
Extensible Middleware Framework for Multimodal

Interfaces in Distributed Environments

Vitor Fernandes
1
, Tiago Guerreiro

2
, Bruno Araújo

3
,Joaquim Jorge

4
, João Pereira

5

IST-UTL / INESC-ID
R. Alves Redol

1000-029 Lisbon, Portugal
+351 21 3100363

{vmnf
1
, tjvg

2
, brar

3
}@immi.inesc.pt, jaj@acm.org

4
, jap@inesc.pt

5

ABSTRACT

We present a framework to manage multimodal applications and
interfaces in a reusable and extensible manner. We achieve this by
focusing the architecture both on applications’ needs and devices’
capabilities. One particular domain we want to approach is
collaborative environments where several modalities and
applications make it necessary to provide for an extensible system
combining diverse components across heterogeneous platforms
on-the-fly. This paper describes the proposed framework and its
main contributions in the context of an architectural application
scenario. We demonstrate how to connect different non-
conventional applications and input modalities around an
immersive environment (tiled display wall).

Categories and Subject Descriptors

H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – Collaborative Computing, Computer-

supported cooperative work, Synchronous interaction;

H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Input devices and strategies, Interaction styles;

H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – Artificial, augmented, and virtual realities.

General Terms

Algorithms, Design, Human Factors.

Keywords

Framework, Multimodal Interfaces, Extensible, Reusable,
Capabilitie, Collaborative.

1. INTRODUCTION
Traditional interface devices in the HCI (Human Computer
Interaction) area, basically the mouse and the keyboard, are still
overwhelming before the emergent ways of interaction. However,
in the last decades great efforts were made with promising results

to present interaction options between persons and any type of
computer. These alternative devices can replace, extend or
completely change the interaction between that person or group of
persons and a computer or group of computers.

At our immersive laboratory, LEMe Wall [1], we have several
researchers studying different areas, some of them complementary

1.1 LEMe Wall
LEMe Wall is an intelligent distributed environment with a multi-
projection tiled display wall as the main component. It is
composed by three essential modules: a 4x3 projectors matrix
duly supported a flexible screen that offers visualization support
and a computer cluster that controls the projection. The
environment is complemented by a set of sensors and actuators
that increase the interaction immersion and naturalness.

1.2 Motivation
At the Intelligent Multimodal Interfaces Group, INESC-ID, we
have several junior and senior researchers leaning over several
prototypes across different working areas (Modeling,
Visualization, Interaction, Mobility, Accessibility …). Most of the
times, researchers learning over a certain area have to replicate
others’ work on different areas and create a whole new
demonstrable prototype. In an environment where several
multimodal applications are used, the developers’ effort is often
wasted due to its rigid focus on a certain application. The cycle
continues and every new prototype is a new whole not-reusable
product. Within a research group, we can easily find prototypes
and solutions that became unusable and therefore useless to other
researchers.

Observing these scenarios it was urgent to find a suitable solution
that: i) make it possible for any researcher to focus on a
determined module, using already developed modules to
complement and demonstrate his accomplishments; ii) can be
used across heterogeneous platforms making it versatile
considering developers profile and needs; iii) Provides the user
on-the-fly module management so all the resources can be
maximized and used when needed the most.

2. RELATED WORK
Trying to overcome the stated integration difficulties, in a first
approach, we surveyed existent platforms. We looked into several
areas including multimodal interfaces, multi-agents
communication frameworks, capabilities, matchmaking that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICMI’07, November 12–15, 2007, Nagoya, Japan.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

intersect our work on Extensible Middleware Framework.

Quickset [3] compared speech-pen interfaces vs. pen only and
speech only on a collaborative environment using handheld and
desktop PCs. Both modalities strengths and handicaps are stated:
speech is bad for line drawing and excellent for selecting objects
not visible on screen, pen is the reverse. Thus multimodal
interaction achieves fast task performance against unimodal
interfaces.

Open Agent Architecture (OAA) [8] from SRI is a multiple
agent environment. Application agents and user interface agents,
use a facilitator to establish communication using an Inter-agent
Communication Language (ICL). Facilitator maintains a
knowledge base that records the capabilities of a collection of
agents and uses that knowledge to assist requesters and providers
of services in making contact. Multiple interaction modalities can
be used and joined through user interface agent.

RETSINA Communicator [10] is a Multi-Agent System (MAS)
providing abstraction that supports communication between
agents. Client / server and peer to peer connections are available

to agents. RETSINA supports KQML [4] Agent Communication
Language (ACL).

Framework for Rapid Development of Multimodal Interfaces
[6] tries to overcome the limitation of prior frameworks (there are
few commercial multimodal applications and also require a lot of
development time and resources) enabling rapid development of
applications using multiple modalities with a novel multimodal
fusion. A fusion algorithm obtains data from modalities, fuses that
data to a meaning and takes action based on that meaning as done
on Put-that-there [2].

