ConGu

Checking Java Classes Against
Property-Driven Algebraic

Specifications
Joao Abreu Alexandre Caldeira
Anténia Lopes Isabel Nunes Luis S. Reis
Vasco T. Vasconcelos
DI-FCUL TR-07-7

March 28, 2007

Departamento de Informatica
Faculdade de Ciéncias da Universidade de Lisboa

Campo Grande, 1749-016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are

available by post from the above address.






ConGu

Checking Java Classes Against Property-Driven
Algebraic Specifications

Joao Abreu Alexandre Caldeira Anténia Lopes
Isabel Nunes Luis S. Reis Vasco T. Vasconcelos

March 28, 2007



Abstract

ConGu is a tool that supports the checking of Java classes against property-
driven algebraic specifications. This document presents the specification, lan-
guages, the tool usage, and its implementation, version 1.32.

Chapter [I|describes the two specification languages: the language of abstract
data types specifications, and that for defining refinement mappings between
these specifications and Java classes.

Chapter [2] explains how to install and use ConGu tool.

And finally, Chapter |[3| presents the implementation details of the toolﬂ

I This work was partially supported through the POSI/CHS/48015/ 2002 Project Contract
Guided System Development project. Thanks are due to José Luiz Fiadeiro for many fruitful
discussions that have helped putting the project together.



Chapter 1

The Specification and the
Refinement Languages

1.1 Introduction

The Contract Guided System Development project aims at developing a method-
ology to test implementations of abstract data types against their specifications.
The key idea is to reduce this problem to the run-time monitoring of classes an-
notated with contracts that represent the specification. In order to make this
approach systematic and to allow for the development of tools, a language for
specification and a language for refining these specifications into Java classes
were developed; they are described in Sections and respectively. Re-
finement into Java works at the level of modules; Section describes this
notion.

1.2 The specification language

This section describes the specification language. Subsection presents the
general structure of specifications; Subsection presents the conformance
rules to which specifications must obey and that are not covered by the grammar.
The grammar itself is presented in Appendix

1.2.1 General structure

According to the grammar presented in Appendix and the extra require-
ments on operation signatures, domains and axioms, any particular specification
must obey the general structure in Figure|l.1

The contents of each clause are described below and, in general, start with
a keyword, followed by a sequence of signatures, domain conditions or axiom
declarations. The sorts clause is the only mandatory one; the others must
only be declared if they are not empty. We use the specification of a Stack in
Figure as a running example.



10

12

20

22

24

specification
sorts field
constructors field?
observers field?
derived field?
domains field?
axioms field?

end specification

Figure 1.1: The outline of a specification

specification

sorts
Stack
constructors
make : —> Stack;
push: Stack Element —> Stack;
observers
peek: Stack —>? Element;
pop: Stack —>? Stack;
size: Stack —> int;
derived
isEmpty: Stack;
domains
S: Stack;

peek(S) if not isEmpty(S);
pop(S) if not isEmpty(S);
axioms

S: Stack; E: Element;

peek (push(S, E)) = E;
pop(push(S, E)) =S;

size (make()) = 0;

size(push(S, E)) =1 + size(S);
isEmpty(S) iff size(S) = 0;

end specification

Figure 1.2: Specification of a stack

1.2.1.1 Sorts

This clause is used to declare the name of the sort under specification. The
clause starts with keyword sorts, followed by the name of the sort. In the stack
example these declarations are in lines 2 and 3 of Figure

If you are specifying sort MySort this clause is declared as:

sorts MySort

1.2.1.2 Constructors

Use this clause to declare the signatures of constructor operations. Constructors
form a minimal set of operations needed to build any conceivable value of the
sort. The clause starts with keyword constructors followed by a sequence of
signatures. The signature for a constructor of sort S is of a particular form:
both its first parameter (if present) and its result must be of sort S. Lines 4-6
in Figure [I.2] reflect this structure.




1.2.1.3 Observers

This clause starts with keyword observers, and is followed by a list of operation
or/and predicate signatures. Observers are the operations used to analyze (to
dissect, to disassemble, to deconstruct) a given value. Observers must have at
least one parameter. Also, the first parameter must be the sort under specifica-
tion. Lines 7-10 of our example illustrate this structure.

1.2.1.4 Derived

Derived operations are definable directly in terms of the other operations, and
make programming easier and more readable. But they are not absolutely nec-
essary. This clause is defined exactly as the observers clause in Section [1.2.1.3
The only difference regards the axiom construction rules, as described in Sec-
tion In the given example, lines 11-12 illustrate this structure.

1.2.1.5 Domains

This section describes the conditions under which operations are required to be
defined. The clause starts with keyword domains and is followed by a list of
sort variables declaration and a list of domain conditions. Variables are used in
operations and formulae, and their sorts must be declared beforehand.

In the stack specification example lines 13-16 illustrate this clause. Both
operations, pop and peek, must respect the same condition, namely, that the
stack should not be empty.

1.2.1.6 Axioms

This clause is dedicated to axiom declaration. It starts with the keyword axioms,
followed by a list of variable declarations and a list of axioms. For further details
on axioms see Section [1.2.2.4] In our example this clause corresponds to lines
17-23.

1.2.2 Operation and Predicate signatures

An operation or predicate signature is an expression with one of the following
basic forms, where n > 0.

f: MySort Sortl ... Sortn —> Sort’;
f: MySort Sortl ... Sortn —>? Sort’;
f: Sortl ... Sortn —> Sort’;

f: Sortl ... Sortn —>7 Sort’;

f: MySort Sortl ... Sortn;

f: Sortl ... Sortn;

The first four forms are for operations; the later two are for predicates. A
signature is built with the components:

e f, the operation or predicate name;
e MySort, the first parameter, the sort under specification;

e Sortl ... Sortn, the remaining parameters, a list of sorts that must all
belong to the module (see Section [1.3]) or be the language primitive int;



e The identification of a total (——>) or a partial operation (——>7);

e Sort', the return sort, must belong to the module (see Section |1.3)) or be
the language primitive int (operations only).

Operations must return a sort belonging to the module or the primitive int;
predicates have no return sort whatsoever.

1.2.2.1 Rules

A specification must conform to rules that do not derive solely from the grammar
in Appendix The following rules apply to the signatures, domains and
axioms of the specification operations and predicates.

1.2.2.2 Constructors

Constructors are characterized by returning the sort under specification. They
agree with the first four forms above, where Sort’ is the sort under specifica-
tion (MySort). As a consequence, predicates cannot be constructors because
predicates have no returning sort.

1.2.2.3 Domains

A domain condition is an expression of the form
op (x1, ..., xn) if <formula>

where op is an operation (op must be declared as an operation, not a predicate),
and the arguments x1, ..., xn must be variables.

Some operations may not be defined for some specific instances (e.g, we can-
not pop from an empty stack); those instances must be prohibited as arguments
to the operation. The <formula> is a definition domain on which op must be
defined.

When writing domain conditions, one must take in consideration:

e Any total operation, marked with ——> in the operation signature, which
no domain condition is required, is provided a true default condition;

e Any partial operation, marked with ——>? in the operation signature,
for which no domain condition is specified, is provided a false default
condition;

e Arguments x1, ..., xn have sorts Sortl, ..., Sortn as described in the sig-

nature of operation op.

e <formula> respects the rules in this Section.

1.2.2.4 Axioms

An axiom must have one of the following basic structures, being that the part
if <formula> is optional.



op (t1, ..., tn) =1t if <formula>;
pred (tl1, ..., tn) if <formula>;
xl = x2 if <formula >;

op (t1, ..., tn) !=t if <formula>;

not pred (tl, ..., tn) if <formula>;

x1l = x2 if <formula>;

op (tl, ..., tn) =t when <formula> else u;
op (t1, ..., tn) =1t iff <formula>;

pred (t1, ..., tn) iff <formula>;

x1 = x2 iff <formula >;

where op is an operation, pred is a predicate, t, t1, ..., tn are terms, x1, x2 are
identifiers. The following restrictions apply to these axiom patterns.

