
Dynamic Roles in
Multiparty Communicating Systems

Pedro Baltazar
Universidade de Lisboa, Faculdade de Ciências, LaSIGE

Luís Caires
CITI-DI, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Vasco T. Vasconcelos
Universidade de Lisboa, Faculdade de Ciências, LaSIGE

Hugo T. Vieira
CITI-DI, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

February 21, 2012,
Revised March 20, 2012

Abstract

Communication protocols in distributed systems often specify the
roles of the parties involved in the communications, e.g., for enforc-
ing security policies or task assignment purposes. Ensuring that im-
plementations follow role-based protocol specifications is challenging,
especially in scenarios found, e.g., in business processes and web ap-
plications, where multiple peers are involved, single peers participate
in several roles, or single roles are carried out by several peers. We
present a type-based analysis for statically verifying role-based multi-
party interactions, based on a simple π-calculus model and prior work
on conversation types. Our main result ensures well-typed systems
follow the role-based protocols prescribed by the types, and addresses
systems where roles have dynamic distributed implementations.

1 Introduction

Communication is a central feature of nowadays software systems, as more
and more often systems are built using computational resources that are
concurrently available and distributed in the web. Examples range from op-
erating systems where functionality is distributed between distinct threads
in the system, to services available on the Internet which rely on third-party
(remote) service providers to carry out subsidiary tasks, following the emerg-
ing model of SaaS (software as a service) and cloud computing. Building

1

software from the composition of communicating interacting pieces is very
flexible, at least in principle, since resources can be dynamically discovered
and chosen according to criteria such as declared functionality, availability
and work load. In such a setting, all interacting parties must agree on the
communication protocols without relying on centralized control, and verifi-
cation mechanisms that automatically check if the code meets some common
protocol specification are then of crucial importance.

A protocol specification describes a set of message exchanges, recording
when these should occur as well as the parties involved in the interaction.
A party involved in a protocol may have a spatial meaning, for instance
denoting a distinguished site or process, or, more generally, a party may
have a behavioral meaning, a role in the interaction that may be realized
by one or more processes or sites. Conversely, a process may impersonate
different roles throughout its execution. Such flexibility is essential to address
systems, e.g., where a leader role is impersonated by different sites at different
stages of the protocol, and the role of a single site changes accordingly.

A challenge that needs to be overcome is then to devise techniques to ver-
ify whether a system complies to a protocol specification, given such dynamic
and distributed implementation of roles, just by inspecting the source code.
A particular situation where roles must be traced is when checking confor-
mance against security policies like, for example, those involving separation
of duties.

In this paper we present a type-based analysis for verifying if systems
defined in a model programming language follow the role-based protocol de-
scriptions as prescribed by types. Our development is based on conversation
type theory [3], extending it with the ability to specify and analyze the roles
involved in the interactions. The underlying model of our analysis is based
an extremely parsimonious extension to the π-calculus [13], where commu-
nication actions specify a message label and the role performing the action,
inspired by TyCO [14]. Conversations generalize sessions [9, 11] with support
to multiparty interaction, addressing dynamically established collaborations
between an unanticipated number of partners. A distinguishing feature of the
conversation types approach is that multiple parties interact using labeled
messages in a single medium of communication, while other works support
multiparty communication via message queues [10] and indexed communica-
tion channels [2]. While retaining the simplicity of conversation types, our
theory addresses systems where a single role may be realized by several par-
ties and where processes may dynamically change the role on behalf of which
they are interacting, as needed to model communicating workflows as present
in realistic business processes. This contrasts with related approaches (see,
e.g., [6, 10]) where roles have a “spatial” meaning, as they are mapped into
the structure of systems or sites in a static way.

In the remainder of this section we informally describe our type analysis
by going through some examples. Consider the protocol specification given

2

by type:
Sender→ Receiver hello().Sender→ Receiver bye()

which captures a binary interaction where messages hello and bye are sequen-
tially exchanged, and the communicating partners are identified by Sender
and Receiver (which send and receive the messages, respectively). A non
surprising implementation of this interaction is given by:

chat /Sender hello().chat /Sender bye() | chat .Receiver hello().chat .Receiver bye()

where two concurrent processes interact on channel chat as specified by the
protocol above. The process on the left sends the two messages under role
Sender (/Sender), as described by type !Sender hello(). !Sender bye(), while the
process on the right receives the two messages under role Receiver (.Receiver),
described by type ?Receiver hello(). ?Receiver bye().

In this first example there is a perfect match between processes and the
roles under which the processes interact. However, this does not need to be
the case. Consider a different implementation of the same protocol:

chat /Sender hello().chat .Receiver bye() | chat .Receiver hello().chat /Sender bye()

where the process on the left sends message hello as Sender and then receives
message bye as Receiver, described by type !Sender hello(). ?Receiver bye(),
and the process on the right first acts first as Receiver and then as Sender,
described by type ?Receiver hello(). !Sender bye(). Notice each role is carried
out by two distinct processes and each process implements two distinct roles.

Our type analysis ensures that both implementations follow the pre-
scribed protocol, since the protocol

Sender→ Receiver hello().Sender→ Receiver bye()

is decomposed in “complementary” types that describe the behavior of the
individual processes (for instance, in type !Senderhello().?Receiverbye() and
type ?Receiver hello(). !Sender bye()).

Now consider a more realistic scenario (adapted from [3]) described by
type:

Buyer→ Seller buy(). Seller→ Buyer price().
Seller→ Shipper product(). Shipper→ Buyer details() (1)

which captures the interactions in a purchase system involving three par-
ties, and which captures the interaction illustrated in Fig. 1. Messages buy ,
price, product and details are exchanged between a Buyer, a Seller, and a
Shipper. First, the buyer sends the seller a buy request, then the seller

3

buy

product

details

price

Buyer Seller Shipper

Figure 1: Purchase Interaction Message Sequence Chart.

Buyer , (new chat)
Shop /Buyer buyService(chat).

chat /Buyer buy().
chat .Buyer price().
chat .Buyer details()

Shop , Shop .Seller buyService(x).
x .Seller buy().
x /Seller price().
Carrier /Seller shipService(x).

x /Seller product()
Carrier , Carrier .Shipper shipService(x).

x .Shipper product().
x /Shipper details()

System , (∗Buyer | ∗ Shop | ∗ Carrier)

Figure 2: Purchase System Code (a).

replies the price back to the buyer. After that, the seller informs the shipper
of the chosen product and the shipper sends the buyer the delivery details.

Fig. 2 shows a possible implementation of the purchase interaction, that
follows the protocol specified in (1) and where roles and processes are in
a one to one correspondence. And in Fig. 3 a different implementation
is shown, where now the roles and the processes are intermixed. Using
the new construct, process Buyer creates a fresh chat that will host the
purchase interaction. This newly created name is passed to a shop, via
message buyService. Code Shop/BuyerbuyService(chat) represents the output
of message buyService on channel Shop, passing name chat under role Buyer.

4

Buyer , (new chat)
Shop /Buyer buyService(chat).

chat /Buyer buy().
(chat .Buyer price() |MailBox /Buyer storeService(chat))

Shop , Shop .Shop buyService(x).
x .Seller buy().
x /Seller price().

(x /Seller product() |x .Shipper product().x /Shipper details())
Mail , MailBox .Mail storeService(x).

x .Buyer details()
System , (∗Buyer | ∗ Mail | ∗ Shop)

Figure 3: Purchase System Code (b).

The Buyer process then sends message buy , after which is simultaneously
active to receive price and to send storeService to MailBox , passing name
chat .

