
EMF: Extensible Middleware Framework

Tiago Guerreiro1, Vitor Fernandes1, Bruno Araújo1, Joaquim Jorge1,
João Pereira1

1 Intelligent Multimodal Interfaces, INESC-ID,

R. Alves Redol, 9, 1000-029, Lisbon, Portugal,
{tjvg, vmnf, brar, jaj, jap}@immi.inesc.pt

Abstract. We present a framework to manage multimodal interfaces and
applications in a reusable and extensible manner. We achieve this by focusing
the architecture both on devices’ Capabilities and users’ Intentions. One
particular domain we want to approach is collaborative environments where
several modalities and applications make it necessary to provide for an
extensible system combining diverse components across heterogeneous
platforms on-the-fly.We demonstrate how to connect different applications and
users around an immersive environment (tiled display wall), including different
non-conventional input modalities and applications.

Keywords: Framework, Multimodal Interfaces, Extensibility, Reusable,
Capabilities, Intents, Collaborative.

1 Introduction

Traditional interface devices in the HCI (Human Computer Interaction) area,
basically the mouse and the keyboard, are still overwhelming before the emergent
ways of interaction. However, in the last decades great efforts were made with
promising results to present interaction options between persons and any type of
computer. Besides, several projects have been presented to fuse input modalities and
build natural multimodal applications [2]. Despite the availability of several non-
conventional modalities very few applications take advantage of these technologies
due to its implementation cost. In an environment where several multimodal
applications are used, the developers’ effort is often wasted due to its rigid focus on a
certain application. Our framework provides the capacity to manage input modalities
and capabilities accordingly with the user’s will. We focus on reusing input
capabilities and being able to add new modalities and applications with a few amount
of effort. On the other hand, focusing our architecture both on devices’ Capabilities
and users’ Intentions, we enable its use in collaborative environments, where any
input is managed accordingly with the application and the capabilities available at the
given moment. Finally, to demonstrate our framework, in a collaborative context, we
present an immersive environment with a large display wall and several input
modalities.

2 Framework

The main goal of our framework is to manage input modalities and applications
separately allowing that each component can be reused and extended. We focus on
inputs’ capabilities and users’ interests offering at each moment the most suited input
for a determined task in a specific application. For a given input, the capabilities are
the set of tokens or input data that can be offered by the input to any application, i.e.,
mouse commands, gesture tokens, tracking positioning or speech commands. On the
other hand, a given token can be delivered by several input types, for example an “up
direction” command could be given by a keyboard input or tracked body gesture
motion. The framework is responsible to redirect needed tokens from the inputs to the
application according to its preferences. Following this, different modalities can be
integrated and shared between applications. Moreover, a new input which is able to
deliver a known token for an application can be integrated easily extending the
modalities without any change on the application.

2.1 System Overview

In order to accomplish our extensibility goals, we used a message-oriented approach.
Our system architecture, such as depicted by Fig. 1., is organized into four different
entities: Inputs, Applications, a Manager and a communication backbone called
OSGA. The Inputs are the communication interfaces for devices such as keyboard,
mouse, speech recognition system, EMG (electromyographic signal capture), camera
tracking systems which are able to deliver multimodal tokens corresponding to
gestures commands or even data files. The Applications are linked to the
communication backbone through an interface to allow the interaction using the input
information. The communication backbone is responsible to redirect all the messages,
allowing multiple Inputs to interact with multiple Applications. Doing so, Inputs can
publish their data that will be received by all applications which have subscribed to it.
The communication and the inputs’ discovery process is coordinated by the fourth
component: the Manager. This module supports the configuration and establishment
of communications between Inputs and Applications. The coordination relies on a
connection grid mechanism which stores the capabilities available for each connected

OSGA

COMMUNICATION
BACKBONE

Input:2 Application:2

Manager

Input:1 Application:1

Input:n Application:n

Manager
Console

(...) (...)

INPUT
SCOPE

APPLICATION
SCOPE

MANAGER
SCOPE

Communication
Grid

Fig. 1. - System Architecture

input and the needs or preferences of each application. Finally, the Manager offers a
user interface which allows the user switching and choosing inputs for applications.
This interface takes advantage of existing inputs such as the applications do.