If op is a constructor, then t1 must either be a variable or a constructor
applied to variables (this last case only applies if the first parameter of
op belongs to MySort); the remaining arguments t2, ..., tn must all be
variables;

If op or pred are observers, then t1 must either be a variable or a constructor
applied to variables;

If op or pred are derived, then all arguments t1, ..., tn must be variables;
x1, x2 must be variables of the sort under specification (MySort);

<formula> must agree with the rules in Section [1.2.2.5

The axiom

op (tl, ..., tn) =t when <formula> else u;

is short for the two axioms below.

op (tl, ..., tn) =t if <formula>;
op (tl, ..., tn) = u if not <formula>;

Similarly, the three axioms

op (t1, ..., tn) =1t iff <formula>;
pred (tl1, ..., tn) iff <formula>;
xl = x2 iff <formula>;

are abbreviations. The first for

op (tl, ..., tn) =t if <formula>;
op (t1, ..., tn) !=t if not <formula>;

the second for

pred (tl1, ..., tn) if <formula>;
not pred (tl, ..., tn) if not <formula>;

and the third for

x1 = x2 if <formula>;

x1

I= x2 if not <formula>;



specification
sorts
Element
end specification

Figure 1.3: Specification of a generic element

1.2.2.5 Formulae

Formulee are built from variables and terms, using the disjunction operator
or, conjunction and, negation not, equality = or !=, and the primitive integer
operators.

e A variable identifier is a formula;

e if f1, .., fn are formule and op is an operation (or predicate), then
op(fl, ..., fn) is a formula.

e If f1, f2 are formulae, then f1 = f2, f1 |= 2, f1 and f2, f1 or f2, and not f1
are formulee;

e If f1, f2 are formulee, then so is f1 # 2, where # is one of the following
+ — %/ % > < >= <=, and so is max(f1,f2) and min(f1,f2).

e Nothing else is a formula.

1.3 Modules

The meaning of symbols external to a specification (sort Element in the stack
specification of Figure for example) is only fixed when the specification is
embedded, as a component, into a module. A module is a surjective function
from a set of names N into specifications, such that all symbols (sorts, operations
and predicates) are provided by some specification in the module.

For example, module Stack can be given by the mapping

stack.spc — Figure [[.2]
element.spc — Figure [I.3]

A file directory (implicitly) defines a module, where N is the set of .spc
filenames in the directory, and the associated specifications are the contents of
the files.

The module of our running example is a directory containing two files, named
stack.spc and element.spc, where contents are described in figure and
respectively.

1.4 The refinement language
This section describes the language of refinement mappings. Subsection [1.4.1]

presents the general structure of refinements, and subsection describes the
refinement into Java classes. The grammar itself is presented in Appendix




12

14

10

refinement
Sort_1 is class Class_.1 {
<opRepresentation_11> is <method_11>;

<opRepresentation_1k> is <method_1k>;
Sort_n is class Class_n {
<opRepresentation_nl> is <constructor_nl >;

<opRepresentation_n2> is <constructor_n2 >;

<opRepresentation_nk—1> is return <method_nk—1>;
<opRepresentation_nk> is <method_nk>;

end refinement

Figure 1.4: The outline of a refinement

refinement
Element is class java.lang.Object
Stack is class datatypes.stack.Stack {

make (): Stack is Stack();

push(s: Stack, e: Element): Stack is void push(java.lang.Object e);
pop(s: Stack): Stack is java.lang.Object pop();
peek(s: Stack): Element is java.lang.Object top();
size(s: Stack): int is int size();

isEmpty(s: Stack) is boolean isEmpty();

end refinement

Figure 1.5: Stack Refinement

1.4.1 General structure

A refinement maps a module (see Section[L.3)) into a series of Java classes. Each
specification in the module is mapped into a Java class; its operations, if any,
are mapped into methods of that class. In Figure [[.4] we present the general
structure of a refinement; the grammar is presented in Appendix

A refinement mapping starts with keyword refinement and ends with key-
words end refinement. Between these keywords we declare a non-empty set of
mappings, one for each specification in the module. The refinement for each
specification in the module is accomplished by a set, possibly empty, of map-
pings from operations and predicates to methods. Lines 2-6 represent a mapping
from Sortl in Java Classl, and, enclosed in braces (lines 3-5), the mapping from
the sort operations into the class methods.

A refinement mapping for our running example (the Stack module in Sec-
tion , is given in Figure

In the particular case where the sort for the specification has no operations
or predicates, the refinement mapping consists of a simple declaration of the
form:

Sortname is class Classname

In our example, sort Element has no operations nor predicates; we map it into
class java.lang.Object as in Figure line 2.




In the general case the specification contains operations and/or predicates
to refine. In this case the refinement consists of a block containing several
mappings, one for each operation of the sort under refinement. Figure lines
3-10, show the refinement mapping for the Stack sort.

1.4.2 Refining specifications into Java types

In this section we present the restrictions imposed at the specification language
that cannot be captured by the supporting grammar (Appendix .

A refinement mapping for a particular sort includes mappings for operations
and for predicates.

1.4.2.1 Mapping a constructor operation into a Java constructor

Each operation in a specification may be refined into a Java constructor of the
class under consideration. In this case the valid patterns for mappings are:

<constructorOperation> is <constructorSignature >;

where <constructorOperation> is the representation for any specified operation
constructor, like cop with signature

cop: Sortl, ..., Sortn —> MySort;
the representations in the refinement language are, respectively:
cop (x1: Sortl, ..., xn: Sortn): MySort

where
e Each Sortl ..., Sortn belongs to the module;

e Sorts Sortl ,..., Sortn in signatures and in representations agree in number
and order.

e The sort under specification is MySort.

<constructorSignature> is the constructor’s signature as defined in the Java
class except for the visibility and the throws clause.
Representation

cop (x1: Sortl, ..., xn: Sortn): MySort
corresponds to a constructor signature of the form
constructorName(Classl yl1, ..., Classn yn)

where constructorName is the abbreviated constructor name (no package resolu-
tion scope), and y1 ,.., yn are identifiers in the list x1 ,..., xn (but not necessarily
in that order).

A key characteristic of this mapping is that an operation with n > 0 param-
eters is mapped into a method with n parameters.

In the above figure this is exemplified in line 4.



1.4.2.2 Mapping an operation or a predicate into an instance method

Each operation and predicate in a specification may be refined into a Java
method of the class that refines MySort. In this case the valid patterns for
mappings are:

<operationOrPredicate> is <methodSignature >;
<operationOrPredicate> is return <methodSignature >;

where <operationOrPredicate> is the representation for operations and predicates.
For operation op and predicate pred with signatures

op: MySort, Sortl, ..., Sortn —> Sort;
pred: MySort, Sortl, ..., Sortn;

the representations in the refinement language are, respectively:

op (x0: MySort, x1: Sortl, ..., xn: Sortn): Sort
pred (x0: MySort, x1: Sortl, ..., xn: Sortn)
where

e Each Sortl ,..., Sortn, Sort belongs to the module;

e Sorts Sortl ,..., Sortn, Sort in signatures and in representations agree in
number and order.

e The sort under specification is MySort.

<methodSignature> is the method’s signature as defined in the Java class
except for the visibility and the throws clause. Representation

op (x0: MySort, x1: Sortl, ..., xn: Sortn): Sort

corresponds to a method signature of the form

Type methodName(Classl yl1, ..., Classn yn)
where Type is void or int or a class name corresponding to some sort in the
module, and y1 ,.., yn are identifiers in the list x1 ,..., xn (but not necessarily in
that order).

Representation

pred (x0: MySort, x1: Sortl, ..., xn: Sortn)

corresponds to a method signature of the form
boolean methodName(Classl yl, ..., Classn yn)

A key characteristic of this mapping is that an operation with n > 1 param-
eters is mapped into a method with n — 1 parameters, since the first parameter
of the operation or predicate corresponds to the current instance (this) — the
same Sort being specified.

Operation mappings can sometimes be ambiguous. Consider a variant of
Figure [L.5] where the pop operation is associated to method

datatypes.stack.Stack pop();

The question arises as to whether the sort returned by the operation, (de-
noted by Stack after the colon, Figure 5, line 6), corresponds to the return
type datatypes.stack.Stack of the Java method, or to the instance (this) upon
which the method is called. In the former case use:



pop(s: Stack): Stack is datatypes.stack.Stack pop();
In the latter use:

pop(s: Stack): Stack is return datatypes.stack.Stack pop();

1.4.2.3 Mapping an operation or a predicate into a static method

Similarly to [1.4.2.2] we have the following valid patterns for mappings:

<operationOrPredicate> is <staticMethodSignature >;
<operationOrPredicate> is return <staticMethodSignature >;

<staticMethodSignature> is the only visible difference, where the static method’s
signature is defined as in the Java class except for the visibility and the throws
clause, which are here omitted. Representation

op (x1: Sortl, ..., xn: Sortn): Sort

corresponds to a static method signature of the form

Type staticMethodName(Classl yl, ..., Classn yn)
where Type is void or int or a class name corresponding to some sort in the
module, and y1 ,.., yn are identifiers in the list x1 ,..., xn (but not necessarily in
that order).

Representation

pred (x1: Sortl, ..., xn: Sortn)

corresponds to a static method signature of the form
boolean staticMethodName(Classl yl1, ..., Classn yn)

A key characteristic of this mapping is that an operation with n > 0 param-
eters is mapped into a method with n parameters, since there is not the concept
of current instance (this).