The Shop process starts by receiving a channel name (that instantiates
variable x) in message buyService. Then, in this received channel the Shop
impersonates the Seller role and receives message buy , after which it sends
message price. At this point, the Shop simultaneously impersonates Seller
and Shipper which exchange message product , after which message details is
sent. Notice that this particular Shop carries out both the role of the Seller
and the role of the Shipper, allowing to represent a shop equipped with its
own shipping service.

The Mail process defines a message storage service that impersonates the
buyer in receiving the shipping delivery details. Notice that the buyer passes
name chat to the mailbox, allowing in this way a third party to dynamically
join the ongoing interaction, while still interacting on the delegated channel
(via message price). Hence, in this system the Buyer role is actually carried
out by two distinct processes (Buyer and Mail), which can be simultaneously
active.

The implementation shown in Fig. 3 involves three distinguished pro-
cesses that carry out the three roles identified in the protocol, albeit not in a
one-to-one-correspondence. The type given in (1) captures the interaction in
channel chat , which is passed from the buyer to the shop and to the mailbox
in messages buyService and storeService, respectively. In order to analyze
the protocol distribution between the three parties, we must consider the
“slices” of protocol that are delegated in messages. Namely, the overall pro-
tocol is split in the type that captures the behavior that is sent to the shop

5

(via message buyService):

?Seller buy(). !Seller price(). Seller→ Shipper product(). !Shipper details()

and in the type that captures the behavior retained by the buyer:

!Buyer buy().?Buyer price().3?Buyer details()

The 3 type expresses the fact that the input of message details occurs “some-
time”, i.e., it does not necessarily occur exactly after the input of message
price. In fact the Buyer process illustrated in Fig. 3 does not guarantee that
the input is active only after the reception of message price. However, the
sequentiality of the message exchanges is ensured by the Seller process,
since the output of message details only occurs after the output of message
price. A type 3B denotes a behavior that must occur sometime, but not
necessarily “now” — 3B types obey the basic laws of the eventually temporal
logic operator.

The type of the buyer is further decomposed, at the level of messages
price and details, in ?Buyer price() and 3?Buyer details(), the former being
retained by the buyer process and the latter delegated to the mailbox. The
type of the shop is further decomposed, at the level message product , in
!Seller product() and ?Shipper product().!Shipper details() which explain the
behaviors of the parallel processes in the shop code. All decompositions
sketched above are captured by a type split, ◦, relation that explains how
protocols may be split in two complementary slices, e.g.,:

Seller→ Shipper product(). !Shipper details() =
?Shipper product(). !Shipper details() ◦ !Seller product()

The purchase interaction of the system shown in Fig. 3 follows the pro-
tocol specification given in (1). Notice that the Buyer role is distributed
between two processes (Buyer and Mail), and that roles Seller and Shipper
are carried out by a single process (Shop). From the point of view of our
type analysis the system follows the prescribed protocol, regardless of the
spatial configuration of the processes that implement the roles.

2 Process Language

In this section we present the process model, first by introducing the syntax
and second by defining the operational semantics. Our process language
is the π-calculus [13] extended with labeled communication and role-based
annotations. The syntax, inspired on TyCO [14], is illustrated in Fig. 4,
where we consider given infinite sets of labels L, of channel names N and of
roles R. Labels are used to index communication and are static identifiers
that may neither be created nor communicated (e.g., XML tags). Names

6

P ::= 0 8 (new x)P 8 P1 |P2 8 ∗P 8 x .r {li(xi).Pi}i∈I 8 x /r l(y).P
l ∈ L(abels) x, y ∈ N (ames) r, s ∈ R(oles)

Figure 4: Process Syntax.

are used to identify mediums of communication. For typing purposes, we
distinguish two distinct usages of channels: public (shared) communication
mediums (e.g., gateways to service providers) and private (linear) mediums
of communication, where a set of related interactions between several parties
may take place (capturing, e.g., service instance interactions, where related
communications share correlation tokens). Roles are used to identify the
parties involved in communications.

A process is either an inactive process 0, a name restriction (new x)P
where fresh name x is known only to process P , a parallel composition P1 |P2

where P1 and P2 are simultaneously active or a replication ∗P where unlim-
ited copies of P are simultaneously active. Process constructs described up
to here (the static fragment) correspond exactly to the ones found in π-
calculus. As for communication primitives, we extend (monadic) π-calculus
input and output with labeled communication and role annotations: the in-
put summation process x .r {li(xi).Pi}i∈I is able to receive one message in
name x, under role r, labeled by any of the lis, where i ranges over index
set I (we assume that all labels li in an input prefix are distinct). Upon
synchronization with a lj labeled message, the respective parameter xj is
instantiated and the respective continuation activated. Notice that the r
annotation identifies the role in which the reception is performed. Process
x/r l(y).P is able to send a message on channel x, under role r, labeled by l.
Upon synchronization the name y is sent and the continuation P activated.
In (new x)P all occurrences of x are bound in P , and in x .r {li(xi).Pi}i∈I

all occurrences of xi are bound in Pi, for each i = 1, . . . , n.
We introduce some auxiliary notions: we use fn(P) to denote the set of

free names of process P , defined as expected, and P [x ← y] to denote the
process obtained by replacing all free occurrences of x by y in P . As usual,
we omit inactive continuations (e.g., x /r l(y) stands for x /r l(y).0).

The operational semantics is given by a reduction relation and by a struc-
tural congruence. We consider the standard definition of structural congru-
ence, noted by ≡, given by the rules in Fig. 5.

Structural congruence is used in the definition of the reduction relation to
syntactically rearrange the process, in order to allow reduction to be defined,
as usual, by capturing the basic case for synchronization and identifying the
active contexts in which a synchronization may take place.

For typing purposes, since we intend to match process behaviors with
type specifications, our reduction relation records (public) synchronization
information in labels. Reduction labels (ranged over by λ) are of two forms:

7

P |0 ≡ P P1 |P2 ≡ P2 |P1 (P1 |P2) |P3 ≡ P1 | (P2 |P3)
(new x)(new y)P ≡ (new y)(new x)P

P1 | (new x)P2 ≡ (new x)(P1 |P2) (if x 6∈ fn(P1))
(new x)0 ≡ 0 ∗ P ≡ ∗P |P P1 ≡ P2 (if P1 ≡α P2)

Figure 5: Structural Congruence.

x .r {li(xi).Pi}i∈I |x /s lk(y).P x:s→rlk−→ Pk[xk ← y] |P (k ∈ I)
(Red-Comm)

P1
λ−→ P ′

1

P1 |P2
λ−→ P ′

1 |P2

P
λ−→ P ′ λ ∈ {τ, x : s→ rl}

(new x)P τ−→ (new x)P ′

(Red-Par,Red-New1)

P
λ−→ P ′ λ = x : s→ rl y 6= x

(new y)P λ−→ (new y)P ′

P1 ≡ P ′
1 P ′

1
λ−→ P ′

2 P ′
2 ≡ P2

P1
λ−→ P2

(Red-New2,Red-Struct)
Figure 6: Reduction Relation.

a τ label captures a private internal interaction, whereas an x : s→ rl label
captures an l-labeled message exchange on channel x, between roles s(ender)
and r(eceiver).

We may now present the reduction relation, defined by the rules given
in Fig. 6, where we use P1

λ−→ P2 to represent that process P1 reduces to
P2 with label λ. Rule (Red-Comm) means that parallel output and input
processes may exchange message lk on channel x, the interaction being cap-
tured by label x : s→ rlk, where also the roles involved in the interaction
are recorded. As the result of the synchronization, name y is sent to the
receiving process which activates the continuation (respective to lk) instan-
tiating parameter xk. The continuation of the output prefix is also activated
as a consequence of the synchronization. Rule (Red-Par) closes reduction
under parallel contexts, while rules (Red-New1) and (Red-New2) close
reduction under name restriction. (Red-New1) captures synchronization
in private names in the scope of the name restriction, either by “hiding” a
public synchronization in the restricted name or by allowing private synchro-
nizations. (Red-New2) captures public synchronizations in the scope of the
name restriction, not involving the restricted name. (Red-Struct) closes
reduction under structural congruence.

