ` x : (q1!T1.S1, S

′
1),

3 Γ′′1 ` v : T1,
4 Γ′′′1 ◦ x : (S1, S

′
1) ` P ,
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5 Γ′2 ` x : (S′2, q2?T2.S2),
6 (Γ′′2 ◦ x : (S′2, S2)), y : T2 ` Q,
7 q1 = un implies q1!T1.S1 = S1, and q2 = un implies q2?T2.S2 = S2.

We claim that T1 = T2 and that there is a context ∆1 such that ∆1 = Γ′′1 ◦ (Γ′′2 ◦
x : (S′2, S2)) holds. By (3), (6) and the substitution lemma we get ∆1 ` Q[v/y]. We
further claim that ∆2 = (Γ′′′1 ◦x : (S1, S

′
1))◦∆1 holds for some ∆2. From (4), ∆1 ` Q[v/y],

and the [T-Par] rule we obtain ∆2 ` P | Q[v/y]. It remains to show that q1 = q2 and
S1 = S2 and Γ = Γ3, x : (q1!T1.S1, q1?T1.S1) and ∆2 = Γ3, x : (S1, S1), in addition to the
three claims above. We address the various pending results in turn.

From the properties of context split, Lemma 4.2, we know that Γ′1 ◦Γ′2 and Γ′′1 ◦Γ′′′1 ◦Γ′′2
are defined. Let T be the type (q1!T1.S1, q2?T2.S2). From (2) and (5) and the definition
of context splitting we know that x : T ∈ Γ′1 ◦ Γ′2. Now we apply Lemma 4.8 to contexts
Γ′1 ◦ Γ′2 and Γ′′1 ◦ Γ′′′1 ◦ Γ′′2 , to obtain x : T ∈ Γ. But Γ is balanced by hypothesis, hence
T1 = T2 and S1 = S2 and q1 = q2. It remains to show that x : (S1, S2) is in ∆2.

Let U = (U1, U2) be the type for x in Γ′′1 ◦ Γ′′′1 ◦ Γ′′2 . Lemma 4.8 also allows to figure
out the four possible cases for U . Taking for A an arbitrary end point type, and abbre-
viating types un!T1.S1 and un?T1.S2 to un! and un?, respectively, we fill the below table
to complete the proof.
U1 U2 S1 S′1 S′2 S2 U1 ◦ S′2 U2 ◦ S2 S1 ◦ (U1 ◦ S′2) S′1 ◦ (U2 ◦ S2)

end end A end end A end A A A

un! un? un! un? un! un? un! un? un! un?

un! end un! end un! un? un! un? un! un?

end un? un! un? end un? end un? un! un?

It should be easy to see that the type for x in each context Γ′′1 , Γ′′′1 and Γ′′2 is exactly
of one of the four possible forms for U . The columns for S1 and S2 are filled together
based on the following facts: contexts Γ′′′1 ◦ x : (S1, S

′
1) and Γ′′2 ◦ x : (S′2, S2) are defined,

S1 = S2, and item (7) above. The columns for S1 and S′2 are again filled together based
on the following facts: (q1!T1.S1, q2?T2.S2) = (q1!T1.S1, S

′
1) ◦ (S′2, q2?T2.S2), contexts

Γ′′′1 ◦ x : (S1, S
′
1) and Γ′′2 ◦ x : (S′2, S2) are defined. From the type splitting we get that S′2

is end or un!, and S′1 is end or un?.

We are finally in a position to prove our main result.

Proof of the main result, Theorem 3.1. We first show that there is a balanced context
∆ such that ∆ ` (νx1) . . . (νxk)(Q | R). If P reduces in zero steps, then use Lemma 4.7;
otherwise use induction and type preservation, Theorem 4.10.

Let ∆ = xk+1 : Tk+1, . . . xn : Tn. Applying k times rule [T-Res] to the above sequent
we obtain ∆′ ` Q | R, where ∆′ = x1 : T1, . . . xn : Tn. Notice that ∆′ is still balanced.
Now, the first item does not hold because bool 6∈ range(∆′), and rule [T-If] therefore
does not apply.

For the second item, we consider the structure of the derivation of ∆′ ` Q | R.
There are four cases to consider depending on the choice of the left/right rules for input
and output. All four cases are similar. One case uses rule [T-Par] twice, and rules
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[T-InL] and [T-OutL], to obtain ∆′′1 ` v : T and (∆′′2 + x : (S, S′)), y : T ` Q′′. The
properties of context splitting, Lemma 4.2, guarantee that there is a context Γ such
that Γ = ∆′′1 ◦ (∆′′2 + x : (S, S′)). We are then in the conditions of substitution lemma,
Lemma 4.9, which guarantees that Q′′[v/y] is defined.

For the third item, we show that the hypothesis balanced(Ti) leads to a contradiction.
From balanced(∆′) and Ti = (lin!T.S′, S′′) we obtain S′′ = end or S′′ = lin!T.S′. There
are four cases to consider depending on the choice of the left/right rules for the two
output processes. All four cases are similar. One case uses rule [T-Par] twice, and rules
[T-OutL] twice again, to obtain ∆′1 ` x : (q1!T1.S1, S

′
1) and ∆′2 ` x : (q2!T2.S2, S

′
2). We

have reached a contradiction since Ti can never be split into the two types for x above.
The proofs of the remaining items are similar.