10



Chapter 2

User’s Guide

2.1 Introduction

ConGu (Contract Guided System Development) is a tool that supports testing
Java implementations of algebraic specifications using JML. It picks a specifi-
cation module—a set of .spc files containing specifications—, a package of Java
classes that supposedly implements the specification module, and a refinement
mapping that maps the sorts and operations of the specification module into the
corresponding classes and methods of the given package—, and generates the
necessary entities that will allow to monitor the execution of the given original
classes against the given specifications.

This document gives a frequently asked questions overview to, and explains
how to interact with, the ConGu tool. Chapter [I| describes the specification
and the refinement languages.

2.2 Usage

First things first. ..

2.2.1 System requirements

What are the ConGu tool system requirements?
You need at least Java 1.4.2 and JML 5.3. Notice that in order to use Java
1.5.0 you need JML 5.4.

2.2.2 How to use

How do I use the ConGu tool?

The ConGu tool requires that the user indicates the path where to find the
implementation class files (.class or .jar) and packages, the directory where the
specification (.spc) and the refinement (.rfn) files are to be found, as suggested
by the following example:

java —cp congu.jar:< client_classpath > congu.Congu [<directory>]

Note: if directory is omitted, then your current local directory is implicitly as-
sumed. Take into consideration that the explicit client_classpath is mandatory

11



and should reference all implementation files class path. If everything goes
smooth then an output directory is created with name output in your current
local directory. This directory contains all generated files needed in the moni-
toring phase.

2.2.3 (Generated files

What is the meaning of the generated files?
The several output files can be grouped into the following categories which
can be noticed by ConGu tool verbose messages:

Wrapper classes in Java source format (.java) and Java byte code format
(.class). These classes replace the original user’s classes, monitoring the
execution. They have the exact same file name as the original user’s
classes, and have the same APIL.

Renamed classes in Java byte code format (.class) only. These classes are
the original user’s classes, but with a distinct name so that they can be
distinguished from the wrapper classes. Their filename pattern matches
the _x _Original . class.

Immutable classes in Java source format (.java) and Java byte code format
(.class). These are the classes that are equipped with JML contracts.
They match pattern with _x_Immutable.java file names.

Pair classes in Java source format (.java) and Java byte code format (.class).
These auxiliary classes allow object exchanges between the wrapper and
the immutable classes. They match pattern with _x _Pair_*.java file names.

Range class in Java source format (.java) and Java byte code format (.class).
This optional auxiliary datatype allows domain range contract predicates
(forall) assistance. It is named as _Range.java.

2.2.4 Compiling

How do I compile the output files?

As previously stated inside the generated output directory there will be im-
mutable, wrapper, renamed and pair classes. Those classes were already com-
piled automatically by congu.jar, but if needed, they can be manually compiled
by first compiling the immutable classes with jmlc, and finally compiling the
wrapper and the pair classes with javac.

2.2.5 Monitoring

How do I monitor contracts?

In this phase you have to take in consideration that the classes you want to
test are going to be replaced by the generated classes in the output directory.
Also, JML requires some special packages in order to fully monitor contracts.
Using jmirac simplifies the process. We suggest using the following generic com-
mand:

jmlrac —Xbootclasspath/p:output/:<client_classpath > < client_application >

12



where client_application is the user test class (where the main entry point exists),
and client_classpath is the user environment class path.

The above command line tells Java Virtual Machine that the output directory
is the first place where all input classes are to be found and, in case they are
missing, they will be resolved inside client_classpath path.

2.3 Examples

Can you give me a practical example?
Sure, right away. The following examples are available from http://labmol.
di.fc.ul.pt/congu/examples/| website.

2.3.1 Easy

Let us start with a simple example like Stack. Checkout this example
on http://labmol.di.fc.ul.pt/congu/examples/stack.html|and download
Stack.spc, Element.spc, Stack.java (the original class that implements Stack.spc),
Stack.rfn and CongultStack.java to the same folder, let us say easy/. Do not for-
get to also download the ConGu tool (congu.jar) latest version available from
ConGu official website to the same easy/ folder.

At this point your easy/ folder will have the following file repository:

easy/
CongultStack. java
congu.jar
Element.spc
Stack.java
Stack.rfn
Stack . spc

First we have to compile both implementing Stack.java and testing
CongultStack.java classes with javac (our current directory is easy/):
javac —d . Stack.java
javac —d . CongultStack.java

easy/

CongultStack . java

congu.jar

datatypes/

stack/

CongultStack. class
Stack.class

Element.spc

Stack.java

Stack.rfn

Stack.spc

At this moment we have the required input files available. So, in a second
step, we have to execute the ConGu tool with existing java (our current
directory is still easy/):
java —cp congu.jar:. congu.Congu .

easy/
CongultStack. java
congu.jar
datatypes/
stack/

13



http://labmol.di.fc.ul.pt/congu/examples/
http://labmol.di.fc.ul.pt/congu/examples/
http://labmol.di.fc.ul.pt/congu/examples/stack.html

CongultStack. class
Stack.class
Element.spc
output/
datatypes/
stack/
_boolean_Pair_Stack.class
_boolean_Pair_Stack.java
_Object_Pair_Stack.class
_Object_Pair_Stack.java
Stack.class
_Stack_Immutable.class
_Stack_Immutable. java
Stack . java
_Stack_Original.class
_Stack_-Pair_Stack.class
_Stack_Pair_Stack.java
java/
lang/
_boolean_Pair_Object.class
_boolean_Pair_Object.java
_Object_Immutable.class
_Object_Immutable.java
Stack.java
Stack.rfn
Stack.spc

And finally, with the third and final step, you are able to monitor contracts
with jmlrac (keeping easy/ as current directory):
jmlrac —Xbootclasspath/p:output/:. datatypes.stack.CongultStack

2.3.2 Not so easy

In the above example we mixed the specification files with the source code
and byte code into the same folder. Let us now split these three categories into
three distinct subdirectories inside an arbitrary notsoeasy/ folder. Check the Tic-
TacToe example available on http://labmol.di.fc.ul.pt/congu/examples/
tictactoe.html and download the specifications TicTacToe.spc, Board.spc,
Tile .spc and the refinement mapping TicTacToe.rfn to the same specs/ subdirec-
tory; the original classes that implement the datatype TicTacToe.java, Board.java,
Tile .java and the test class RunTicTacToe.java to the same src/ subdirectory.
Again, do not forget to also download the ConGu tool (congu.jar) latest ver-
sion available from ConGu official website to the same notsoeasy/ folder, making
sure that src—bin/ subdirectory is also present.

At this point your notsoeasy/ folder will have the following file repository:

notsoeasy/

congu.jar

specs/
Board . spc
TicTacToe. rfn
TicTacToe.spc
Tile.spc

src/
Board . java
RunTicTacToe. java
TicTacToe. java
Tile.java

src—bin/

First we have to compile all implementing TicTacToe.java, Board.java,
Tile . java, and testing RunTicTacToe java classes with javac (our current directory
is notsoeasy/):

14



http://labmol.di.fc.ul.pt/congu/examples/tictactoe.html
http://labmol.di.fc.ul.pt/congu/examples/tictactoe.html

javac —d src—bin/ src/x.java

notsoeasy/
congu.jar
specs/
Board . spc
TicTacToe. rfn
TicTacToe.spc
Tile.spc
src/
Board. java
RunTicTacToe. java
TicTacToe. java
Tile.java
src—bin/
datatypes/
tictactoe/
Board . class
RunTicTacToe. class
TicTacToe. class
Tile.class

At this moment we have the required input files available. So, in a second
step, we have to execute the ConGu tool with existing java (our current
directory is still notsoeasy/):
java —cp congu.jar: src—bin/ congu.Congu specs/

notsoeasy/
congu.jar
output/
datatypes/
tictactoe/
Board . class
_Board_Immutable. class
_Board_Immutable. java
Board . java
_Board_Original . class
_Board_Pair_Board.class
_Board_Pair_Board.java
_Board_Pair_TicTacToe.class
_Board_Pair_TicTacToe. java
_boolean_Pair_Board.class
_boolean_Pair_Board.java
_boolean_Pair_TicTacToe.class
_boolean_Pair_TicTacToe.java
_boolean_Pair_Tile.class
_boolean_Pair_Tile.java
_int_Pair_Board.class
_int_Pair_Board.java
TicTacToe.class
_TicTacToe_Immutable. class
_TicTacToe_Immutable. java
TicTacToe. java
_TicTacToe_Original.class
_TicTacToe_Pair_TicTacToe.class
_TicTacToe_Pair_TicTacToe. java
Tile.class
_Tile_-lmmutable. class
_Tile_-lmmutable.java
Tile.java
_Tile_Original.class
_Tile_Pair_Board.class
_Tile_Pair_Board . java
_Tile_Pair_TicTacToe.class
_Tile_Pair_TicTacToe.java
_Tile_Pair_Tile.class
_Tile_Pair_Tile.java
_forall/
_Range.class

15




_Range. java
specs/
Board . spc
TicTacToe. rfn
TicTacToe.spc
Tile.spc
src/
Board. java
RunTicTacToe. java
TicTacToe. java
Tile.java
src—bin/
datatypes/
tictactoe/
Board . class
RunTicTacToe. class
TicTacToe. class
Tile.class

As you can see there are many generated output files. One in particular is
_Range.java from _forall package. As said before, this is an auxiliary datatype
to assist domain range contract predicates (forall).