We illustrate reduction using the purchase interaction example discussed
in the Introduction. Consider the following reduction (the code is taken from

8

Fig. 2):

(new chat)
(Shop /Buyer buyService(chat).

chat /Buyer buy().chat .Buyer price().chat .Buyer details())
|
Shop .Seller buyService(x).

x .Seller buy().x /Seller price().Carrier /Seller shipService(x).
x /Seller product()

|
Carrier .Shipper shipService(x).

x .Shipper product().x /Shipper details()

The only possible interaction in the system is the exchange of the buyService
message in name Shop between Buyer and Seller. As the result of this com-
munication, channel chat is sent from the buyer to the seller, allowing them
to share a private medium of communication. The buyService message ex-
change, recorded in label Shop : Buyer→ SellerbuyService(), leads to the sys-
tem:

(new chat)
(chat /Buyer buy().chat .Buyer price().chat .Buyer details()
|
chat .Seller buy().chat /Seller price().Carrier /Seller shipService(chat).

chat /Seller product())
|
Carrier .Shipper shipService(x).

x .Shipper product().x /Shipper details()

At this point the exchange of messages buy and then price between Buyer
and Seller in channel chat may take place (described via τ labels, since chat
is private to the system), leading to the following configuration:

(new chat)
(chat .Buyer details()
|
Carrier /Seller shipService(chat).chat /Seller product())
|
Carrier .Shipper shipService(x).

x .Shipper product().x /Shipper details()

By now message shipService may be exchanged in name Carrier , where
channel chat is sent to Carrier , allowing for a third-party to join the ongo-
ing interaction. Notice Shop and Carrier get to interact on the delegated
channel chat afterwords, exchanging message product . Notice also that label

9

B ::= end 8 B |B 8 3B 8 ρ{li(Mi).Bi}i∈I

T ::= l(B) M ::= B 8 T ρ ::= !s 8 ?r 8 s→ r

Figure 7: Conversation Types Syntax.

Shop : Shipper→ SellershipService() describes the shipService message ex-
change, identifying the roles involved in the interaction. This information is
relevant to our typing analysis, presented in the next section, where process
behaviors are checked against type specifications.

3 Type System

In this section we present our type system. The type language is given
in Fig. 7, where we distinguish between behavioral types that describe lin-
ear interactions (B) from types that describe shared message exchanges (T)
(cf. conversation [3] or session [11] initiation primitives). We also use mes-
sage (argument) types (M) that specify either a linear protocol or a shared
message type, and communication prefixes (ρ) that describe role-based com-
munication actions.

A behavioral type B specifies either the inactive behavior end, the paral-
lel composition B1 |B2 of two independent behaviors B1 and B2, the some-
time 3B which says that behavior B may occur at any point in time, or
a menu of labeled actions ρ{li(Mi).Bi}i∈I , each one specifying the type of
the name communicated in the message Mi, and the respective continuation
behavior Bi. Depending on the communication prefix ρ, an action menu rep-
resents either an input summation branching (if ρ is ?r), an output choice
(if ρ is !s) — cf. branch and choice session types [11] — or an internal choice
s→ r, i.e., a matched communication between an output and an input. No-
tice that the communication roles are identified in the communication pre-
fixes: the sender role in !s, the receiver role in ?r, and the two roles involved
in the interaction in s→ r (s sends to r). Notice also that input and output
actions (interface types that capture interactions with the environment) are
mixed with matched actions (capturing internal interactions) at the same
level in the type language.

The Conversation Type language is extended with role-based annotations
and sometime types (3B). Although a specification is not expected to use
3B types, these are crucial to allow the decomposition of protocols into
slices, some of which related to interactions that occur later in the protocol.

A message argument type M either specifies a behavioral linear type B,
in case a linear name is communicated in the message, or a shared message
exchange type T , in case a shared name is communicated in the message.
A shared message exchange type T abbreviates l(B), identifying the label

10

end ` wf (WF-END)

B1#B2 B1 ` wf B2 ` wf
B1 |B2 ` wf

(WF-PAR)

∀i ∈ I Bi ` wf ρ{li(Mi).end}#Bi

ρ{li(Mi).Bi}i∈I ` wf
(WF-COM)

ρ{li(Mi).Bi} ` wf ρ ∈ {!s, ?r}
3ρ{li(Mi).Bi}i∈I ` wf

(WF-SM1)

3B1 ` wf 3B2 ` wf
3(B1 |B2) ` wf

(WF-SM2)

Figure 8: Type Well-Formedness.

of the message exchanged and the (linear) type of the name sent in the
message — to simplify the presentation we consider that only linear names
can be communicated in shared messages (communicating shared names can
be easily encoded).

We now introduce some auxiliary notions, namely the type apartness,
well-formed types, and matched types, all defined as predicates.Type apart-
ness is used to identify non-interfering concurrent behaviors that may be
safely composed in a linear interaction. To define type-apartness we use
lab(B) to denote the set of labels occurring in type B, defined as expected.
We say that two types B1 and B2 are apart, and we write B1#B2, if the set
of labels of B1 is disjoint from the set of labels of B2 (lab(B1)∩ lab(B2) = ∅).

Building on apartness, we introduce well-formed types to capture race-
free behavioral descriptions. We say type B is well-formed if B ` wf can
be derived by the rules given in Fig. 8. Informally, in a well-formed type
labels do not appear repeatedly in parallel (to ensure race-free behavior) or
in sequence (useful to simplify presentation). Also well-formed 3 types are
not applied directly to message exchange (s→ r) polarities. In the remaining
technical presentation (e.g., in typing rules) we implicitly assume types are
well-formed. Also used by our typing is the notion of matched types, which
capture systems where all input actions have a matching output. We say
that type B is matched, noted matched(B), if all communication prefixes in
B are of the form s→ r.

The subtyping relation, noted <:, between behavioral types is given in
Fig. 9, where we use B1 ≡ B2 when B1 <: B2 and B2 <: B1. We distinguish

11

B1 <: B′
1 =⇒ B1 |B2 <: B′

1 |B2

Bi <: B′
i =⇒ ρ{li(Mi).Bi}i∈I <: ρ{li(Mi).B′

i}i∈I

(B1 |B2) |B3 ≡ B1 | (B2 |B3)
B1 |B2 ≡ B2 |B1 B |end ≡ B

3(B1 |B2) ≡ 3B1 |3B2 3end ≡ end B <: 3B

Figure 9: Subtyping Relation.

the use of subtyping to introduce flexibility at the level of 3 types: type B
is a subtype of 3B which, intuitively, means that carrying out behavior B
immediately is a safe implementation of eventually carrying out behavior B.