5. Embeddings

In this section we assess the expressiveness of our typing system by embedding three
systems of reference for session and linear types for the pi calculus. We encode the pi
calculus with polarities and session types (Gay and Hole, 2005) (hence the conventional
pi calculus (Milner et al., 1992)), the original version of pi with session types or the pi
calculus with accept/request primitives (Honda et al., 1998), and the linear pi calcu-
lus (Kobayashi et al., 1999). For each of these languages we prove an operational and a
typing correspondence result. In the case of the linear pi calculus we also provide a com-
pleteness result, thus proving that linear pi is a sub-language of ours. The embeddings
highlight the fact that our type system is an extension of advanced type systems for the
pi calculus.

5.1. Embedding the pi calculus with polarities

This section shows that the polarity system introduced by (Gay and Hole, 2005) can be
embedded in our system. Since Gay and Hole show that the simply typed pi calculus
can be embedded in the pi calculus with polarities; by transitivity the simply typed pi
calculus can be embedded in our system as well.

In Figure 4 we present the branch/select-free fragment of the pi calculus with polarities.
Variables may be optionally polarised, occurring in processes as well as in typing contexts
as x+ or x− or simply as x. We write xp for a general polarised variable, where p

represents an optional polarity. Duality on polarities, written p exchanges + and −. The
new constructors of the language, input and output, are in Figure 4; the remaining are
taken from Figure 1 (except for the conditional process which we do not consider); the
syntactic category for values in Figure 1 does not contribute to the language.

The reduction relation, denoted by →p, is defined inductively by the rules in Figure 1
with rule [R-Com] replaced by that in Figure 4 (rules [R-IfT], [R-IfF] excluded). It
is easy to see that the two languages differ in the (optional) polarity annotation on
(non-bound occurrences of) variables. We define an erase function that removes from a
polarised process all occurrences of + and −, to yield a process generated by the grammar
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New syntactic forms (extends Figure 1)

P ::= . . . Processes: µa.S recursive type

xp xp.P output S ::= Session types:

xp(x).P input end termination

T ::= Types: ?T.S receive

ˆT shared type !T.S send

S session type a type variable

a type variable µa.S recursive type

P →p P New reduction rules (extends Figure 1)

xp zq.P | xp(y).Q→p P | Q[zq/y] [R-Com]

Γ + x : T = Γ Context update rules

Γ + xp : S = Γ, xp : S if xp, x 6∈ Γ

Γ + x : T = Γ, x : T if x, x+, x− 6∈ Γ

(Γ, x : ˆT ) + x : ˆT = Γ, x : ˆT

Γ `p P Typing rules

Γ completed
Γ `p 0

Γ `p P Γ unlimited
Γ `p ∗P

Γ, x : ˆT `p P

Γ `p (νx)P

Γ, x+ : S, x− : S `p P

Γ `p (νx)P

[T-Inact] [T-Repl] [T-New] [T-NewS]
Γ1 `p P Γ2 `p Q

Γ1 + Γ2 `p P | Q
Γ, x : ˆT, y : T `p P

Γ, x : ˆT `p x(y).P

Γ, xp : S, y : T `p P

Γ, xp : ?T.S `p xp(y).P

[T-Par] [T-In] [T-InS]
Γ, x : ˆT `p P

(Γ, x : ˆT ) + yq : T `p x yq.P

Γ, xp : S `p P

(Γ, xp : !T.S) + yq : T `p xp yq.P
[T-Out] [T-OutS]

Fig. 4. Pi calculus with polarities

in Figure 1. There is an obvious operational correspondence between the two languages,
stated in Theorem 5.1.

The language of types includes a distinct category S for (linear) session types; in con-
trast to (Gay and Hole, 2005) we ignore subtyping as well as recursive types but take
recursive session types into account. Duality is defined as in Section 3, with the appropri-
ate syntactic changes which amount to erasing the qualifiers. Typing contexts now gather
assumptions on polarised variables, in addition to simple variables as before. There is
however one restriction on the variables occurring in a context: x and x+ (or x−) cannot
occur simultaneously in a given context Γ, even though x+ and x− may. New assump-
tions are added to contexts by means of an update operation +, defined in Figure 4. This
operation is stricter than context splitting in our system, for it does not take into account
the “neutral” nature of type end. For example, we have that x : (end, end) + x : (q!T.S, S′)

is defined in our system, whereas x : end + x : !T.S is not defined in the polarity system.
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We say that a context is unlimited if it contains no session types, and is completed if all
session types it contains are end.

The typing relation is inductively defined by the rules in Figure 4. The first thing to
notice is that the rule for restriction in our system corresponds to a pair of rules in the
system with polarities, one that takes care of shared types (unrestricted), whereas the
other deals with session types (linear). Rules [T-In] and [T-InS] in Figure 4 have their
counterpart in a single (left or right) rule in Figure 3, namely [T-InL] and [T-InR], thanks
to type qualifiers, the context splitting and the context update operations. The same can
be said of the relation between rules [T-Out],[T-OutS] and [T-OutL],[T-OutR]. Rule
[T-NewS] introduces in the context two channel end points of dual types; contrast with
rule [T-Res] in Figure 3: our system gathers the two end points in a single variable whose
type contains the two dual end point types.