Like the precedent example, third and final step, you are able to monitor
contracts with jmirac (keeping notsoeasy/ as current directory):

jmlrac —Xbootclasspath/p:output/:src—bin/ datatypes. tictactoe . RunTicTacToe

2.4 Troubleshooting

Q: Why does ConGu keeps telling me that several implemented java meth-
ods are not defined in the refinement?

A: Well, that might be explained by the fact your client_classpath is
incomplete or miss referenced. If this is not the case than you might have an
incorrect refinement, or the implemented class does not export those methods
after all.

Q: When running ConGu, it reports that some class does not implement
the Cloneable interface. Do I have to implement the so called interface Cloneable?

A: If you know for sure that your “default” clone is sufficient since you are
dealing with immutable classes then go ahead. Be aware that implementing the
clone method implies redefining the equals method.

Q: T got a compilation error when compiling the immutable classes saying
that a given class is “synchronized”, why?

A: First of all, JML does not support “synchronized” input classes at
the time of this writing. If your input original class is not “synchronized”
then you might be using gij compiler which is known to reflect every class as
synchronized. Use a Sun Java compiler instead.

Q: How to identify the violated contract source during the monitoring phase?
A: During the monitoring phase, and for each violated contract detected, a
JML exception is reported. This exception, regarding the Immutable file con-
tract specification, will identify if it is a PreconditionError or a PostconditionError
and the line number where it occurs. For example let us assume in the provided

16




Easy example we attempt to access an empty Stack top. In this case, the
following exception will occur :

Exception in thread "main” org.jmlspecs.jmlrac.runtime.JMLEntryPreconditionErr
or: by method _Stack_Immutable.top regarding specifications at
File "datatypes/stack/_Stack_-Immutable.java”, line 63, character 70 when
'_one' is datatypes.stack._Stack_-Original@7a78d3
at datatypes.stack._Stack_-Immutable.checkPre$top$_Stack_-Immutable(-Sta
ck_Immutable.java:1972)
at datatypes.stack._Stack_Immutable.top(-Stack_-Immutable.java:2060)
at datatypes.stack.Stack.top(Stack.java:62)
at datatypes.stack.CongultStack.top(CongultStack.java:119)
at datatypes.stack.CongultStack.showMenu(CongultStack.java:79)
at datatypes.stack.CongultStack.main(CongultStack.java:34)

And the line 63 of output/datatypes/stack/_Stack_Immutable.java specifies:

Q@ /+ peek (S ) if not isEmpty (S ) ; %/ requires true —> !(dataty
pes.stack._Stack_Immutable.isEmpty(_one).value);

As you can see the domain condition /+ peek ('S ) if not isEmpty ( S ) ; =/ trig-
gered the JML notification. This is the same domain condition as specified in
Stack.spc.

2.5 Limitations

e The input .class to be monitored cannot have public attributes.

e ConGu does not cope with packages of classes that are hierarchically
related in any way.

e An operation cannot have a domain condition that can be reduced to the
operation itself, since that would cause infinite recursion.

e Refinement into Java interfaces is not supported at the time of this writing.

e Client final methods can not be overridden from the wrapper class; if this
is the case, avoid calling them.

e Be aware that in our implementation the wrapper class calls the client
super-constructor twice.

17




Chapter 3

Implementation (GGuide

3.1 Introduction

ConGu is a tool that supports testing Java implementations of algebraic spec-
ifications using JML. It was designed to support the methodology described in
references [4, [B]. This document gives an overview of the implementation of
ConGu. After reading it you should have acquired a notion of how ConGu
is implemented and how the source code is organized, and should be able to
move faster into extending the ConGu functionalities if that is your objective.
In order to read this document you should already have a good grasp on how
ConGu and the methodology it supports work.

The input to ConGu is a series of source files written in the specification
language and one source file written in the refinement language. The definition
of these languages can be found in Chapter [} The ConGu User’s manual can
be found in Chapter

This chapter is organized as follows. Section describes the overall ar-
chitecture of the tool. Section describes the parser. Sections [3.4] and
describe the analyzers for the specification module and for the refinement bind-
ings. Section [3.6] presents the class renamer. Sections [3.7] to describe the
generators for the various classes produced, namely, wrapper, immutable, con-
tracts for the immutable, pairs, and the writing to files. Section puts it all
together.

3.2 Architecture

ConGu is organized into several logical components each responsible for one of
the tasks that together make up the ConGu functionality (see Figure .
Components Specification Module Analyzer and Refinement Binding Analyzer
make up the front-end of ConGu. Together, these two components are re-
sponsible for dealing with the input files and translating the information they
contain into an internal representation. The back-end, formed by the generators
and the Class Renamer, uses that internal information to produce the output of
ConGu. The implementation of ConGu maps this logical structure. Each
of the components is implemented, insofar as possible, by a distinct Java class

18



Front-end _ Back-end

1 Specification + Refinement +
! Implementation +
| WrappedClasses data [
| Contract Generator |

Comments + Forall Types data

Specification Module

i Specification Module

Analyzer ClassSignature + Refinement + Implementation data
Wrapper Generator
Specification data ‘ n.-..
Client + new Original file name ! o
Class Renamer | >

ClassSignature + Refinement + Comments + ForallTypes +

Fle Generator

Refinement data

Rdjnerrem ndata
Binding Refinement Binding ‘ Immutable Generator |
Analyzer Javafile code data

! Implementation data State-Value pair + |
| Pair Generator

Javafile code data

Figure 3.1: The architecture of ConGu. Each box represents a component.

or set of classes. In the following sections the implementation of each of these
components is addressed.

3.3 Parsing with SableCC

ConGu takes as input a set of specification files and one refinement binding
file. In order for ConGu to validate and make sense of the content of those
files, the files need to be parsed and analyzed against either the specification
grammar or the refinement grammar. In order to simplify the implementation
of this task, the SableCC parser generator is used. SableCC takes as input a
.grammar file that specifies the lexicon and the production rules of a language
and outputs a set of Java classes that allow:

e The parsing of a text file against that language. This consists on creating
a tree that represents the syntactic structure of the contents of the file.

e Walking through the nodes of that tree and executing certain actions.
These actions are specified by extending some of the classes that are gen-
erated by SableCC: the tree-walkers.

By using SableCC the effort of implementing the analysis of the input files is
reduced to the implementation of its semantic analysis. After defining the gram-
mar for the language of specifications (grammars/specification.grammar)
and the language of refinement bindings (grammars/refinement.grammar)

19



SableCC is executed on each of this .grammar files therefore creating two
parsers, one for each language, and also the tree-walker classes. SableCC cre-
ates four packages for each language. For the specification language the follow-
ing packages are created by SableCC: spec. analysis, spec. lexer, spec.node and
spec. parser. Four equivalent packages were created for the refinement language:
refine . analysis, refine . lexer, refine .node and refine . parser.

Each of the tree-walker classes is then extended to allow the semantic analysis
of the trees that are generated by the parser. In the following sections we
describe in detail this process. For more information about SableCC please
refer to reference [3].

3.4 The Specification Module Analyzer

The Specification Analyzer Module (SMA) takes as input a list of . spc files with
specifications, parses each file, checks the static semantics, reports errors if they
exist and outputs a spec.semant.SpecQuerier object through which all the other
modules of ConGu can obtain information about the specification. SMA is
implemented mainly by the classes in packages spec.*, together with the classes
in package symbol. Class spec.semant.SpecModuleAnalyser is the main class of
SMA.

SMA is the only module of ConGu that can be used as a stand-alone tool.
In order to support the use of SMA as such, class congu.specAnalyzer.SpecAnalyzer
which has a main method is created. This class provides a user interface for
SMA. This class is ignored when SMA is used as part of the ConGu tool.

3.4.1 Semantic analysis

If every file is parsed without errors and the corresponding syntactic tree is cre-
ated (spec.semant.SpecModuleAnalyser) then the specifications are syntactically
correct i.e., they obey the rules of the specification language as defined in
grammars/specification.grammar. Yet, specifications must conform to some
other properties, of semantic nature, which are not captured by the grammar.