We may now introduce type split, a ternary relation that explains how a
behavioral type may be safely decomposed in two slices of behavior, captur-
ing, in a compositional way, the behavioral contribution of distinct processes
to the overall interaction. The type splitting relation is defined by the rules
given in Fig. 10, where we use B = B1 ◦ B2 to denote that type B may be
decomposed in parts B1 and B2. We briefly discuss the splitting rules. Rule
(S-END) specifies that a behavioral type may be decomposed in itself and
the inactive behavior, typing processes that contribute “all or nothing” to the
interaction. Rule (S-PAR) explains the decomposition of two independent
behaviors in two slices of behaviors each, capturing the decomposition of a
system in two processes that contribute both to independent interactions.
Rule (S-TAU) separates a matched communication, between roles r1 and
r2, in the respective output by role r1 and input by role r2, given a splitting
of the continuation behaviors. The rule captures the decomposition of a sys-
tem in two processes that synchronize in a message, each with a given role
in the interaction, where one of them carries out the behavior immediately,
while the other may carry out the behavior at some point in time (3). Rule
(S-BRK) separates a 3 (sometime) distinguished slice of behavior from a
communication prefixed type, provided this behavior can be split out of (all)
the continuations. The rule thus captures the decomposition of a system
in two parts, where one retains the (entire) interaction capability specified
by the communication prefixed type while the other contributes to ensuing
interactions—singled out by the 3. Notice that (S-BRK) allows to split
behaviors such that the same slice is shared between all branches, useful
when addressing, e.g., a branching protocol where every branch terminates
with an ok or ack message. Rule (S-EQU) closes the relation under type
equivalence.

To simplify the presentation we elide the symmetric counterparts of the
rules shown in Fig. 10. Also, we sometimes use B1 ◦ B2 to represent a type
B such that B = B1 ◦ B2 (if any such B exists). Notice that B1 ◦ B2 does
not uniquely identify a type, as B1 and B2 may be the result of splitting

12

B = B ◦ end B = end ◦B
B1 = B′

1 ◦B′′
1 B2 = B′

2 ◦B′′
2

B1 |B2 = B′
1 |B′

2 ◦B′′
1 |B′′

2

(S-END,S-END-1,S-PAR)
Bi = B′

i ◦B′′
i ∀i ∈ I

r1 → r2{li(Mi).Bi}i∈I = !r1{li(Mi).B′
i}i∈I ◦3?r2{li(Mi).B′′

i }i∈I
(S-TAU)

Bi = B′
i ◦B′′

i ∀i ∈ I

r1 → r2{li(Mi).Bi}i∈I = 3!r1{li(Mi).B′
i}i∈I ◦ ?r2{li(Mi).B′′

i }i∈I

(S-TAU-1)
Bi = B′

i ◦B′′
i ∀i ∈ I

r1 → r2{li(Mi).Bi}i∈I = ?r2{li(Mi).B′
i}i∈I ◦3!r1{li(Mi).B′′

i }i∈I

(S-TAU-2)
Bi = B′

i ◦B′′
i ∀i ∈ I

r1 → r2{li(Mi).Bi}i∈I = 3?r2{li(Mi).B′
i}i∈I ◦ !r1{li(Mi).B′′

i }i∈I

(S-TAU-3)
Bi = B′

i ◦3B ∀i ∈ I

ρ{li(Mi).Bi}i∈I = ρ{li(Mi).B′
i}i∈I ◦3B

(S-BRK)

Bi = 3B ◦B′
i ∀i ∈ I

ρ{li(Mi).Bi}i∈I = 3B ◦ ρ{li(Mi).B′
i}i∈I

(S-BRK-1)

B′
1 = B′

2 ◦B′
3 B1 ≡ B′

1 B2 ≡ B′
2 B3 ≡ B′

3

B1 = B2 ◦B3
(S-EQU)

Figure 10: Type Splitting Relation.

distinct types. Notice also that a type may be split in several ways. In prior
work on conversation types [3], we have called “merge” to type-splitting, in
the sense that if B = B1 ◦ B2 then we may see B as the result of merging
the behaviors B1 and B2. The merge was originally inspired in the (non-
algebraic) end-point projection introduced in [4].

We state a basic property of splitting, crucial to our type system which
relies on the flexibility of the type decomposition to address the behavioral
contributions of multiple parties.

Proposition 3.1 (Associativity) If B = B1 ◦ B′ and B′ = B2 ◦ B3 then
there exists B′′ such that B = B′′ ◦B3 and B′′ = B1 ◦B2.

Proof. By induction on the length of the derivation of B = B1 ◦ B′ (see
Appendix).

13

We may now present the type system. A typing judgment is of the form
Γ;∆ ` P where Γ is the typing environment which describes the interactions
of P on linear channels, and ∆ is the typing environment which describes the
interactions of P on shared channels (we write Γ;∆ only when the domains
of Γ and ∆ are disjoint). Thus, a typing environment Γ is an assignment
of identifiers to behavioral types (Γ , x1 : B1, . . . , xk : Bk) and a typing
environment ∆ is an assignment of identifiers to message exchange types
(∆ , x1 : T1, . . . , xk : Tk). We introduce some auxiliary notation to simplify
presentation: we use (x1 : B′

1, . . . , xk : B′
k,Γ1) ◦ (x1 : B′′

1 , . . . , xk : B′′
k ,Γ2) to

denote x1 : B1, . . . , xk : Bk,Γ1,Γ2 such that Bi = B′
i ◦B′′

i , for all i in 1, . . . , k
and the domains of Γ1 and Γ2 are disjoint. Also, we use x1 : B1, . . . , xk :
Bk <: x1 : B′

1, . . . , xk : B′
k when Bi <: B′

i, for all i in 1, . . . , k.
We say process P is well-typed if Γ;∆ ` P may be derived using the

rules given in Fig. 11. We discuss the key features of the typing rules. Rule
(T-END) says the inactive process has no linear behavior (but complies
to any shared behavior specification). Rule (T-PAR) types the parallel
composition process with the linear types which may be split in the behaviors
of the two parallel branches, while ensuring both branches comply to the
same usage of shared types. Rule (T-NEW) types a restricted linear name
provided its usage is matched, i.e., it has no outstanding unmatched (? or
!) communications. Rule (T-SNEW) types a restricted shared name, if it
is used according to a shared message exchange.

Rules for communication prefixes are divided in three groups, depending
on the shared or linear usage of both communication subject and object.
Rules (T-SIN) and (T-SOUT) address the case when the communication
subject has shared usage while the object has linear usage. Notice that the
behavioral type B, specified in the argument type of the shared message ex-
change type l(B) of x, captures the slice of behavior which is delegated in the
communication. Type B describes the linear usage of the input parameter in
the premise of (T-SIN), and is singled out via splitting in the conclusion of
(T-SOUT), where splitting is used so as to take into account the usage of y
(the sent name) by the continuation (crucial to type processes that delegate
a name and continue to interact in it).

Rules (T-IN) and (T-OUT) address the cases when both the commu-
nication subject and object have linear usage, and follow the same lines as
described above. Both rules record the prefixed type ρ{li(B′

i).Bi}i∈I in the
conclusions, where ρ is either ?r or !r for input and output, respectively. A
single output is typed with a communication menu (containing the label of
the emitted message) so as to directly match input summation menus. Notice
that the prefixed type is taken up to subtyping, so as to allow to introduce
3 types that may be necessary for the split in the conclusion. Notice also
that the prefixed type is singled out via splitting, so as to take into account
behaviors of x originally assigned to other threads (due to name delegation).
Rules (T-LSIN) and (T-LSOUT) follow similar lines, addressing the case

14

x : end;∆ ` 0
Γ1;∆ ` P1 Γ2;∆ ` P2

Γ1 ◦ Γ2;∆ ` P1 |P2
(T-END,T-PAR)

Γ, x : B;∆ ` P matched(B)
Γ;∆ ` (new x)P

Γ;∆, x : l(B) ` P

Γ;∆ ` (new x)P
(T-NEW,T-SNEW)

Γ, y : B;∆, x : l(B) ` P

Γ;∆, x : l(B) ` x .r {l(y).P}
Γ;∆, x : l(B) ` P

Γ ◦ y : B;∆, x : l(B) ` x/rl(y).P
(T-SIN,T-SOUT)