2.2 Open Source Group Architecture

Having an overwhelming number of prototypes emerging from investigation work,
enables one to devise future integration projects bringing together several pieces to
create larger and integrated applications. OSGA (Open Source Groupware
Architecture) is a distributed XML message-based integration framework developed
within our research group to overcome the integration problem. This framework can
be easily used for further applications and can be integrated in our current prototypes.
It is built upon XmlBlaster and provides the capacity to have several clients receiving
messages accordingly to both subscription and publishing mechanisms. Basically, all
the messages sent to the system are redirected to all the clients which subscribed to a
given message topic. It also enables to filter the messages for a topic taking in account
additional message properties such as sender’s identification, or clues about the
message content.

< a p p l i c a t i o n >
 < m s g > i n i t - a p p l i c a t i o n - r e q u e s t < / m s g >
 < n a m e > P a i n t < / n a m e >
 < d e s c r i p t i o n > P a i n t < / d e s c r i p t i o n >
 < k e y > H G 4 3 5 J H G 4 5 H 5 4 H G A < / k e y >
< / a p p l i c a t i o n >

< m a n a g e r >
 < m s g > i n i t - i n p u t - a c k n o w l e d g e < / m s g >
 < i d > 2 < / i d >
< / m a n a g e r >

< m a n a g e r >
 < m s g > i n i t - a p p l i c a t i o n - a c k n o w l e d g e < / m s g >
 < i d > 1 < / i d >
 < i n p u t >
 < n a m e > S p e e c h < / n a m e >
 < d e s c r i p t i o n > S p e e c h < / d e s c r i p t i o n >
 < i d > 2 < / i d >
 < c a p a b i l i t i e s >
 < c a p a b i l i t y > u p < / c a p a b i l i t y >
 < c a p a b i l i t y > d o w n < / c a p a b i l i t y >
 < c a p a b i l i t y > l e f t < / c a p a b i l i t y >
 < c a p a b i l i t y > r i g h t < / c a p a b i l i t y >

. . .
 < / c a p a b i l i t i e s >
 < / i n p u t >
 . . .
< / m a n a g e r >

< i n p u t >
 < m s g > i n i t - i n p u t - r e q u e s t < / m s g >
 < n a m e > S p e e c h < / n a m e >
 < d e s c r i p t i o n > S p e e c h

< / d e s c r i p t i o n >
 < k e y > 5 4 J H 6 G 3 4 J 5 G 4 H J 7 6 < / k e y >
 < c a p a b i l i t i e s >

< c a p a b i l i t y > u p < / c a p a b i l i t y >
 < c a p a b i l i t y > d o w n < / c a p a b i l i t y >
 < c a p a b i l i t y > l e f t < / c a p a b i l i t y >
 < c a p a b i l i t y > r i g h t < c a p a b i l i t y >
 . . .
 < / c a p a b i l i t i e s >
< / i n p u t >

O S G A
In p u t A p p lic a t io n

M a n a g e r

M a n a g e r : I n p u t M a n a g e r :A p p lic a t io n

In p u t:T e m p

In p u t:N

i n i t - i n p u t - a c k n o w l e d g e

A p p lic a t io n :T e m p

A p p lic a t io n :N

i n i t - a p p l i c a t i o n - a c k n o w l e d g e

i n i t - a p p l i c a t i o n - r e q u e s ti n i t - i n p u t - r e q u e s t

Fig. 2. – Communication Protocol

2.3 Communication Protocol

To support the interaction between Inputs, Applications and the Manager, we
organized our XML messaging protocol (Fig. 2.) into four separated phases. The first
step is the initialization of Input to register new inputs and its capabilities in the
Manager. There is also the Application initialization to register the capabilities needed
by the application and to know which inputs support these capabilities. The third
phase is the communication setup to establish the communication between a given
input and an application in order to receive input data. Finally, the protocol also

supports the suspension/resume of a communication between an input and an
application and its termination which is coordinated by the Manager.