A Real-Time Framework for Natural Multimodal Interaction

with Large Screen Displays [9], where gestures and speech
modalities receive adequate and timely feedback from a large
screen display that as high demand on Human-Computer
Interaction (HCI) that should be effortless and natural to users.

Although the reutilization and modality integration issue has been
studied by the mentioned researchers, we still can’t find a solution
that easily provides the developer an easy platform to join and
demonstrate his module, and provides the user with on-the-fly
module integration.

3. EXTENSIBLE MIDDLEWARE

FRAMEWORK
The main goal of our framework is to manage input modalities
and applications separately allowing that each component can be
reused and extended. We focus on inputs’ capabilities and
application’ interests offering at each moment the most suited
input for a determined task in a specific application. For a given
input, capabilities are the set of tokens or input data that can be
offered by the input to any application, i.e., mouse commands,
gesture tokens, tracking positioning or speech commands. On the
other hand, a given token can be delivered by several input types,
for example an “up direction” command could be given by a
keyboard input or tracked body gesture motion. Our framework
provides the capacity to manage input modalities and capabilities
accordingly with the application’s will. We focus on reusing input
capabilities and being able to add new modalities and applications
with a few amount of effort. On the other hand, focusing our
architecture both on devices’ Capabilities and users’ Intentions,

we enable its use in collaborative environments, where any input
is managed accordingly with the application and the capabilities
available at the given moment. The framework is responsible to
redirect needed tokens from the inputs to the application
according to its preferences. Following this, different modalities
can be integrated and shared between applications. Moreover, a
new input which is able to deliver a known token for an
application can be integrated easily extending the modalities
without any change on the application.

3.1 System Overview
In order to accomplish our extensibility goals, we used a message-
oriented approach. Our system architecture, such as depicted by

Fig. 1, is organized into four different entities: Inputs,

Applications, a Manager and a communication backbone called

OSGA.

The Inputs are the communication interfaces for devices such as
keyboard, mouse, speech recognition system, EMG
(electromyographic signal capture), camera tracking systems
which are able to deliver multimodal tokens corresponding to
gestures commands or even data files. Applications are linked to
the communication backbone through an interface to allow the
interaction using Inputs information. The communication
backbone is responsible to redirect all the messages, allowing
multiple Inputs to interact with multiple Applications. Doing so,
Inputs can publish their data that will be received by all
applications which have subscribed to it. The communication and
the inputs’ discovery process are coordinated by a Manager. This
module supports the configuration and establishment of
communications between Inputs and Applications. The
coordination relies on a connection grid mechanism which stores
the capabilities available for each connected input and the needs
or preferences of each application. Finally, Manager offers a user
interface which allows the user switching and choosing inputs for
applications. This interface takes advantage of existing inputs
such as Applications do.

3.2 Open Source Groupware Architecture
Having an overwhelming number of prototypes emerging from
investigation work, enables one to devise future integration
projects bringing together several pieces to create larger and

integrated applications. Open Source Groupware Architecture

(OSGA) [8] is a distributed XML message-based integration
framework developed within our research group to overcome the

OSGA

COMMUNICATION
BACKBONE

Input:2 Application:2

Manager

Input:1 Application:1

Input:n Application:n

Manager
Console

(...) (...)

INPUT
SCOPE

APPLICATION
SCOPE

MANAGER
SCOPE

Communication
Grid

Figure 1 - System Architecture

integration problem. This framework can be easily used for further
applications and can be integrated in our current prototypes. It is
built upon XmlBlaster [11] and provides the capacity to have
several clients receiving messages accordingly to both
subscription and publishing mechanisms. Basically, all the
messages sent to the system are redirected to all the clients which
subscribed to a given message topic. It also enables to filter the
messages for a topic taking in account additional message
properties such as sender’s identification, or clues about the
message content.

3.3 Communication Protocol
To support the interaction between Inputs, Applications and the
Manager, we organized our XML messaging protocol (Fig. 2.)
into four separated stages: i) initialization of Input; ii)
initialization of Application; iii) communication setup and iv)
communication suspension, resume and termination which are
coordinated by Manager.

Initialization: The Input initialization is performed by an init-

input-request message using a temporary communication

channel. As illustrated in the following XML example, each input
provides its identification and the list of supported capabilities.
The identification is formed by its type (i.e. Speech, EMG,
Tracker…) and the key that will be used by the manager to assign
a global unique identifier (i.e. Speech:1) to Input. This
information is stored on Manager, and the new identification is
used by Input to create its own input channel which will be
available for interested applications.