∀i ∈ I Γ ◦ x : Bi, yi : B′
i;∆ ` Pi ?r{li(B′

i).Bi}i∈I <: B

Γ ◦ x : B;∆ ` x .r {li(yi).Pi}i∈I
(T-IN)

k ∈ I Γ ◦ x : Bk;∆ ` P !r{li(B′
i).Bi}i∈I <: B

Γ ◦ x : B ◦ y : B′
k;∆ ` x /r lk(y).P

(T-OUT)

∀i ∈ I Γ ◦ x : B′
i;∆, yi : Ti ` Pi ?r{li(Ti).B′

i}i∈I <: B

Γ ◦ x : B;∆ ` x .r {li(yi).Pi}i∈I
(T-LSIN)

Γ ◦ x : B′
k;∆, y : Tk ` P !r{li(Ti).B′

i}i∈I <: B

Γ ◦ x : B;∆, y : Tk ` x /r lk(y).P
(T-LSOUT)

Γ1;∆ ` P Γ1 <: Γ2

Γ2;∆ ` P

x : end;∆ ` P

x : end;∆ ` ∗P
(T-SUB,T-REP)

Figure 11: Typing Rules.

when the communication subject / object have linear / shared use. The last
two rules are (T-REP) which types the replicated process, provided it uses
no linear names, and the subsumption rule (T-SUB).

We may now present our results, starting by the key auxiliary lemmas
that ensure that typing is preserved by substitution and by structural con-
gruence.

Lemma 3.2 (Substitution) If Γ;∆ ` P and

1. Γ <: Γ′, x : B and Γ′ ◦ y : B is defined then Γ′ ◦ y : B;∆ ` P [x← y].

2. ∆ = ∆′, x : T and ∆, y : T is defined then Γ;∆′, y : T ` P [x← y].

15

s→ r{li(Mi).Bi}i∈I
s→rlk−→ Bk (k ∈ I)

B1
s→rl−→ B2

B1 |B
s→rl−→ B2 |B

Figure 12: Type Reduction.

Proof. By induction on the length of the derivation of Γ;∆ ` P following
expected lines.

Lemma 3.3 (Subject Congruence) If Γ;∆ ` P and P ≡ P ′ then Γ;∆ `
P ′.

Proof. By induction on the length of the derivation of P ≡ P ′ following
expected lines. The proof crucially builds on the fact that the split relation
is symmetric (by definition) and associative (Proposition 3.1).

We can show that typing is preserved by substitution and by structural
congruence. Given that our main result involves relating process actions and
type specifications, we introduce type reduction, defined by the rules given in
Fig. 12. In this way, we are able to precisely describe process reductions via
the corresponding type reductions. Type reduction specifies how matched
types reduce, explaining a message exchange that activates the respective
continuation. Type reduction relies on reduction labels of the form s→ rl,
identifying the roles involved in the communication and the label of the
exchanged message.

We state our main result that explains process reduction via type reduc-
tion.

Theorem 3.4 (Type Preservation) Let Γ;∆ ` P and P
λ−→ P ′.

• If λ = τ then Γ;∆ ` P ′;

• If λ = x : s→ rl then (1) Γ = Γ′, x : B and B
s→rl−→ B′ and Γ′, x :

B′;∆ ` P ′ or (2) ∆ = ∆′, x : T and Γ;∆ ` P ′.

Proof. By induction on the length of the derivation of P
λ−→ P ′ (see

Appendix).
Theorem 3.4 states that any reduction of a well-typed process is explained

by the corresponding type reduction, thus ensuring processes interact accord-
ing to the protocols prescribed by the types. Notice that this compliance
entails that the protocols are actually carried out by the roles accordingly
to the type specifications. We state this property as a direct conclusion of
Theorem 3.4.

Corollary 3.5 (Role-Based Protocol Fidelity) If P is well-typed then
interactions in P follow the role-based protocols prescribed by the types.

16

We proceed to typing an example to provide further intuition. Returning
to Fig. 2, the type of name chat , as described in (1), page 4, is checked by
successively splitting and matching resulting types with subprocesses. In
this case, for example, we have the following decomposition by using rules
[S-END] and [S-TAU]. (e = Seller and h = Shipper)

!h{details().end} = end◦!h{details().end}
e→ h{product().!h{details().end}} =!e{product().end}◦?h{product().!h{details().end}}

Now, the splitting example given above appears when typing the subpro-
cess

Carrier /Seller shipService(chat).chat /Seller product() |
Carrier .Shipper shipService(x).x .Shipper product().x /Shipper details()

Here, the delegation of name chat , through service shipService, requires
that the behavior of chat to be split between the two processes.

In Figure 13, we show another variation of our example, where now Buyer
tells the Seller which shipping service he prefers. This example illustrates the
use of different IN/OUT typing rules. In the case of

Shop /Buyer buyService(chat)

an output of a linear on a shared name is typed by rule [T-SOUT]. The
inverse case, a shared name is sent through a linear name

chat /Buyer buy(Shipper)

is covered by rule [T-LSOUT]. On the other hand, receiving a shared in a
linear name

x .Seller buy(y)

corresponds to rule [T-LSIN].
From Proposition 3.1, we conclude that the order by which the partici-

pants enter the conversation is not relevant for its soundness. For example,
if B is matched and B = B1 ◦B′ with B′ = B2 ◦B3, then associativity yields
B = B1 ◦ B2 ◦ B3. In other words, one can split B in three B1, B2, B3 by
any order. Now, suppose Γi, x : Bi ` Pi, i = 1, 2, 3. In order to re-construct
the type B for x in P1 |P2 |P3 one can also use any order. In our running
example (Fig. 2) the types of channel chat in processes Buyer and Shop are,
respectively:

!Buyer buy().?Buyer price().?Buyer details()

?Seller buy().!Seller price().Seller→ Shipper product().!Shipper details()

where the latter shows that Shop retains the Shipper contribution to the over-
all interaction, which can then be later on delegated to Carrier. The latter

17

Buyer , (new chat)
Shop /Buyer buyService(chat).

chat /Buyer buy(Shipper).
chat .Buyer price().
chat .Buyer details()

Shop , Shop .Seller buyService(x).
x .Seller buy(y).
x /Seller price().
y /Seller shipService(x).

x /Seller product()

Figure 13: Purchase System Code (c).

is also specified in the argument type of message buyService, identifying
the behavior delegated to the seller upon synchronization in the buyService
message. The actual contribution of Carrier to the interaction in chat
is captured by the following type (which is the argument type of message
shipService):

?Shipper product().!Shipper details()

So Shop “directly” contributes to the interaction with the behavior:

?Seller buy().!Seller price().!Seller product()

The type specification (1) can be recovered by simulating the conversation
taking place in chat and recording its trace. Typing the alternative purchase
interaction shown in Fig. 3 follows similar lines, the difference is that type
splitting allows to mix different roles in the contributions of each process to
the overall interaction. Namely, the behavior of the Buyer process in the
purchase interaction implementation shown in Fig. 3 is the same as before:

!Buyer buy().?Buyer price().3?Buyer details()

but where Buyer later on delegates the capability to receive details to MailBox,
which behavior is captured by the type (specified in the storeService type):

?Buyer details()

The Shop type is also the same as before (buyService has the same type):

?Seller buy().!Seller price().Seller→ Shipper product().!Shipper details()

but now no delegation of behavior to an external partner takes place, and
Shop actually impersonates both the role of Seller and the role of Shipper.