From the above description it should be obvious that the two systems are quite close
to each other. In order to define the typing correspondence we need to translate session
types, types and contexts for the polarised language (as in Figure 4) into end point types,
types and contexts in our language (Figure 1).

Function {[S]} translates session types, [[T ]] translates types. The translation of session
types is straightforward. For types, we translate ˆT into an unrestricted type capable of
continuously inputting and outputting values of type [[T ]]; recall from Section 3 that we
use ∗?T as an abbreviation for µa.un?T.a, for some a not in T . A session type S, when
interpreted as a type, is translated into a pair containing {[S]} and end for the two end
points. To translate contexts we assume that if both x+ and x− are in Γ then they occur
in contiguous positions (and in this order). If this is not the case, then the context can
be rearranged since we work with contexts up to entry permutation. The translation of
contexts is given by the rules below, which must be tried in the given order; the first rule
for mapping non-empty contexts is for polarised pairs while the second rule is for single
entries.

{[!T.S]} = lin![[T ]].{[S]} {[a]} = a [[∅]] = ∅
{[?T.S]} = lin?[[T ]].{[S]} [[̂ T ]] = (∗?[[T ]], ∗![[T ]]) [[Γ, x+ : S, x− : S′]] = [[Γ]], x : ({[S]}, {[S′]})
{[end]} = end [[S]] = ({[S]}, end) [[Γ, xp : S]] = [[Γ]], x : [[S]]

{[µa.S]} = µa.{[S]} [[Γ, x : ˆT ]] = [[Γ]], x : [[̂ T ]]

We are now in a position to state the main result of this section.

Theorem 5.1 (Polarity-pi to pi correspondence).

1 If Γ `p P then [[Γ]] ` erase(P ).
2 If P →p Q, then erase(P ) → erase(Q).

Proof. (1). The proof is by induction on the derivation of Γ `p P , and uses unrestricted
weakening (Lemma 4.3) to add polarised variables at type (end, end) in order to make
context splitting defined. As an example, we draw two interesting cases.

For [T-InS] let Γ, x− : ?T.S `p x(y).P be inferred from Γ, x− : S, y : T `p P (the case
for x+ is similar). Assume the induction hypothesis to be [[Γ, x− : S, y : T ]] ` erase(P ).
There are two cases corresponding to (i) Γ = Γ′, x+ : S′ or (ii) x+ 6∈ Γ. In case (i) we
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rewrite the induction hypothesis as [[Γ′]], x : ({[S′]}, {[S]}), y : [[T ]] ` erase(P ). We apply
[T-InR] and infer [[Γ′]], x : ({[S′]}, lin ?[[T ]].{[S]}), y : [[T ]] ` erase(P ) as required. In case
(ii), noticing that (end, end) ◦ ({[S]}, end) = [[S]], we rewrite the induction hypothesis as
[[Γ]], x : [[S]], y : [[T ]] ` erase(P ). We apply [T-InL] and infer [[Γ]], x : (lin ?[[T ]].{[S]}, end) `
x(y). erase(P ).

For [T-Out], let (Γ, x : ˆT ) + yq : T `p x yq.P be inferred from Γ, x : ˆT `p P . The
induction hypothesis is [[Γ, x : ˆT ]] ` erase(P ). If yq 6∈ dom(Γ), we use weakening and
infer from the induction hypothesis the judgement [[Γ, x : ˆT ]], y : (end, end) ` erase(P ). In
either case we complete the proof by applying [T-OutR].

(2). By a straightforward induction on the derivation of a reduction step →p.

The converse of the above result is clearly not true. Take for P the polarised process
x+ y | x+(z). Then erase(P ) = x y | x(z) reduces while P does not. Also erase(P )

is typable under context [[x : ˆend, y : end]] = x : (∗?(end, end), ∗!(end, end)), y : (end, end),
whereas P is not typable under x : ˆend, y : end.

5.2. Embedding the pi calculus with accept/request primitives

This section shows that the pi calculus with accept and request primitives (Honda et al.,
1998) can be embedded in our system. With respect to the original formulation, the
calculus considered here does not provide for label selection and branching. On the other
hand it features process replication in place of recursion. The syntax of processes and
types is in Figure 5. In addition to the set of variables introduced in Section 3, we consider
a new (disjoint) countable set of channels, ranged over by h, k. Synchronisation names
are taken from the set of variables. The new process constructors are exactly accept and
request: they allow to install new sessions via synchronisation on names. We remove pro-
ductions x(x).P and x v.P in the syntax of processes, and replace them by input/output
processes on channels: k(x).P and k v.P . We also introduce a new restriction operator
(νk)P for channels, in addition to that for variables (νx)P .

The bindings in the language are introduced by the parenthetical constructs: accept,
request, input and restriction. The set of free channels, as well as substitution of variables
and boolean values for variables in a given process P [v/x], is defined as usual. Notice
that substitution is not defined for channels.