As in a standard compiler, identifier declarations and their uses must be
checked for consistency by the SMA [I]. For instance, when analyzing the op-
eration call push(R, E), SMA issues an error if the signature of operation push
is push: Stack Element ——> Stack and R has the sort Rational instead of Stack as
expected for the first argument of this operation. Class spec.semant.Semantics
has methods responsible for this part of the semantic analysis: variable and
signature declaration analysis and checking that variables and operations and
predicates are used accordingly to those declarations. This corresponds to the
semantic analysis phase of a standard compiler [IJ.

In addition to the standard semantic analysis, the underlying methodol-
ogy of ConGu imposes restrictions on the specification language which must
also be ensured by the SMA. There are strong restrictions on the form of the
axioms that depend on the properties of the operations or predicates.Class
spec.semant. Restrictions, which extends spec.semant.Semantics, is responsible for
this part of the semantic analysis.

20



3.4.2 Three stage analysis

A specification is divided into three main sections: sort declaration, operation
signature declaration and the axioms (in this group we include the domain
definition of the operations). There are semantic dependencies among these
sections, i.e., some of these sections have elements which can only be interpreted
after analyzing some other section: the signatures refer to the sorts that are
declared in the sorts section and the axioms have references to both the sorts
and the operations (or predicates) that are declared in the signature section.
These dependencies also exist among the various specifications in the module.
Each specification may have references to sorts or operations (or predicates)
that are declared in some other specification. In terms of semantic analysis this
means the three sections must be analyzed in the correct order: first SMA must
analyze all sorts in all specifications, then all signatures and, at last, all axioms.

In order to implement this three stage analysis three classes are created that
extend the tree walker spec. analyses.DepthFirstAdapter generated by SableCC.
They are:

1. spec.semant.SortAnalyser
2. spec.semant.SignatureAnalyser
3. spec.semant.DomainAxiomAnalyser

Each of these tree walkers is applied to all specifications, in this order,
by the spec.semant.SpecModuleAnalyser, i.e., first the sort analyzer is applied to
all the specifications, then the same thing with signature analyzer and then
the axiom analyzer. These tree walkers extend spec. analyses.DepthFirstAdapter
by adding calls to the appropriate methods of spec.semant.Semantics and
spec.semant. Restrictions on the tree nodes they visit. Each tree walker triggers
the semantic analysis of the nodes that form the section of the specification it
is responsible for, while ignoring the remaining nodes.

3.4.2.1 Sort checking

Axioms are first-order logic formulse. Each sub-formula belongs to a sort. Vari-
ables evaluate to the sort they have been declared with, while operations eval-
uate to their return sort. For instance, the variable E evaluates to the sort
Element, if it has been declared as E: Element. The operation call push(S, E)
evaluates to the sort Stack, if push: Stack Element ——> Stack is the signature of
operation push. Notice that the first argument of the operation call push doesn’t
have to be a variable, it can be a complex expression as long as it evaluates to
the sort Stack. SMA is responsible for checking that each expression evaluates to
the correct sort. If the first argument of the operation call push were to evaluate
to a sort other than Stack, SMA would issue an error. In order to validate an
expression, SMA must determine the sort of each of the expression’s immediate
components. For instance an operation or a predicate call is valid in what con-
cerns sort consistency, if all of its arguments evaluate to the expected sort. On
the other hand, an equality is valid if both sides evaluate to the same sort.

Class spec.semant.DomainAxiomAnalyser, which is the tree-walker responsible
for the axioms part of the specifications, plays an important role in the mecha-
nism that evaluates the sort of each expression.

21



Class spec.semant.DomainAxiomAnalyser has a stack as an attribute, where the
sort of each expression is pushed when the tree-walker leaves the tree node
that corresponds to that expression. Since the tree-walker visits the tree in a
depth-first manner, when it enters a new expression the sorts of the immediate
components of that expression are already in the stack. At that point all the
tree-walker has to do is: pop the sorts out of the stack, validate the expression
against those sorts and then push the sort of that expression into the stack.
In order to validate the expression, spec.semant.DomainAxiomAnalyser calls the
appropriate method of spec.semant.Semantics which takes as arguments the sorts
collected from the stack and returns the sort the expression evaluates to.

3.4.3 Storing and retrieving information

While performing the semantic analysis, class spec.semant.Semantics and class
spec.semant. Restrictions store much of the information regarding the semantic
properties of the several elements of the specification. This is done for two
reasons: first, as mentioned in Section the analysis of many parts of the
specification requires knowledge about other elements of the specification, so
this information must be readily available, and second the other components
of ConGu also require knowledge about the specification module, which must
be provided by SMA. Classes spec.semant.Semantics and spec.semant. Restrictions
have several data structures as attribute that store all the relevant information
about the specification module.

3.4.3.1 Semantic bindings

A specification module contains several elements with relevant semantic infor-
mation. For instance, the identifier Stack declared in “sorts Stack” is a sort, in
which case we need to know its name and the file where it is declared. In order
to store this information, the identifier Stack becomes bound to an object of
type spec.binds.Sort which stores all the relevant information about a sort. On
the other hand, the identifier S, declared in “S: Stack;”, is a variable, in which
case we need to register the association between the name and the sort. We
do this by binding the identifier S to an object of type spec.binds. Variable that
stores the relevant information. Package spec.binds contains the classes that are
used for storing semantic information. The elements of the specification with
relevant semantic information are bound to an instance of one of this classes.
This is achieved via map like structures, fields of classes spec.semant.Semantics
and spec.semant. Restrictions. The elements of the specification whose semantics
we wish to store are used as keys in the map; the associated values are spec.binds
objects. Notice that, in addition to identifiers, some of the tree nodes are also
used as keys.

3.4.3.2 Symbol table

The part of the semantic analysis that concerns identifier analysis use is usually
implemented with the help of a symbol table. This symbol table maps each
identifier to its semantics. As SMA reaches each identifier declaration (sort,
signatures and variables) it binds the identifier (after converting it into a symbol)
to its semantic properties in the table. When SMA encounters an identifier usage

22



it looks up the identifier in the table and checks that it is used in accordance to
its semantics.

The symbol table used in SMA was originally created for the TyCO com-
piler [6], as an extension of that in book [1]. The main class that implements the
table (symbol.Table) together with its auxiliary classes form the package symbol.
Among other things, this symbol table is different from a simple java. util .Map
in that has a scoping mechanism. The scoping mechanism is useful for SMA
since the variables in the specifications must be interpreted according to the
place where they are used. For instance, assuming that there are two different
variable declarations with name A, if variable A is being used in a domain defi-
nition than its sort is the one declared after the domains token and not the one
declared after the axioms token.

3.4.3.3 Specification querier

Class spec.semant. Restrictions, which extends spec.semant.Semantics, implements
interface spec.semant.SpecQuerier. The interface spec.semant.SpecQuerier provides
a set of methods that return information about the specification module. It is
through this interface that the other components of ConGu get all the informa-
tion they require about the specification module. Class spec.semant. Restrictions
implements the methods from the interface spec.semant.SpecQuerier by access-
ing directly to its private data structure attributes but returning only the re-
quired data. The instance of spec.semant. Restrictions that is used during the
analysis of the specification module is returned by the main class of SMA,
spec.semant.SpecModuleAnalyser, and then passed on to the modules of ConGu
that need to make queries about the specification module.

3.5 Refinement Binding Analyzer

The Refinement Binding Analyzer (RBA) takes as input a .rfn file and
a SpecQuerier object that represents the specification module (see Sec-
tion [3.4.3.3). RBA parses the .rfn file, verifies its semantics against the
specification and the class system, reports errors if they exist and outputs a
refine .semant.RefinementQuerier object through which the other modules can ob-
tain information about the refinement. RBA is implemented mainly by the
classes from the refine .x packages. Class spec.semant.RefinementAnalyser is the
main class of RBA.

In terms of implementation, RBA has the general structure of the Specifi-
cation Module Analyzer. For that reason, the structure of this section follows
that of Section [3.4] albeit more succinct. We advise reading that section before
proceeding.

3.5.1 Semantic analysis

The semantic analysis of a refinement consists of two main tasks:
e Making sure the refinement is compatible with the specification module
and the class hierarchy. This means checking that all sorts and signa-

tures are refined into a single type or method, checking that all sorts and
signatures that are referenced in the refinement are indeed part of the

23



specification module, and also that all types and methods do exist in the
class hierarchy.

e Checking that the refinement is consistent and that it complies to the
ConGu methodology.This part of the analysis implies checking that op-
eration and predicate refinements are consistent with sort refinements. For
instance, the operation pop(s: Stack): Element cannot be bound to method
String pop() of class Stack, unless class String implements the sort Element
and class Stack implements the sort Stack.

The semantic analysis of the refinement is conducted by the methods of class
refine .semant.Semantics which are invoked while tree-walking the refinement.