Initialization: The Input initialization is performed by an init-input-request message
using a temporary communication channel. Each input provides its identification and
the list of supported capabilities. This information is stored by the Manager which
will be available for interested applications. Regarding applications they also require
an initialization in order to be identified by the Manager. On the other hand, the list of
needed capabilities is provided and stored in the communication grid. The Manager
provides a list of the most suited inputs to satisfy the capability needs by the
application. This information will be used by the application to establish the
connection with needed inputs to support the multimodal interaction.

Communication and Interaction: Applications can require, at any given time, the
refereed list of inputs and capabilities, and the Manager will retrieve the actualized
version of it. With the gathered information, applications can select the desired
capabilities accordingly to the users’ preferences. Manager replies to Inputs informing
that Applications are interested on receiving their data. Each Application only
receives what it revealed interest on through the use of filters. The communication
link is established between the Inputs and the Application that subscribed these
Inputs’ topics. With all the required topics subscribed we achieve a n:n
communication between Inputs and Applications improved by restriction mechanisms
(filters) and enriched descriptions (messages traded) that can be updated on the fly.
Inputs publishes data to the given topic ‘{input type}:{id}:data’.

Suspend and Resume: Communication between an Input and an Application can be
suspended by Application initiative through the cancellation of Input subscription. To
resume communication it will be enough to subscribe the Input topic.

Terminate: Applications and Inputs can terminate their session at any time
publishing that intention to the Manager. Manager publishes affected Inputs and
Applications that they must, eventually, reduce published data or modify the received
capabilities accordingly.

Keep-alive: To prevent failure situations when Inputs/Applications aren’t able to
communicate with the Manager we developed a keep-alive signaling between this
entities and the Manager.

3. Application Context

The framework presented in this paper is to be the background for all interaction and
application prototypes created in our immersive environment, LEMe Wall. Hence,
besides providing a collaborative framework, we are also able to reuse all input
prototypes created and adjust them on-the-fly to each application accordingly to our
needs. LEMe Wall [1] is an intelligent distributed environment with a multi-

projection Display Wall (4x3 tiled display) as the main component. The environment
is complemented by a set of sensors and actuators that increase the interaction
immersion and naturalness.

3.1 Interaction Modalities

Besides the immersion provided by the large display screen, LEMe Wall aims at
offering the user a set of interaction capabilities provided by several mechanism and
modalities. As the users can walk freely around the room interacting with the
environment we equipped it with several input mechanisms like a sensor network
with pressure sensors and ultra-sound sensors for positioning, a network of five
cameras for body gesture tracking and microphones for voice interaction. Through
these interaction devices we can have several individuals interacting simultaneously
with the environment within the same and different scopes (applications). The use of
the framework in our immersive environment makes possible for all input prototypes
developed to be available to everyone. This is quite useful when we consider project
integration and reusing others researchers effort. Actually, when any student /
researcher designs his project, he can visualize all the available inputs and capabilities
through the Manager Console. With a small amount of effort every new input /
capability is added to the available ones and can be used by everyone.

4. Conclusions

We presented a framework to manage multimodal interfaces in a distributed
environment focusing on the extensibility and reusability of input modalities. We
achieve this goal by separating inputs and applications and managing their
communication through a protocol over a message-based system. The main
contribution of the presented idea is the possibility to adapt inputs and applications
on-the-fly accordingly to the available capabilities and user’s will at any given time.
Collaborative scenarios are well suited with this framework focus and goals. We
presented an application scenario in an immersive environment where the
collaborative and multimodal advantages are huge.

Acknowledgements. This work was supported in part by European Commission
grant IST-2003-004785 (IMPROVE).

References

1. Araújo, B., Guerreiro, T., Jorge, J., Pereira, J., Jota, R. Leme Wall: Desenvolvendo um
sistema de Multi-projecção. Proceeding of 13º EPCG , Vila Real, Portugal, Oct 2005.

2. Flippo, F., Krebs, A., and Marsic, I. 2003. A framework for rapid development of
multimodal interfaces. In Proc. of the 5t h ICMI 03. ACM Press, New York, NY, 109-116