The reduction relation, denoted →r, is defined in Figure 5. Rule [R-Link] establishes
a new session k when an accept process meets a request process on a given name x.
Channel k, bound in both processes, becomes free in each process, but still bound in
the parallel composition. Rule [R-Com] is taken from Figure 1, only that the subject
of communication are channels and the objects’ values do not comprise channels. The
last rule, [R-Pass], allows delegating a channel from an output process to an input
process. The channel h in the output process must not be free in the input process, for
no substitution is performed in channel passing.

Types are (informally) divided in sorts and session types. Session types are as in
Figure 4; the definition of the dual function, S, from session types to session types is
defined in Section 5.1. Sorts include the type bool for boolean values as well as types
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New syntactic forms (extends Figures 1 and 4)

P ::= . . . Processes: v ::= . . . Values:

request x(k).P session request k channels

accept x(k).P session acceptance T ::= Types:

k v.P output bool boolean

k(x).P input S session type

k(k).P channel input 〈S, S〉 shared type

(νk)P channel restriction ⊥S used channel

P →r P New reduction rules (extends Figure 1)

accept x(k).P | request x(k).Q→r (νk)(P | Q) [R-Link]

k v.P | k(x).Q→r P | Q[v/x] if v = y, true, false [R-Com]

k h.P | k(h).Q→r P | Q [R-Pass]

∆ ◦∆ = ∆ Linear context composition

∅ ◦∆ = ∆
∆1 ◦∆2 = ∆3

(∆1, k : S) ◦ (∆2, k : S) = ∆3, k : ⊥S

∆1 ◦∆2 = ∆3 k 6∈ ∆2

(∆1, k : T ) ◦∆2 = ∆3, k : T

Γ `r P .∆ Typing rules for processes

Γ ` x : 〈S, S〉 Γ `r P .∆, k : S

Γ `r accept x(k).P .∆

Γ ` x : 〈S, S〉 Γ `r P .∆, k : S

Γ `r request x(k).P .∆

[T-Acc] [T-Req]
Γ `r v : T Γ `r P .∆, k : S

Γ `r k v.P .∆, k : !T.S

Γ, x : T `r P .∆, k : S

Γ `r k(x).P .∆, k : ?T.S
[T-Send] [T-Rcv]

Γ `r P .∆, k : S2

Γ `r k h.P .∆, k : !S1.S2, h : S1

Γ `r P .∆, h : S1, k : S2

Γ `r k(h).P .∆, k : ?S1.S2
[T-Thr] [T-Cat]

∆ completed
Γ `r 0 .∆

Γ `r P1 .∆1 Γ `r P2 .∆2

Γ `r P1 | P2 .∆1 ◦∆2

Γ `r P .∆ ∆ completed
Γ `r!P .∆

[T-Inact] [T-Par] [T-Repl]

Γ, x : 〈S, S〉 `r P .∆

Γ `r (νx)P .∆

Γ `r P .∆, k : ⊥S

Γ `r (νk)P .∆
[T-Res] [T-ResC]

Fig. 5. Accept/request pi calculus

for names of the form 〈S1, S2〉. In such a type, session type S1 types the accept end of
the name, whereas session type S2 types the request end. We are only interested in types
where S1 is the dual of S2. Type ⊥S denotes a channel on which no further interaction is
possible. To guide our encoding, we decorate⊥ with the type from which it was generated.
We explain the mechanism below.

The type system uses two kinds of contexts: shared contexts Γ mapping variables x to
sorts (types of the form bool and 〈S1, S2〉), and linear contexts ∆ mapping channels k
to session types S and to ⊥S . For linear contexts we define in Figure 5 an operation of
composition that conjoins two contexts on the disjoint parts, and assigns a ⊥S type to a
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channel that is typed at dual types, S and S, in the two incoming contexts. Composition
is not defined when the types for a same channel in the two input contexts are not dual
to each other.

The typing system comprises the rules for value typing Γ ` v : T taken from Figure 3,
as well as the rules for process typing, Γ ` P .∆ in Figure 5. The rules for value typing
feature a pre-condition un(Γ), which we ignore in this system for linear values now belong
in context ∆ (alternatively we may define un(Γ) as true for all contexts Γ). The typing
rule for accept reads the type 〈S, S〉 of value x from the shared context Γ and places a
new entry k : S in the linear context of the continuation process P . The rule for request
is similar, only that the dual type S is taken into consideration. The rules for channel
passing, [T-Thr] and [T-Cat], are similar to their counterparts in the polarity system,
namely rules [T-OutS] and [T-InS] in Figure 4. The rules for value passing, [T-Send]
and [T-Rcv], are also similar, only that the value sent, v, or received, x, is read or written
on the shared context Γ. The rules for inaction and for replication are similar to those in
Figure 4; predicate completed is defined in Section 5.1: it is true of contexts containing
only end as session types. The rule for parallel composition makes use of the composition
operator ◦ and marks as “used” (session type ⊥S) those channels that can be found at
type S in one thread and at type S in the other, thus preventing further interaction on
such channels. Finally, the rules for scope restriction, [T-Res] and [T-ResC], introduce
in the appropriate contexts types for the bound names: a name type 〈S, S〉 in the shared
context for name binding, and the ⊥S type in the linear context for channel binding. In
the latter case, we see that only channels that have been used to end can be restricted.