3.5.2 Two stage analysis

A refinement contains two types of bindings: those that specify which Java type
implements which sort and those that specify which methods implement which
operations or predicates. Since operation and predicate signatures mention
sorts, in order to validate a binding between an operation or predicate and a
Java method, RBA must know which types implement each of the sorts that
compose the signature. For instance, in order to validate the binding between
operation push: Stack Element ——> Stack and method void push(String s) of class
Stack, RBA must first know that class String implements sort Element and class
Stack implements sort Stack. This means that the analysis of the refinement
must be done in two stages: first sort bindings; then operation bindings. In
order to implement the two stage analysis two classes were created that extend
the tree walker generated by SableCC refine . analyses . DepthFirstAdapter. These
are:

1. refine .semant.SortRefinementAnalyser

2. refine .semant.OpRefinementAnalyser

These two classes call methods of class refine .semant.Semantics on the appro-
priate tree nodes.

3.5.3 Using Java reflection

While the specification module and the refinement binding are provided to
ConGu as text files that need to be parsed, the Java classes that form the
implementation are obtained by ConGu by using Java Reflection [2]. When
the refinement analysis reaches a class name it tries to find the class in the
classpath using Java Reflection. If the class is not found an error is issued; oth-
erwise all information regarding the class (methods, variables, etc) is collected.
By using Java Reflection ConGu gives the user the possibility to provide only
.class files as input (by making them accessible through the classpath) and
not the original . java source code. This strategy has two advantages:

e It allows the user to test implementations for which he does not have
access to the source code, and

24



e it simplifies the implementation of ConGu by avoiding the need to parse
and analyze Java source code. This effort is put upon the Java compiler
and the Java Reflection mechanism.

3.5.3.1 Getting class information

The refinement binding defines the set of classes upon which the implementa-
tion of the specification module relies. The properties of each of these classes
must be checked by the RBA in order to validate the refinement. Also, those
properties must be made available for consultation by the other components of
ConGu. Whenever RBA reaches a sort that is implemented by a class, it finds
the class through reflection and collects all relevant information regarding the
class. A implement.ClassSignature object is used to store this information. The
constructor of implement.ClassSignature takes the full qualified name of the class
as argument and uses the methods of java.lang.Class to obtain all the infor-
mation about that class. It then stores that information in the fields of class
implement.ClassSignature. Among other things, this constructor is responsible for
creating a set of implement.MethodSignature objects that represent the methods
of the given class and a set of implement.ConstructorSignature that represent the
constructors of the class.

3.5.4 Storing and retrieving information
3.5.4.1 Semantic bindings

Class refine .semant.Semantics contains two java. util .Map fields that are used
for storing the information concerning the refinement of sorts and the re-
finement of operations and predicates. The first maps sort names into
objects of class refine .binds.SortRefinement that store all the relevant infor-
mation regarding the sort and the type that implements it. The sec-
ond maps operation or predicate signatures into refine .binds.OpRefinement
objects that store all the relevant information regarding the operation
or predicate and the method or expression that implements it.  Class
refine . binds. OpRefinement is abstract. There are four (non abstract) classes
that extend it: refine . binds.OpToConstructorRef, refine . binds.OpToMethodRef,
refine . binds.OpToNullRef and refine . binds.OpToExpressionRef. These classes are
used according to whatever implements the operation: a Java constructor, a
method, the null value or an expression.

3.5.4.2 Parameter binding

Whenever an operation or predicate is implemented by a method or a Java
constructor, the mapping between the operation or predicate parameters and
the method parameters must be taken into consideration, since the order of the
parameters in the operation or predicate need not be matched in the method.
The first parameter of an operation may, for instance, correspond to the second
parameter of the method. This correspondence between parameters is specified
by the user through the parameter names. When analyzing the refinement of
an operation into a method, RBA must not only take this into consideration,
but also store this information, so that when an operation or predicate call is

25



translated into a method call by the other components of ConGu, the correct
parameter order is used.

The correspondence between the parameters of an operation or predi-
cate and those of the method is kept in an integer array either in class
refine . binds. OpToMethodRef or in class refine . binds.OpToConstructorRef. The ar-
ray index gives the operation parameter and the integer value contained on that
index gives the corresponding method parameter. For example, if the first in-
teger in the array is 0, then the first parameter of the operation corresponds
to the first parameter of the method. This array is a private field. The other
components of ConGu access this information through the use of methods
getMethodParameterName, getMethodParameterindex, getConstructorParameterName
and getConstructorParameterlndex that take as input the operation parameter in-
dex and give as output either the name or the index of the corresponding method
or Java constructor parameter.

3.5.4.3 Refinement querier and implementation querier

Class refine .semant.RefineQuerier is the interface that defines the set of meth-
ods through which the other components of ConGu can obtain information
about the refinement binding. Class refine .semant.Semantics implements this in-
terface. An object of this type is returned by the main method of the RBA. Class
refine .semant.RefineQuerier contains the method getlmplementation which returns
all the information regarding the implementation, through an object of class
implement.ImplementQuerier. This interface provides methods that return infor-
mation about the implementation in itself, independently of its relation to the
specification module.

3.5.4.4 Implementation package

The refinement binding is what makes the connection between the specifica-
tion module and its Java implementation. In order to store and process the
information regarding the elements that compose the implementation (classes,
expressions, etc), several classes are available. These classes form the implement
package. In this package we have class implement.ClassSignature which stores the
information regarding a class, class implement.MethodSignature which stores the
information regarding a method and implement.Constructor which stores the in-
formation that concerns a constructor. Class implement.Null is used to represent
the null value and class implement.Expression represents a generic Java expression.
implement.Implementation stores the totality of the information that concerns the
implementation of a specification module. This class also implements interface
implement.ImplementQuerier and as so, provides the set of methods that supply all
the required information about the implementation.

3.6 Class Renamer

Class congu.ClassRenamer (CR) takes as input the original classpath (it can be
either a regular directory or a .jar file name), the original class filename, the
new classpath directory, the new class filename and outputs the new assembled
Java byte-code.

26



In terms of implementation, CR inner class Class File (CF) is the Java byte-
code main structure used to manipulate the renaming process. CF constructor
fills this structure and the dump() method outputs it to the file system. In order
to successfully rename a class-file, CR:

e Initially loads CF as the original Java byte-code representation;

e Updates all explicit and implicit internal attribute references inside CF
such as: SourceClass, ThisClass, constant-pool NameAndType, constant-pool
FieldsInfo , constant—pool MethodsInfo and, recursively, the for inner classes.
Notice that renaming one class file may not be enough if the class file
has, for instance, inner classes. Although renaming can be automatically
performed we still need access to bytecode files involved.

e Renames the class-file.

e Finally writes CF as the new Java bytecode representation with the new
filename.

3.7 Wrapper Generator

Class congu.WrapperGenerator (WG) takes as input the
implement. ClassSignature  (CS), the refinement.semant.RefinementQuerier (RQ),
the implement.ImplementQuerier (IQ) provided by ConGu’s earlier stages and
outputs a wrapper Java file, acting like a String factory. This wrapper Java file
intends to replace the original class.

In what concerns clients of the original class, the wrapper object is similar
to the original object: its constructors and methods have the same signature
and they apparently behave in the same way; however they allow monitoring
the original constructors and methods execution by redirecting client calls to
the corresponding constructor or method in the Immutable class.

In terms of implementation, CS gives all necessary Java class signatures and
RQ the contextualized signature from the specification.

The output file is generated by instantiating WG and calling toJavaCode()
method. This method generates the new Java file code by declaring the same
package class, class name, public attributes, constructors and methods (exclud-
ing the final ones and omitting native keyword) as the original class. It also
includes auxiliary methods for the purpose of wrapping and unwrapping ob-
jects when necessary.

3.8 Immutable Generator

Class congu.ImmutableGenerator (IG) takes as input the implement.ClassSignature
(CS), the refinement.semant.RefinementQuerier (RQ) provided by ConGu’s ear-
lier stages, the Hashtable provided by Contract Generator (CG) getComments()
method, the Collection provided by CG getForallTypes() method, the
implement.ImplementQuerier (IQ) provided by ConGu’s earlier stages, and out-
puts an immutable Java file containing JML contracts within Java comments,

27



acting like a String factory. This immutable file is responsible for contract mon-
itoring during execution time and is generated by instantiating |G and calling
toJavaCode() method.