18

4 Concluding Remarks

Our development is based on previous work on conversation types [3], ex-
tended so as to address assignment of dynamic roles to the several parties
involved. Technically, we identified a minimal set of ingredients to add to
a core process specification language (the π-calculus [13]) so as to address
role-based protocol verification (labeled channels and role annotations) and
extended the type analysis accordingly. Preliminary ideas of this work were
presented in [1]. Noticeably, the splitting relation defined in this paper is
much more readable and also more expressive — in particular, it allows for
splitting (the same) behavior out of the continuations of a branching be-
havior. Crucial to our development is the introduction of the 3 type which
allows to control behavior interleaving.

We discuss some extensions to our development. An essential feature
of any type analysis is a verification procedure. We are yet to implement
such a procedure, but we may already assert there exists such a procedure
in a setting where all bound names are type annotated. Another crucial
property left out of this paper is progress. However, we can directly reuse
the progress proof system introduced in [3] for a labeled π-calculus, which,
combined with our typing analysis, may be used to single-out systems that
enjoy progress. An interesting further development to be addressed is the
dynamic delegation of roles. In our setting roles are statically annotated in
processes. Extending the language with role delegation would allow parties
to dynamically assume unanticipated roles.

Several works address role-base type specifications to enforce security
concerns (for example [7] introduces a type analysis to discipline role-based
access control to data). We focus on communication protocol assignment
and leave security to be handled orthogonally. Our approach builds on con-
versation type theory, introduced as a generalization of session types [9, 11]
to discipline multiparty interaction, including dynamically established con-
versations which have an unanticipated number of participants. Other works
share the goal to address multiparty interaction, namely [5, 12, 2, 10]. We
distinguish the approach of conversation types since it addresses multiparty
interaction where the number of participants is not fixed a priori, while con-
sidering a simpler underlying model. We remark that in [5, 2, 10] a notion of
role assignment is explicit, unlike in [3] where types do not mention identities
of communicating partners. However, such role assignment is achieved via a
structural projection, forcing single roles to be carried out by single threads.
A different notion of dynamic roles is also considered in the approaches de-
scribed in [6, 8], allowing for several processes, much like a thread pool, to
simultaneously carry out a single role.

In this work we have presented a type-based analysis which ensures that
systems follow the prescribed role-based protocol specifications. Novel to
our approach is the flexibility of role assignment, allowing us to address

19

dynamic distributed implementations of role specifications, where a single
role can be distributed between several processes and a single process can
dynamically switch between roles. To the best of our knowledge, ours is the
only (session-type like) approach that addresses such configurations, that
are actually found in, e.g., real world business protocols. Our development
extends conversation types with role-based protocol specifications, retaining
the simplicity of the approach, simplifying and generalizing the underlying
technical framework, and contrasting with related approaches in the dynamic
and flexible nature of roles.

References

[1] Pedro Baltazar, Vasco T. Vasconcelos, and Hugo T. Vieira. Typing Dy-
namic Roles in Multiparty Interaction. In INForum 2011. Universidade
de Coimbra, 2011.

[2] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mar-
iangiola Dezani-Ciancaglini, and Nobuko Yoshida. Global Progress in
Dynamically Interleaved Multiparty Sessions. In CONCUR 2008, vol-
ume 5201 of LNCS, pages 418–433. Springer, 2008.

[3] Luís Caires and Hugo T. Vieira. Conversation Types. Theoretical Com-
puter Science, 411(51-52):4399–4440, 2010.

[4] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
Communication-Centred Programming for Web Services. In ESOP
2007, volume 4421 of LNCS, pages 2–17. Springer, 2007.

[5] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca
Padovani. On Global Types and Multi-party Sessions. In FMOOD-
S/FORTE 2011, volume 6722 of LNCS, pages 1–28. Springer, 2011.

[6] Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic Multirole Session
Types. In POPL 2011, pages 435–446. ACM, 2011.

[7] Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and Mariangiola
Dezani-Ciancaglini. Types and Roles for Web Security. Transactions
on Advanced Research, 8(2):16–21, 2012.

[8] Elena Giachino, Matthew Sackman, Sophia Drossopoulou, and Susan
Eisenbach. Softly Safely Spoken: Role Playing for Session Types. In
PLACES 2009, 2009.

[9] Kohei Honda. Types for Dyadic Interaction. In CONCUR 1993, volume
715 of LNCS, pages 509–523. Springer, 1993.

20

[10] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asyn-
chronous Session Types. In POPL 2008, pages 273–284. ACM Press,
2008.

[11] Kokei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language
Primitives and Type Discipline for Structured Communication-Based
Programming. In ESOP 1998, volume 1381 of LNCS, pages 122–138.
Springer, 1998.

[12] Luca Padovani. Session Types at the Mirror. In ICE 2009, volume 12
of EPTCS, pages 71–86, 2009.

[13] Davide Sangiorgi and David Walker. The π-Calculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.

[14] Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus
of objects. In ISOTAS 1993, volume 472 of LNCS, pages 460–474.
Springer, 1993.

A Proofs

Proposition 3.1 (Associativity)
(repetition of the statement in page 13)
If B = B1 ◦B′ and B′ = B2 ◦B3 then there exists B′′ such that B = B′′ ◦B3

and B′′ = B1 ◦B2.

Proof. By induction on the length of the derivation tree of B = B1 ◦B′.

Base: B = B1 ◦B′ by rule [S-END]. We have two cases.

1. B1 is end and B = B′. In this case, let B′′ = B2. Hence, B2 = end◦B2

and B = B2 ◦B3.

2. B′ is end and B = B1. In this case, we set B′′ = end = end ◦ end,
with B2 = B3 = end.

Step: Suppose the Proposition is valid for all derivation trees of degree
≤ k. Let B = B1 ◦ B′ be a derivation with degree k + 1. Lets analyze all
possible cases.

1. [S-PAR] is the last rule in the derivation tree of B = B1 ◦ B′. Hence,
B = B•

1 |B•
2 with B1 = B•

11 |B•
21 and B′ = B•

12 |B•
22, such that

...
B•

1 = B•
11 ◦B•

12
R1

...
B•

2 = B•
21 ◦B•

22
R2

B•
1 |B•

2 = B•
11 |B•

21 ◦B•
12 |B•

22

[S-PAR]

21

(a) If B′ = B2 ◦ B3 by rule [S-END], then we have two cases: B2 =
end and B3 = end. If B2 = end, then we let B′′ = B1. And, if
B3 = end, then we set B′′ = B.

(b) Suppose B′ = B2 ◦B3 by rule [S-PAR]. Hence

B•
12 = B•

121 ◦B•
122 B•

22 = B•
221 ◦B•

222

B•
12 |B•

22 = B•
121 |B•

221 ◦B•
122 |B•

222

[S-PAR]

Where B2 = B•
121 |B•

221 and B3 = B•
122 |B•

222.
Now, applying the induction hypothesis to branch R1 and B•

12 =
B•

121 ◦ B•
122 yields B•

1 = (B•
11 ◦ B•

121) ◦ B•
122. 1 In the same

manner, applying the induction hypothesis to branch R2 yields
B•

2 = (B•
21 ◦B•

221) ◦B•
222.

Therefore, by applying rule [S-PAR] we have

...
B•

1 = (B•
11 ◦B•

121) ◦B•
122

R1’
...

B•
2 = (B•

21 ◦B•
221) ◦B•

222
R2’

B•
1 |B•

2 = (B•
11 ◦B•

121) | (B•
21 ◦B•

221) ◦B•
122 |B•

222

[S-PAR]

Hence, we let B′′ = (B•
11◦B•

121) | (B•
21◦B•

221), and by rule [S-PAR]
we get B′′ = B1 ◦B2.

(c) The case B′ = B2 ◦ B3 by rule [S-EQU] is a straightforward ap-
plication of the induction hypothesis and subtype relation.