We now look at the encoding. For processes we have to encode the constructors in
Figure 5, plus those inherited from Figure 4. Given that both the sets of variables and
channels are enumerable, we can easily map the two sets into the set of variables; we
leave the application of these maps implicit in the sequel. Proceeding in this way, the
only cases left are accept and request. We choose request to create a new channel k and
use name x to convey its identity to potential accept parties. Accept processes, in turn,
receive the newly created channel via a conventional input on name x. We could have
chosen the accept party to create the channel; accept and request are symmetric.

[[accept x(k).P ]] = x(k).[[P ]] [[request x(k).P ]] = (νk)x k.[[P ]]

We also have to encode contexts, which we do, point-wise, by using an encoding for
types. We use an auxiliary encoding {[S]} to map session types into session types. Types T
are encoded using the [[T ]] function. A name type 〈S1, S2〉 is translated into a type de-
scribing the two channel ends; recall that ∗?T abbreviates the recursive end point type
µa?T.a, and similarly for ∗!T . Session type ⊥S is translated into type ({[S]}, {[S]}). Note
that the decoration S of ⊥S is essential for the reconstruction of the type. A type ⊥S

originates from types S and S in a process k v | x(y), say, and prevents its composition
with, say, a process k u. In our system it is the linear nature of type ({[S]}, {[S]}) that
prevents the composition. The input type is translated into a type where only the input
end point can be used (the other is recorded as end, allowing no interaction); and con-
versely for the output. The four remaining cases are the identity function for end, bool,
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and the type variable a, and µa.[[S]] for [[µa.S]].

{[?T.S]} = lin?[[T ]].{[S]} {[!T.S]} = lin![[T ]].{[S]}
[[〈S1, S2〉]] = (∗?[[S1]], ∗![[S2]]) [[⊥S ]] = ({[S]}, {[S]})

[[?T.S]] = ({[?T.S]}, end) [[!T.S]] = (end, {[!T.S]})

The main result of this section follows.

Theorem 5.2 (Accept/request-pi to pi correspondence).

1 If Γ `r P .∆ then [[Γ]], [[∆]] ` [[P ]];
2 If P →r Q then [[P ]] → [[Q]].

Proof. (1) We proceed by induction on the structure of the derivation of Γ `r P . ∆,
using unrestricted weakening (Lemma 4.3) to add sessions typed with (end, end) whenever
such sessions are in ∆ and not in a context of its derivation. To illustrate, we sketch three
cases.

For [T-Req] we have Γ ` request x(k).P .∆ with a : 〈S, S〉 ∈ Γ and Γ `r P .∆, k : S.
Therefore [[Γ]](a) = (∗?[[S]], ∗![[S]]). By the induction hypothesis [[Γ,∆, k : S]] ` [[P ]]. By
applying [T-OutR] we infer [[Γ,∆]], k : ({[S]}, {[S]}) ` a k.[[P ]]. An application of [T-Res]
give us the desired result, [[Γ,∆]] ` (νk)a k.[[P ]].

For [T-Thr], let Γ `r k k
′.P . ∆, k : !S.S′, k′ : S be inferred from Γ `r P . ∆, k : S′.

By induction we have [[Γ,∆, k : S′]] ` [[P ]]. We use weakening (Lemma 4.3) and infer
[[Γ,∆, k : S′]], k′ : (end, end) ` [[P ]]. To conclude the case, we apply [T-OutR] to obtain
[[Γ,∆]], k : (end, lin ![[S]].{[S′]}), k′ : [[S]] ` k k′.[[P ]].

Lastly, take case [T-Par], and let Γ `r P | P ′ .∆ ◦∆′ inferred from Γ `r P1 .∆1 and
Γ `r P2.∆2. By the induction hypothesis [[Γ,∆1]] ` [[P ]]1 and [[Γ,∆2]] ` [[P2]]. To conclude
by applying [T-Par], two considerations are in order. First, since [[Γ]] is unrestricted, we
have [[Γ]] ◦ [[Γ]] = [[Γ]]. Second, we can make the domains of the contexts [[∆1]] and [[∆2]]

equal by adding entries (end, end), thus generating two contexts ∆′ from [[∆1]] and ∆′′

from [[∆2]]. Then, it is easy to show that ∆′ ◦∆′′ is defined and equal to [[∆]]. We may
then apply [T-Par] and infer [[Γ,∆]] ` [[P1 | P2]].

(2) By induction on the structure of the derivation of P →r P
′. The interesting case

is [R-Link], and is established by a(k).[[P ]] | (νk)a k.[[Q]] ≡ (νk)(a(k).[[P ]] | a k.[[Q]]), by
[R-Com]: a(k).[[P ]] | a k.[[Q]] → [[P ]][k/k] | [[Q]], by [R-Res]: (νk)(a(k).[[P ]] | a k.[[Q]]) →
(νk)([[P ]][k/k] | [[Q]]), and by [R-Struct]: a(k).[[P ]] | (νk)a k.[[Q]] → (νk)([[P ]][k/k] |
[[Q]]). The result then follows by noting that [[P ]][k/k] = [[P ]]. Cases [R-Com],[R-Pass]
are analogous; the remaining cases follow straightforwardly from induction.