In terms of implementation, |G generates a Java file belonging to the same
package as CS, all “constructors” and methods specified in RQ, the equals() and
the clone() methods (the latter only when CS implements interface Cloneable).
The generated “constructors” are actually static methods that return the same
datatype CS being specified. Both, “constructors” and methods are equipped
with JML contracts as Java comments. In addition, the generated Java file
might also includes a static _forall ._Range field (FR) for each input Collection
element (when asserting over free variables). Those FR’s are Object sets popu-
lated with objects that are passed as argument, and returned as results, in all
method calls that happen in the context of the given Immutable class during con-
tract monitoring execution time. This populating process is achieved by a new
post-condition with JML syntax through FR updateCache() method comment.
Later on, when monitoring a JML forall assertion, the domain range scans the
appropriate FREI

The final stage consists in combining each “constructor” and method with
the associated JML assertion predicates. By iterating over the input Hashtable
(an Hashtable of Hashtable’s) one can identify the sub-Hashtable for each RQ
specified “constructor” or method. The latter hashtable collects the StringBuffer
containing JML formated pre- and post-conditions grouped by Operation cri-
teria. These Operation collections are then merged with JML also keyword to
ensure correct design-by-contract behavior. The contract for the clone() method
is built without input hashtable query since it is not generated by a specified
axiom but rather stating that a cloned object is always equals to the object
itself.

3.9 Contract Generator

Class congu.ContractGenerator (CG) takes as input, through its constructor, the
spec.semant.SpecQuerier (SQ), the refinement.semant.RefinementQuerier (RQ), the
implement.ImplementQuerier (IQ), the Hashtable identifying the renamed original
class name for each original client class name provided by FileGenerator (FG),
all prepared by ConGu’s earlier stages. CG outputs two data structures: the
Hashtable accessible via getComments() method and the Hashtable accessible from
getForallTypes () method.

3.9.1 Output

The former output data structure (accessible via getComments() method) is
a hashtable of hashtables that groups contracts either by ConstructorSignature
or by MethodSignature (MS) and then by Operation keys; think that as a double
key hashtable. The MS is unique since it also identifies the belonging class
(also known as CS identifier) through its classFile attribute. Each contract is
a StringBuffer representing a JML syntax assertion characters sequence. Later

1 This strategy might need revision starting with JML 5.3, for updateCache() is not a pure
method.

28



on, the IG will perform the task of placing each contract inside the expected
immutable file and associated java method.

The latter output data structure (accessible from getForallTypes () method)
is a String collection hashtable with CS as key. It contains all domain types
used in forall assertions within contracts grouped by client class criteria. Later
on, the IG when declaring the immutable class attributes will declare as many
static FR’s as these String collection elements. 1G will also perform the task of
declaring extra post conditions for each method whose signature (return and
arguments type) contains any collected domain type used in forall assertions.
These extra post conditions are nothing more than ensuring updateCache() on
each static FR previously declared, giving the opportunity to dynamically grab
objects during monitoring phase and reuse them when executing domain range
assertions.

3.9.2 Implementation

This contract factory uses two depth first walkers named DefWalker (DW) and
TranslateWalker (TW) to travel the specifications tree, although CG itself is al-
ready a depth first adapter too, on a specific simple case when collecting variable
identifiers from an operation or from an equality node. After DW and/or TW
walks we assemble the contract output according to our methodology.

3.9.2.1 The translation tree-walker

This class translates the formulzae of our specification language, cooperating with
DW for the equality axiom. It is implemented with a translation stack that, in
the end, is supposed to have one and only one translated element. During this
process the operationResult node indicates when to replace the actual node with
result, mainOpVar has the main operation variables substitution and mainOpNode
binds the variable identifiers with associated nodes. It is also a CG client by
means of reading or updating static attributes.

3.9.2.2 The definedness tree-walker

This class translates the definedness conditions for both terms and formulse
of our specification language, cooperating with TW. It is implemented with a
translation stack that, in the end, is supposed to have one and only one trans-
lated element. During this process the operationResult node indicates when to
replace the actual node with result, mainOpVar has the main operation variables
translation ready to pass to TW, and mainOpNode reflects the specific case of
getting the definedness condition from a second level depth translated domain
condition. It is also a CG client by means of reading their static attributes.

3.9.3 Virtual equals node operation

Due to the fact that translating an observer operation automatically results, ac-
cording to our methodology, in an equality axiom, there is the need to translate
nodes that do not belong to the specification. Such node, for the purpose of
code reuse, was virtually created and then translated with minor impacts to the
implemented solution. One of these is the protected static Operation observerOp

29



attribute existence that allows DW and TW bind each SableCC Node with the
main operation since (SQ) getOperation() will return null with equality axiom as
the argument.

3.10 Pair Generator

Class congu.PairGenerator (PG) takes as input the refinement.semant.StateValuePair
(SVP) provided by ConGu earlier stage, the Hashtable provided by FileGenerator
(FG) and outputs, through toJavaCode() method, a pair of Java files, acting like
a String factory. This Java file is, in turn, used by the immutable and wrapper
classes to import/export objects.

The input SVP consists of the return type of a (non-void) method that
exists in the refinement (value), and the class the method belongs to (state).
Two methods of the same class that have the same return type are associated
to the same state-value pair.

The input hashtable indicates whenever the state class type is to be subject
of testing Java implementations with the ConGu tool framework. Basically
this hashtable contains all generated wrapper classes names and their respective
original name translation.

3.11 File Generator

Class congu. FileGenerator (FG) takes as input the spec.semant.SpecQuerier (SQ),
the refinement.semant.RefinementQuerier (RQ), the implement.ImplementQuerier (1Q)
all instantiated by ConGu’s earlier stages, outputting each generator output
(WG, IG, CG, PG) to a file and also renaming the original client class to be
confronted against specification during execution time.

For each 1Q class an immutable class file is generated through IG, equipped
with the contracts previously stated. During this iteration, if one class has
refined methods in RQ, then both the wrapper class file, through WG, and
the renamed original client class file, through CR, are dumped into the file
system while the old and new names are stored in a String hashtable that will
be redirected to PG.

The next step is to write into the file system each pair class, through PG.
Finally if CG getForallTypes () method has any stored type, then a auxiliary FR
class is also outputted to the file system. All output files are written to the
“output” directory and still preserve the client package organization, which can
be noticed from ConGu tool messages.

Final step is compiling all “output” source classes. Only the Immutable
classes are compiled with jmlc, the remaining classes are all compiled with javac.

3.12 Putting it all together

The behavior of ConGu is achieved by synchronizing all its components. Class
congu.Congu does this task. The main method of this class is responsible for
providing a user’s interface and initializing each of the ConGu components at
the right time. First the SMA is executed on the specifications. If no error is
produced, then the output of SMA is given as input to the RBA. If the refinement

30



binding is valid, the front-end of ConGu has finished its task and it is time
for the back-end to start. The back-end, which generates the output files, is
managed by class FG.

31



Appendix A

Grammars

A.1 Grammar of the specification language

The grammar that defines the syntax of the specification language was built
under the framework of the compiler generator SableCC http://sablecc.
org/. Below we list the production rules and the tokens of the grammar. The
nonterminal symbols from the tokens section are left unspecified in this paper;
the full grammar is available online http://labmol.di.fc.ul.pt/congu/.

/3 sk ok sk ok sk ok sk sk ok sk ok sk sk sk sk ok sk ok sk ok R sk ok sk ok sk ok K ok ok sk ok sk sk s sk ok sk ok sk sk R sk R sk ok Sk ok K sk ok sk ok sk sk sk ok ok sk ok sk ok K ok o 3k
* Tokens *
*******************************************************************/

Tokens

white_space = (sp | ht | ff | line_terminator )sx*;
traditional_comment = ’/%’ not_star4+ ’*’
+ (not_star_not_slash not_starx ’s’+4)x /7
documentation_.comment = ' /%%’ ’x’% (not_star_not_slash not_starx ’'x’+4)x ’'/7;

end_of_line_.comment = ’//’ input_characterx line_terminator?;

’ .

specification_token = ’specification ’;

end = ’end’;

sorts_-token = ’sorts’;
constructors_token = ’constructors’;
observers_token = ’observers’;
derived_token = ’derived’;
axioms_token = ’axioms’;
domains_token = ’domains
if = 2if’;
iff = "iff’;
when = ’when
else = ’else’;

).
3

l_parenthese =
r_parenthese =
I_bracket = ’[’;
r_bracket = ]
colon = ’:’
semicolon = 7;
comma = ’,’;
arrow_simple = '—>7;
arrow_question = '——>77;

plus = '+
minus = =’
mult = "%
div = /7
mod = "%’ ;

32


http://sablecc.org/
http://sablecc.org/
http://labmol.di.fc.ul.pt/congu/

eq

neq ;
1t

gt

le

ge

not = ’'not’;

or = ’or’;

and = ’and’;

decimal_integer_literal = decimal_numeral;
boolean_literal = ’true’ | ’false’;

identifier = java_letter java_letter_or_digit x;

/*****>k****>k**********>k****>k**********>k*****************************

* Ignored Tokens

*

sk sk ok sk sk K sk ok sk ok S sk K ok ok sk ok s ok K sk ok sk sk sk ok K sk ok sk sk S sk ok sk ok sk sk K sk ok sk ok S sk K ok ok sk sk s sk sk sk ok sk ok s ok ok sk ok ok ok K ok ok /)