2. [S-TAU] is the last rule in B = B1 ◦B′. Without loss of generality we
drop the modality from the prefixes, since is not relevant for this case.

Bi = B1i ◦B2i ∀i ∈ I

r → s{li(B′
i).Bi}i =!r{li(B′

i).B1i}i◦?s{li(B′
i).B2i}i

[S-TAU]

We need to consider two cases.

(a) B1 =!r{li(B′
i).B1i}i. If B′ = B2 ◦ B3, then it must be by rule

[S-END], [S-EQU] or [S-BRK]. The cases of rules [S-END] and
[S-EQU] are straightforward. Now, if B′ = B2 ◦B3 comes by rule
[S-BRK] we have also two cases.

1Here, we use (B′ ◦ B′′) to denote a B, such that B = B′ ◦ B′′.

22

B2i = B′′
i ◦3B′′′ ∀i ∈ I

?s{li(B′
i).B2i}i =?s{li(B′

i).B
′′
i }i ◦3B′′′ [S-BRK]

i. B2 =?s{li(B′
i).B

′′
i }i and B3 = 3B′′′. In this case, we apply

the induction hypothesis on Bi and get Bi = (B1i◦B′′
i)◦3B′′′,

for all i ∈ I. Hence, by rule [S-BRK] we have

Bi = (B1i ◦B′′
i) ◦3B′′′ ∀i ∈ I

r → s{li(B′
i).Bi}i = r → s{li(B′

i).(B1i ◦B′′
i)}i ◦3B′′′ [S-BRK]

Hence, taking B′′ = r → s{li(B′
i).(B1i ◦B′′

i)}i yields, by rule
[S-TAU],

B′′ =!r{li(B′
i).B1i}i◦?s{li(B′

i).B
′′
i }i = B1 ◦B2.

ii. B3 =?s{li(B′
i).B

′′
i }i and B2 = 3B′′′. Once more, by applying

the hypothesis to Bi we have Bi = (B1i ◦3B′′′) ◦Bi
′′, for all

i ∈ I. Applying rule [S-TAU] yields

r → s{li(B′
i).Bi}i =!r{li(B′

i).(B1i ◦3B′′′)}i◦?s{li(B′
i).B

′′
i }i

Now, we set B′′ =!r{li(B′
i).(B1i ◦ 3B′′′)}i, and by rule [S-

BRK] we have B′′ =!r{li(B′
i).(B1i◦3B′′′)}i =!r{li(B′

i).B1i}i◦
3B′′′, as expected.

(b) B1 =?r{li(B′
i).Bi}i. This case is analogous to the previous, (a).

3. [S-BRK] is the last rule in B = B1 ◦B′.

Bi = B•
i ◦3B• ∀i ∈ I

ρ{li(Mi).Bi}i = ρ{li(Mi).B•
i }i ◦3B• [S-BRK]

Once more, two cases to be considered.

(a) B1 = ρ{li(Mi).B•
i }i and B′ = 3B•. Clearly, if B′ = B2 ◦

B3, then 3B• = 3B•
2 ◦ 3B•

3 . Now, applying the induction
hypothesis to 3B•

3 and Bi = B•
i ◦ 3B• we have Bi = (B•

i ◦
3B•

2) ◦3B•
3 . From applying [S-BRK] and then [S-TAU] we con-

clude that ρ{li(Mi).Bi}i = ρ{li(Mi).(B•
i ◦3B•

2)}i ◦3B•
3 and that

ρ{li(Mi).(B•
i ◦3B•

2)}i = ρ{li(Mi).B•
i }i◦3B•

2 . Hence, ρ{li(Mi).Bi}i =
(ρ{li(Mi).B•

i }i ◦3B•
2) ◦3B•

3 .

23

(b) B′ = ρ{li(Mi).B•
i }i and B1 = 3B•. In this case, we have to

consider all the possible last rule of the split B′ = ρ{li(Mi).B•
i }i =

B2 ◦B3. The cases [S-END] and [S-EQU] are straightforward.

i. [S-TAU] Analogous to the sub-case (a)− (i) of case (2).
ii. [S-BRK] Analogous to the sub-case (a)− (ii) of case (2).

4. [S-EQU] is the last rule in B = B1 ◦B′. Straightforward.

Theorem 3.4 (Type Preservation)
(repetition of the statement in page 16)

If Γ;∆ ` P and P
λ−→ P ′ and

• λ = τ then Γ;∆ ` P ′;

• λ = x : s→ rl then (1) Γ = Γ′, x : B and B
s→rl−→ B′ and Γ′, x : B′;∆ `

P ′ or (2) ∆ = ∆′, x : T and Γ;∆ ` P ′.

Proof. By induction on the length of the derivation of P
λ−→ P ′.

(Case (Red-Comm))

Γ;∆ ` x .r {li(xi).Pi}i∈I |x /s lk(y).P (1)

x .r {li(xi).Pi}i∈I |x /s lk(y).P x:s→rlk−→ Pk[xk ← y] |P (2)
(Assumption)

(Case x ∈ dom(∆) ∧ y ∈ dom(Γ))

Γ1;∆′, x : l1(B) ` x .r {l1(x1).P1} (3)
I = {1}, k = 1 (4)

((T-SIN))
Γ2 ◦ y : B;∆′, x : l1(B) ` x /s l1(y).P (5)

((T-SOUT))
Γ = Γ1 ◦ Γ2 ◦ y : B (6)
∆ = ∆′, x : l1(B) (7)
Γ;∆ ` x .r {l1(x1).P1} |x /s l1(y).P (8)

((3), (5) and (1))
Γ1, x1 : B;∆′, x : l1(B) ` P1 (9)

(Inversion on (T-SIN) and (3))

24

Γ1 ◦ y : B defined (10)
((6))

Γ1 ◦ y : B;∆′, x : l1(B) ` P1[x1 ← y] (11)
((9) and (10) and Lemma 3.2)

Γ2;∆′, x : l1(B) ` P (12)
(Inversion on (T-SOUT) and (5))

Γ;∆ ` P1[x1 ← y] |P (13)
((12), (11), (6), (7) and (T-PAR))

(Case x ∈ dom(Γ) ∧ y ∈ dom(Γ))

Γ1 ◦ x : B1;∆ ` x .r {li(xi).Pi}i∈I (14)
((T-IN))

Γ2 ◦ x : B2 ◦ y : B′
k;∆ ` x /s lk(y).P (15)

((T-OUT))
Γ = Γ1 ◦ Γ2 ◦ x : B1 ◦ x : B2 ◦ y : B′

k (16)
((14), (15) and (1))

∀i ∈ I Γ1 ◦ x : Bi, xi : B′
i;∆ ` Pi (17)

?r{li(B′
i).Bi}i∈I <: B1 (18)

(Inversion on (T-IN) and (14))
Γ2 ◦ x : B′′

k ;∆ ` P (19)
!s{li(B′

i).B
′′
i }i∈I <: B2 (20)

(Inversion on (T-OUT) and (15))

(Case B1 ≡ ?r{li(B′
i).B1i}i∈I ∧B2 ≡ 3!s{li(B′

i).B2i}i∈I)

B1 ≡ ?r{li(B′
i).B1i}i∈I (21)

B2 ≡ 3!s{li(B′
i).B2i}i∈I (22)

((Assumption))
∀i∈I Bi <: B1i (23)

((18) and (21))
Γ1 ◦ x : B1k

◦ y : B′
k defined (24)

((16), (18), (23) and (21))
Γ1 ◦ x : B1k

◦ y : B′
k;∆ ` Pk[xk ← y] (25)

((17) and (24) and Lemma 3.2)

25

s→ r{li(B′
i).(B1i ◦ B2i)}i∈I = B1 ◦ B2 (26)

((21) and (22) and (16))
∀i∈I B′′

i <: B2i (27)
((20) and (22))

Γ2 ◦ x : B2k
;∆ ` P (28)

((19) and (27) and (T-SUB))
Γ1 ◦ Γ2 ◦ x : (B1k

◦ B2k
) ◦ y : B′

k;∆ ` Pk[xk ← y] |P (29)
((28), (25), (16) and (T-PAR))

Γ = Γ1 ◦ Γ2 ◦ x : s→ r{li(B′
i).(B1i ◦ B2i)}i∈I ◦ y : B′

k (30)
((16) and (26))

Γ s→rlk−→ Γ1 ◦ Γ2 ◦ x : (B1k
◦ B2k

) ◦ y : B′
k (31)

((30))

(Case B1 ≡ 3?r{li(B′
i).B1i}i∈I ∧B2 ≡ !s{li(B′

i).B2i}i∈I)

Follows lines similar to the previous case.