The converse does not hold. Take for P the process k h | k(l).h true.l(x). It should be
easy to see that P does not reduce, whereas [[P ]] = P does. Notice that the sub-process
k(l).h true.l(x) cannot be renamed into a process of the form k(h).Q, as required by rule
[R-Pass], for h is free in h true.l(x). It is also the case that [[P ]] is typable under context
[[h : S, k : 〈S, S〉]] where S is the type !bool.end, whereas P is not typable under context
h : S, k : 〈S, S〉.
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New syntactic forms (extends Figure 2)

c ::= Capabilities: T ::= Types:

i input q c T channel

o output bool boolean

io input and output

T + T = T Combination of types

bool + bool = bool un c1 T + un c2 T = un (c1 ∪ c2)T lin iT + lin oT = lin io T

Γ + Γ = Γ Combination of contexts

∅+ Γ = Γ
Γ1 + Γ2 = Γ3

(Γ1, x : T1) + (Γ2, x : T2) = Γ3, x : T1 + T2

Γ1 + Γ2 = Γ3 x 6∈ Γ2

(Γ1, x : T ) + Γ2 = Γ3, x : T

Γ `l P Typing rules for processes (extends Figure 3)

Γ1 `l P1 Γ2 `l P2

Γ1 + Γ2 `l P1 | P2

Γ, x : q io T `l P

Γ `l (νx)P
[T-Par] [T-Res]

Γ, y : T `l P

Γ + x : q iT `l x(y).P

Γ `l P

Γ + x : q oT + v : T `l x v.P
[T-In] [T-Out]

Fig. 6. Linear pi calculus

5.3. Embedding the linear pi calculus

In this section we analyse (a synchronous variant of) the linear pi calculus (Kobayashi
et al., 1999) and provide a typing-preserving encoding into our system.

The syntax of linear pi processes and the reduction relation are described in Figure 1.
Figure 6 defines the syntax of types and the typing rules for linear pi processes. Types
now have the form q c T where q is a lin/un qualifier introduced in Figure 2, and c is a
capability describing the input, output or input-output nature of the type.

The linear discipline is imposed by way of a type combination operation, defined in
Figure 6. The combination of two unrestricted types conjoins the capabilities as follows,
by viewing capabilities as sets.

i = {i} o = {o} io = {i, o}

The combination of un types is only defined for two types, of i and of o capabilities;
the result is a type of io capability. There is also a rule symmetrical to the last, namely
lin oT + lin iT = lin io T . The operator is then extended point-wise to typing contexts.

The typing system for the linear pi-calculus is defined by the rules in Figure 3, where
rules [T-Par], [T-Res], [T-In] and [T-Out] are replaced by those in Figure 6. Rule
[T-Out] is an adaptation of that in (Kobayashi et al., 1999) to the synchronous setting:
we let the continuation be typed with context Γ while in the original paper the premise to
the rule is un(Γ) since the (absent) continuation behaves as 0. We have also adapted rule
[T-Res] to require that the restricted channel uses both capabilities; the original system
allows processes of the form (νx)x true to be typed by assigning type lin o bool to channel x.
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Our system forces a linear behaviour to be described by a type (lin !bool, lin ?bool) which
cannot be used to type process x true, a process that never exercises the input capability
of channel x. The variant of the rule we use allows a typing correspondence between the
two systems.

A compositional encoding of linear types is defined below. Unrestricted end points are
encoded into recursive types; once again recall that ∗!T abbreviates the type µa.!T.a,
and similarly for ∗?T . Linear end points are encoded into a linear output/input followed
by end, meaning that the channel cannot be further used for input or output. An input
type is encoded as a channel type composed of an input end point type and an end type.
The output type is similar. Input/output types are encoded as channel types, one end
for the output, the other for the input capability.

[[lin iT ]] = (lin?[[T ]].end, end) [[lin oT ]] = (end, lin![[T ]].end)

[[un iT ]] = (∗?[[T ]], end) [[un oT ]] = (end, ∗![[T ]])

[[lin ioT ]] = (lin?[[T ]].end, lin![[T ]].end) [[un ioT ]] = (∗?[[T ]], ∗![[T ]])

[[bool]] = bool

For instance, taking for T the type (∗!bool, ∗?bool), the linear pi type lin i(lin io (un io bool))
is mapped into the type (lin ?(lin !T.end, lin ?T.end).end, end).

The main result of this section establishes the correspondence between the two systems.

Theorem 5.3 (Linear-pi to pi correspondence). Γ `l P if and only if [[Γ]] ` P .