Ignored Tokens

white_space ,
traditional_comment ,
documentation_.comment ,
end_of_line_.comment ;

/s sk ok sk ok sk sk sk sk ok sk ok sk sk sk sk sk sk ok sk sk R sk ok sk ok sk sk sk ok ok sk ok sk sk sk sk ok sk ok sk sk SR sk o sk ok sk ok K sk ok sk ok sk sk sk ok ok sk ok sk ok R ok o 3k

* Productions

*

sk sk ok ok sk R ok ok sk ok 3 ok ok sk ok sk ok s ok ok ok ok sk ok sk ok K sk ok sk ok K sk ok sk ok sk ok K sk ok Sk ok 3R sk K ok ok sk ok sk ok ok ok ok sk ok o ok ok sk ok ok ok o ok ok /)

Productions

specification =
header
sorts
constructors?
observers?
derived?
domains?
axioms?
end specification_token

header =
specification_token ;

sorts =
sorts_-token identifier;

constructors =
constructors_token signature-;

observers =
observers_token signature-+;

derived =
derived_token signature-;

domains =
domains_token var_decl* domain+;

axioms =
axioms_token var_declx axiom+;

signature =

{operation} [name]:identifier colon [parameters]:

[return_sort |:identifier semicolon |

{predicate} [name]:identifier colon [parameters]:

arrow =
{total} arrow_simple |
{partial} arrow_question;

domain =

33

identifier x

identifier *

arrow

semicolon ;



term if formula semicolon;

var_decl =
identifier_list colon identifier semicolon;

axiom =
{simple} formula semicolon |
{conditional} formula if [condition]:formula semicolon |
{equivalence} formula iff [condition]:formula semicolon |
{double_conditional} relational eq [left]:relational
when [condition]: formula else [right]:relational semicolon;

// FORMULA

formula =
{conjunction} conjunction |
{disjunction} formula or conjunction;

conjunction =
{equality} equality |
{conjunction} conjunction and equality ;

equality =
{relational} relational |
{equality} [left]:relational eq [right]:relational |
{inequality} [left ]:relational neq [right]:relational;

relational =
{term} additive |
{lower_than} [left]:additive 1t [right]:additive |
{lower_equal} [left]:additive le [right]:additive |
{greater_than} [left]:additive gt [right]:additive |
{greater_equal} [left]:additive ge [right]:additive;

additive =
{mult} multiplicative |
{plus} additive plus multiplicative |
{minus} additive minus multiplicative;

multiplicative =
{unary} unary |
{mult} multiplicative mult unary |
{div} multiplicative div unary |
{mod} multiplicative mod unary;

unary =
{basic} basic |
{negation} not basic
{minus} minus basic;

basic =
{boolean} boolean_literal |
{integer} decimal_integer_literal |
{variable} identifier |
{operation} term |
{paren} l_parenthese formula r_parenthese;

term =
[name]: identifier l_parenthese [args]:additive_list? r_parenthese;

// LISTS
// A list of one or more identifiers separated by commas
identifier_list =

identifier comma_identifier x;

comma_identifier =
comma identifier;

// A list of one or more signatures separated by commas
signature_list =

signature comma_signature x;

comma_signature =

34



comma signature;

// A list of one or more additives separated by commas
additive_list =
additive comma_additivex ;

comma_additive =

comma additive;

A.2 Grammar of the refinement language

The grammar that defines the syntax of the language of refinements was built
under the framework of compiler generator SableCC http://sablecc.org.
We do not present here a list of non-terminal tokens. The full grammar is
available online http://labmol.di.fc.ul.pt/congu/|

/3 sk ok sk ok sk sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk R sk ok sk ok sk sk K sk ok sk ok sk sk s sk ok sk ok ok sk R sk K sk ok Sk ok R sk ok sk ok sk sk sk ok ok sk ok ok ok o ok ok ok
* Tokens *
*******************************************************************/

Tokens

white_space = (sp | ht | ff | line_-terminator)sx;
traditional_comment = ’/%’ not_star4+ ’x’

4+ (not_star_not_slash not_starx ’x’+4)x ’/7;
documentation_.comment = ’ /%%’ ’x’% (not_star_not_slash not_starx ’x’'4)x
end_of_line_.comment = ’//’ input_character* line_terminator?;
refinement_token = ’refinement’;
is = ’is’;
class_token = ’class’;
end = ’end’;
null = ’null’;
return_-token = ’return’;
dot = 7.7
colon = ’:7;
semicolon = ’;7;
comma = ', ;
l_parenthese = (7
r_parenthese = 7)’;

)

l_brace =~
r_brace ="’
identifier

{7
i)

)
java_letter java_-letter_or_digit *;

/*******************************************************************

* Ignored Tokens *
*******************************************************************/
Ignored Tokens

white_space ,
traditional_comment ,
documentation_.comment ,
end_of_line_.comment ;

/*******************************************************************
* Productions *
sk sk ok ok sk R sk ok sk ok 3 sk K ok ok sk ok s ok K ok ok sk sk sk ok K sk ok sk sk K sk ok sk ok Sk sk K sk ok sk ok SR sk K sk ok sk sk sk ok ok sk ok sk sk s ok ok sk ok ok ok ok ok ok /)

Productions

refinement =
header
refine++
end refinement_token ;

header =
refinement_token ;

35

’/7,
)


http://sablecc.org
http://labmol.di.fc.ul.pt/congu/

refine =
{non_primitive} sort_-to_non_primitive non_primitive_bind_block ?;

sort_-to_non_primitive =
[sort]:identifier is class_token type;

non_primitive_bind_block =
l_brace non_primitive_bind* r_brace;

non_primitive_bind =
operation is non_primitive_value semicolon;

non_primitive_value =
{constructor} constructor |
{method} method |
{null} null;

operation =
{operation} [name]:identifier l_parenthese op_parameter_list?
r_parenthese colon [codomain]:identifier |
{predicate} [name]:identifier l_parenthese op_parameter_list?
r_parenthese;

constructor =
[name]: identifier l_parenthese method_parameter_list? r_parenthese;

method =
return_token? [return_type]:type [name]:identifier l_parenthese
method_parameter_list? r_parenthese;

op-parameter_list =
op_-parameter comma_op_-parameter *;

comma_op-parameter =
comma op_parameter;

op-parameter =
[name]: identifier colon [sort]:identifier;

method_parameter_list =
method_parameter comma_method_parameter *;

comma-method_parameter =
comma method_parameter;

method_parameter =
type [name]:identifier;

type =

{simple_name} identifier |
{qualified_.name} type dot identifier;

36



Bibliography

1]

2]

[6]

A. W. Appel. Modern Compiler Implementation in Java. Cambridge Uni-
versity Press, second edition, 2002.

M. Campione, K. Walrath, A. Huml, and Tutorial Team.
The Java Tutorial. Sun Microsystems, online edition, 2006.
http://java.sun.com/docs/books/tutorial/.

E. Gagnon. SableCC, an object-oriented compiler framework. Master’s
thesis, School of Computer Science, McGill University, Montreal, Mar. 1998.

I. Nunes, A. Lopes, V. T. Vasconcelos, J. Abreu, and L. Reis. Testing
implementations of algebraic specifications with design-by-contract tools.
TR 0522, Department of Informatics, Faculty of Sciences, University of
Lisbon, Dec. 2005. Available at http://www.di.fc.ul.pt/tech-reports/.

I. Nunes, A. Lopes, V. T. Vasconcelos, J. Abreu, and L. S. Reis. Checking the
conformance of Java classes against algebraic specifications. In Proceedings
of ICFEM’06, volume 4260 of LNCS, pages 494-513. Springer-Verlag, 2006.

TYped Concurrent Objects. http://www.ncc.up.pt/tyco/.

37


http://www.di.fc.ul.pt/tech-reports/
http://www.ncc.up.pt/tyco/

	The Specification and the Refinement Languages
	Introduction
	The specification language
	General structure
	Operation and Predicate signatures

	Modules
	The refinement language
	General structure
	Refining specifications into Java types


	User's Guide
	Introduction
	Usage
	System requirements
	How to use
	Generated files
	Compiling
	Monitoring

	Examples
	Easy
	Not so easy

	Troubleshooting
	Limitations

	Implementation Guide
	Introduction
	Architecture
	Parsing with SableCC
	The Specification Module Analyzer
	Semantic analysis
	Three stage analysis
	Storing and retrieving information

	Refinement Binding Analyzer
	Semantic analysis
	Two stage analysis
	Using Java reflection
	Storing and retrieving information

	Class Renamer
	Wrapper Generator
	Immutable Generator
	Contract Generator
	Output
	Implementation
	Virtual equals node operation

	Pair Generator
	File Generator
	Putting it all together

	Grammars
	Grammar of the specification language
	Grammar of the refinement language