(Case B1 ≡ ?r{li(B′
i).B1i}i∈I ∧B2 ≡ !s{li(B′

i).B2i}i∈I)

Impossible since B1 ◦ B2 is not defined which contradicts (16).

(Case B1 ≡ 3?r{li(B′
i).B1i}i∈I ∧B2 ≡ 3!s{li(B′

i).B2i}i∈I)

Impossible since B1 ◦ B2 is not defined which contradicts (16).

(Case x ∈ dom(Γ) ∧ y ∈ dom(∆))

Follows lines similar to the previous case.

26

(Case (Red-Par))

Γ;∆ ` P1 |P2 (32)

P1 |P2
λ−→ P ′

1 |P2 (33)
(Assumption)

P1
λ−→ P ′

1 (34)
(Inversion on (Red-Par) and (33))

Γ = Γ1 ◦ Γ2 (35)
Γ2;∆ ` P2 (36)
Γ1;∆ ` P1 (37)

(Inversion on (T-PAR) and (32))

(Case λ = τ)

Γ1;∆ ` P ′
1 (38)

(Induction hypothesis on (37) and (34))
Γ;∆ ` P ′

1 |P2 (39)
((38), (36), (35) and (Red-Par))

(Case λ = x : s→ rl (1))

Γ1 = Γ′1, x : B1 (40)

B1
s→rl−→ B′

1 (41)
Γ′1, x : B′

1;∆ ` P ′
1 (42)

(Induction hypothesis on (37) and (34))
Γ2 = Γ′2, x : B2 (43)
Γ = Γ′, x : B (44)
Γ′ = Γ′1 ◦ Γ′2 (45)
B = B1 ◦ B2 (46)

((35))

B
s→rl−→ B′ (47)

B′ = B′
1 ◦ B2 (48)

((46) and (41) and B ` wf)
Γ′, x : B′ ` P ′

1 |P2 (49)
((48), (45), (42), (36), (43) and (T-PAR))

27

(Case λ = x : s→ rl (2))

∆ = ∆′, x : T (50)
Γ1;∆ ` P ′

1 (51)
(Induction hypothesis on (37) and (34))

Γ;∆ ` P ′
1 |P2 (52)

((51), (35), and (36))

(Case (Red-New1))

Γ;∆ ` (new x)P (53)

(new x)P τ−→ (new x)P ′ (54)
(Assumption)

P
λ−→ P ′ (55)

λ = x : s→ rl ∨ λ = τ (56)
(Inversion on (Red-New1) and (54))

(Case (T-NEW))

Γ, x : B;∆ ` P (57)
matched(B) (58)

(Inversion on (T-NEW) and (53))
(Case λ = τ)

Γ, x : B;∆ ` P ′ (59)
(Induction hypothesis on (57) and (55))

Γ;∆ ` (new x)P ′ (60)
((59), (58) and (T-NEW))

(Case λ = x : s→ rl)

B
s→rl−→ B′ (61)

Γ, x : B′;∆ ` P ′ (62)
(Induction hypothesis on (57) and (55))

matched(B′) (63)
((58) and (61))

Γ;∆ ` (new x)P ′ (64)
((62), (63) and (T-NEW))

28

(Case (T-SNEW))

Γ;∆, x : l(B) ` P (65)
(Inversion on (T-SNEW) and (53))

(Case λ = τ)
Γ;∆, x : l(B) ` P ′ (66)

(Induction hypothesis on (65) and (55))
Γ;∆ ` (new x)P ′ (67)

((66) and (T-SNEW))
(Case λ = x : s→ rl)

Γ;∆, x : l(B) ` P ′ (68)
(Induction hypothesis on (65) and (55))

Γ;∆ ` (new x)P ′ (69)
((68) and (T-SNEW))

(Case (Red-New2))

Γ;∆ ` (new y)P (70)

(new y)P λ−→ (new y)P ′ (71)
(Assumption)

P
λ−→ P ′ (72)

λ = x : s→ rl (x 6= y) (73)
(Inversion on (Red-New2) and (71))

(Case (T-NEW))

Γ, y : B1;∆ ` P (74)
matched(B1) (75)

(Inversion on (T-NEW) and (70))
(Case λ = x : s→ rl (1))

Γ, y : B1 = Γ′, y : B1, x : B (76)

B
s→rl−→ B′ (77)

Γ′, y : B1, x : B′;∆ ` P ′ (78)
(Induction hypothesis on (74) and (72))

Γ′, x : B′;∆ ` (new y)P ′ (79)
((78), (75) and (T-NEW))

29

(Case λ = x : s→ rl (2))
∆ = ∆′, x : T (80)
Γ, y : B1;∆ ` P ′ (81)

(Induction hypothesis on (74) and (72))
Γ;∆ ` (new y)P ′ (82)

((81), (75) and (T-NEW))

(Case (T-SNEW))

Γ;∆, y : l(B1) ` P (83)
(Inversion on (T-SNEW) and (70))

(Case λ = x : s→ rl (1))
Γ = Γ′, x : B (84)

B
s→rl−→ B′ (85)

Γ′, x : B′;∆, y : l(B1) ` P ′ (86)
(Induction hypothesis on (83) and (72))

Γ′, x : B′;∆ ` (new y)P ′ (87)
((86) and (T-SNEW))

(Case λ = x : s→ rl (2))
∆, y : l(B1) = ∆′, y : l(B1), x : T (88)
Γ;∆, y : l(B1) ` P ′ (89)

(Induction hypothesis on (83) and (72))
Γ;∆ ` (new y)P ′ (90)

((89) and (T-SNEW))

(Case (Red-Struct))

Γ;∆ ` P1 (91)

P1
λ−→ P2 (92)

(Assumption)
P1 ≡ P ′

1 (93)

P ′
1

λ−→ P ′
2 (94)

P2 ≡ P ′
2 (95)

(Inversion on (Red-Struct) and (92))
Γ;∆ ` P ′

1 (96)
((91) and Lemma 3.3)

30

(Case λ = τ)

Γ;∆ ` P ′
2 (97)

(Induction hypothesis on (96) and (94))
Γ;∆ ` P2 (98)

((97) and Lemma 3.3)

(Case λ = x : s→ rl (1))

Γ = Γ′, x : B (99)

B
s→rl−→ B′ (100)

Γ′, x : B′;∆ ` P ′
2 (101)

(Induction hypothesis on (96) and (94))
Γ′, x : B′;∆ ` P2 (102)

((101) and Lemma 3.3)

(Case λ = x : s→ rl (2))

∆ = ∆′, x : T (103)
Γ;∆ ` P ′

2 (104)
(Induction hypothesis on (96) and (94))

Γ;∆ ` P2 (105)
((104) and Lemma 3.3)

31