Proof. For the left to the right direction, we proceed by induction on the structure of
the derivation of Γ `l P . The proof relies on unrestricted weakening (Lemma 4.3). The
rule for context combination in Figure 6 permits to combine two unrestricted types with
opposite capabilities. We recover this by weakening each type with the missing capability,
in order to make the context splitting operation of Figure 3 defined. To illustrate, consider
case [T-In] and let Γ + x : q iS `l x(y).P be inferred from Γ, y : S `l P . The induction
hypothesis is [[Γ, y : S]] ` P . We have three cases corresponding to (i) x : lin oS ∈ Γ, (ii)
x : un cS ∈ Γ, and (iii) x not in Γ. In (i) we can directly apply [T-InR], since the splitting
of [[lin oS]] and [[lin iS]] is defined. In (ii) we have two sub-cases corresponding to c = i or
c 6= i. In the first case [[un cS]]◦[[un cS]] is defined, while in the second case it is not. We need
to weaken the judgement [[Γ, y : S]] ` P to [[Γ, y : S]] \ x, x : (un ∗![[S]], un ∗?[[S]]) ` P . We
can now apply [T-InR] and close the result. Case (iii) is analogous, while by weakening
we infer the judgement [[Γ, y : S]], x : (un ∗![[S]], un ∗?[[S]]) ` P . In rule [T-Par] we use
weakening and add entries x : (end, end) in order to make the domain of the contexts
Γ1,Γ2 of the hypothesis equal, so that we can apply context splitting in rule [T-Par] of
Figure 3. The remaining cases are similar.

For the right to the left direction, we proceed by induction on the structure of the
derivation of [[Γ]] ` P . To illustrate, we sketch a couple of cases. We use the notation
Γ \ x to indicate the context obtained by removing the entry for x in Γ.

When the derivation ends with rule [T-InL], we have [[Γ]] ` x(y).P inferred from
Γ′ ` x : (q?T ′.S′, S′′) and ∆, y : T ′ ` P where ∆ = Γ′′ + x : (S′, S′′), and [[Γ]] = Γ′ ◦ Γ′′.
We infer that Γ′ = Γ1, x : (q?T ′.S′, S′′) with un(Γ1), and Γ′′ = Γ2, x : (S1, S2). Thus
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∆ = Γ2, x : (R1, R2) where R1 = S1 ◦ S′ and R2 = S2 ◦ S′′. Distinguish the two cases
q = lin and q = un. When q = lin we know that [[Γ]](x) = (lin?T ′.S′, R2) and S1 = end. A
case analysis on [[·]] shows that two cases arise for Γ(x): (a) Γ(x) = lin iT with T ′ = [[T ]],
S′ = end and R2 = end, or (b) Γ(x) = lin ioT with T ′ = [[T ]], S′ = end, and R2 = lin!T ′.end.
From the rules for context splitting we know that S1 = end. Thus in case (a) we have
∆ = Γ2, x : (end, end) while in case (b) we have ∆ = Γ2, x : (end, lin!T ′.end). When q = un
we know that [[Γ]](x) = (un?T ′.S′, R2). A case analysis on [[·]] shows that two cases arise for
Γ(x): (c) Γ(x) = un iT with T ′ = [[T ]], S′ = un?T ′.S′ and R2 = end, or (d) Γ(x) = un ioT
with T ′ = [[T ]], S′ = un?T ′.S′, and R2 = S′. In case (c) we have ∆ = Γ2, x : (S′, end)

while in case (d) we have ∆ = Γ2, x : (S′, S′).
To apply the induction hypothesis we rely on the two following results.

[[Γ]] \ x = Γ2 ◦ U([[Γ]] \ x) (1)

The result is proved by induction on the length of Γ. The case dom(Γ) = {x} is clear.
Otherwise assume dom(Γ) = {x1, . . . , xn, x}, and let the induction hypothesis be [[Γ]] \
xn \ x = Γ2 ◦ U([[Γ]] \ xn \ x). A case analysis shows that the following cases arise for
Γ2(xn): (i) Γ2(xn) = [[Γ]](xn) and U([[Γ]](xn)) = (end, end), or (ii) Γ2(xn) = [[Γ]](xn)

and U([[Γ]](xn)) = [[Γ]](xn) and un(Γ2(xn)), or (iii) Γ2(xn) = (end, end) and [[Γ]](xn) =

(∗?[[Tn]], end), or (iv) Γ2(xn) = (end, end) and [[Γ]](xn) = (end, ∗![[Tn]]), or (v) Γ2(xn) =

(∗?[[Tn]], end) and [[Γ]](xn) = (∗?[[Tn]], ∗![[Tn]]), or (vi) Γ2(xn) = (end, ∗![[Tn]]) and [[Γ]](xn) =

(∗?[[Tn]], ∗![[Tn]]), or (vii) Γ2(xn) = (end, end) and [[Γ]](xn) = (∗?[[Tn]], ∗![[Tn]]). In all cases
we obtain [[Γ]](xn) = Γ2(xn)◦U([[Γ]](xn)); we thus conclude that [[Γ]]\x = Γ2 ◦U([[Γ]]\x).

[[Γ]], x : (end, end) ` P implies [[Γ]] ` P (2)

The implication is deduced by using strengthening (Lemma 4.5), since (end, end) not in
the image of [[·]] implies x 6∈ fv(P ).

To complete the [T-InL] case, we weaken the hypothesis ∆, y : T ′ ` P by using Corol-
lary 4.4 and infer Γ2 ◦ (U [[Γ]] \ x), x : (R1, R2), y : T ′ ` P . We then apply (1) and infer
[[Γ]] \ x, x : (R1, R2), y : T ′ ` P . In case (a) we use (2) and infer [[Γ]] \ x, y : [[T ]] ` P .
The induction hypothesis is Γ \ x, y : T `l P . In case (b) the induction hypothesis is
Γ\x, x : lin oT, y : T `l P . In case (c) the induction hypothesis is Γ\x, x : un iT, y : T `l P .
In case (d) the induction hypothesis is Γ \ x, x : un ioT, y : T `l P . In all cases (a)–(d) we
conclude by applying the typing rule for input, [T-In], and we are done.

As further example, consider the case [T-Par]: [[Γ]] ` P | Q with Γ′ ` P , Γ′′ ` Q,
and [[Γ]] = Γ′ ◦ Γ′′. We use weakening and obtain: (∗) ∆1 ` P and (∗∗) ∆2 ` Q where
∆1 = Γ′ ◦ U([[Γ]]) and ∆2 = Γ′′ ◦ U([[Γ]]). Next, we find Γ1, Γ2 such that [[Γ1]] = ∆1 and
[[Γ2]] = ∆2. By induction hypothesis we have Γ1 `l P and Γ2 `l Q. We apply [T-Par]
and infer that if Γ1 + Γ2 is defined then Γ1 + Γ2 `l P | Q. To conclude, we need to show
that Γ1 + Γ2 is defined and equal to Γ: that is, Γ = Γ1 + Γ2. First, note that dom(Γ) =

dom(Γ1 + Γ2). To see the left to the right inclusion, assume Γ(x) = T . The case un(T ) is
straightforward, since Γ(x) = Γ1 + Γ2(x) and ∆i(x) = U([[Γ]])(x) = [[Γ(x)]], for i = 1, 2.
Take T = lin cT ′. When c = io we know that or Γ′(x) = [[T ]] and Γ′′(x) = (end, end),
or vice-versa. Suppose Γ′(x) = [[T ]]; we have ∆1(x) = [[T ]] and ∆2(x) = (end, end). We
conclude that Γ1 + Γ2(x) = T , as desired. The case Γ′′(x) = [[T ]] is analogous. Consider
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now the case T = lin ioT ′. When Γ′(x) = [[T ]] and Γ′′(x) = (end, end), or Γ′(x) = (end, end)

and Γ′′(x) = [[T ]] we proceed as above. Otherwise, we can have Γ′(x) = (lin ?[[T ′]].end, end)

and Γ′′(x) = (end, lin ![[T ′]].end), or vice-versa. In both cases we have ∆1(x) = Γ′(x) and
∆2(x) = Γ′′(x). We conclude by noting that Γ1 + Γ2(x) = T . To see the right to the left
inclusion, assume Γ1 + Γ2(x) = T . As before, the case un(T ) is immediate since we have
∆i(x) = U([[Γ]])(x) = [[Γ(x)]]. Thus Γ(x) = T , as desired. When T = lin cT ′ and c ∈ i, o,
we know that Γ′(x) = [[T ]] and x 6∈ dom(Γ′′), or vice-versa. Thus Γ′ ◦ Γ′′(x) = [[T ]], and
in turn Γ(x) = T , as desired. The case T = lin ioT ′ is similar: we have four options for
Γ′(x) and Γ′′(x) but all lead to Γ′ ◦ Γ′′(x) = [[T ]]; from this we conclude that Γ(x) = T ,
and we are done.

6. Concluding remarks

We presented a session type system for the pi calculus, the version in (Milner, 1992),
where types for channels are pairs of end point types. End point types, in turn, are
session types annotated with lin/un qualifiers. Session types may include choice, usually
in the form of branch/select constructs. For the sake of simplicity we decided to omit
such constructs; their incorporation should raise no difficulty, cf. (Vasconcelos, 2012).

We showed that the type system here proposed handles processes other type systems
fail to type, including (Gay and Hole, 2005; Giunti and Vasconcelos, 2010; Honda et al.,
1998; Kobayashi et al., 1999; Vasconcelos, 2012), cf. Section 2. We also showed that our
type system types all processes three other type systems manage to type (Gay and Hole,
2005; Honda et al., 1998; Kobayashi et al., 1999), cf. Section 5. We believe that similar
techniques would allow the embedding of further type systems, including (Giunti and
Vasconcelos, 2010; Pierce and Sangiorgi, 1996; Vasconcelos, 2012).

A question arises on the existence of a sound and complete algorithm for the system
proposed in Section 3. While the idea of splitting types and contexts is clear and con-
cise, the inherent non-determinism contained in the formulation makes a “forward only”
implementation probably unfeasible. A concrete problem emerges from channel types
where both end point types are of the same nature (input or output), for such types
match both the left and the right rules in the type system. A sound, but not complete,
algorithm exists for an earlier version of the system here proposed (Giunti, 2011). We
believe that the algorithm could be adapted and still type enough interesting processes.
The investigation of a sound and complete algorithm for this system is left for future
work.
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