Input->Manager:Input

<input>
 <msg>init-input-request</msg>
 <name>Speech</name>
 <description>Speech Recognizer</description>
 <key>54JH6G34J5G4HJ76</key>
 <capabilities>
 <capability>
 <name>Token</name>
 <value>Hello World!</value>
 </capability>
 ...

Applications also require an initialization in order to be identified
by the Manager. A list of needed capabilities is provided and
stored in the communication grid. Manager defines a global
identifier (example Paint:1) and provides a list of the most suited
inputs to satisfy the capability needs by the application. The
following XML message init-application-

acknowledge presents a response. This information will be

used by the application to establish the connection with needed
inputs to support the multimodal interaction.

Manager -> Application:Temp (Filtered)

<manager>
 <msg>init-application-acknowledge</msg>
 <id>1</id>
 <input>
 <name>Speech</name>
 <description>Speech recognizer</description>
 <id>2</id>
 <capabilities>
 <capability>
 <name>Token</name>
 <value>Hello World!</value>
 </capability>
 ...

Communication and Interaction: Applications can request at
any given time, the refereed list of inputs and capabilities, and the
Manager will retrieve the actualized version of it. With the
gathered information applications can select the desired
capabilities accordingly to the users’ preferences.
At this time, the user through application can select and pair the
desired capabilities with the application possible actions. This
information is kept in the application translation matrix. On the
other hand, the list of needed capabilities is stored in the manager
communication grid. Although the inputs’ capabilities have some
semantic meaning, the user is able to pair the capability with a
completely different action (i.e. the Application receives the
message UP which is translated to DOWN). This phase can be
compared with keyboard calibration in a computer game. Manager
receives this information and completes the communication grid
with the subscribed inputs and capabilities.
It also replies to Inputs (the ones with requested capabilities)
informing that Applications are interested on receiving their data.
An Input only publishes data that has been requested! Each
Application only receives what it revealed interest on through the
use of filters (implemented in OSGA). The communication link is
established between the Inputs and the Application that
subscribed these Inputs’ topics. With all the required topics
subscribed we achieve a n:n communication between Inputs and
Applications improved by restriction mechanisms (filters) and
enriched descriptions (messages traded) that can be updated on
the fly.

Direct-Connection: Data can be exchanged directly between
Inputs and Applications (1:n) after socket negotiation (tcp or udp)
without using Manager or OSGA allowing higher performance for
multimedia applications or other.

Suspend and Resume: Communication between an Input and an
Application can be suspended by Application initiative through
the cancellation of Input subscription. To resume communication
it will be enough to subscribe the topic again. In case the Input of
which was suspended the communication finishes, the manager
informs the Application as described previously.

Terminate: Applications can terminate their session at any time
publishing that intention to the Manager that publishes this to

ManagerInput Application

init-input-request

init-input-acknowledge

init-application-request

init-application-acknowledge

comm-application-request

comm-application-acknowledge

comm-application-select

IN
IT

IA
L

IZ
A

T
IO

N
C

O
M

M
.
S

E
T

U
P

comm-application-activate

input-data

C
O

M
M

.
T

E
R

M
IN

A
T

IO
N

comm-application-kill

comm-input-kill-capabilitie

()

comm-input-kill

comm-input-kill-capabilitie

comm-application-select()comm-application-activate

Figure 2. - Protocol Sequence Diagram

affected Inputs that must, eventually, reduce published data.
When an Input finishes the communication Manager publishes to
affected Applications that they have to modify the received
capabilities and also sends the current list of Inputs and respective

capabilities for Application selection.

Keep-alive: To prevent failure situations when Inputs or
Applications aren’t able to communicate with Manager we
developed a keep-alive signaling between this entities and the
Manager. If a failure has been detected the termination protocol is
followed depending on the “dead” entity.

4. APPLICATION CONTEXT
The use of the framework in our immersive environment makes
possible for all input prototypes developed to be available to
everyone. This is quite useful when we consider project
integration and reusing others researchers effort. Actually, when
any student / researcher design his project, he can visualize all the
available inputs and capabilities through the Manager Console.

Collaborative Design Scenario. We present a scenario with two
inputs and one application. Let’s consider a collaborative design
scenario where two users are preparing a mould at LEMe Wall.
The selected inputs are the Tablet PC and a Laser pointer,
operated by two users. The application used is Gides++ [6], an
application developed within our research group, and the users are
designing a mould. With our approach the users can operate
within the same application improving collaboration and the
design performance (Fig. 3). In this scenario, the user subscribed
both input’s capabilities receiving messages from both Inputs.
Therefore, two users can work concurrently on one Application.

Figure 3. – Collaborative Design Scenario

Both users interact over the same application but they can be
focused on different aspects, tasks or views.

5. FUTURE WORK
The next step in our work is to evaluate the framework
considering two roles: the developer’s role and the ease to add
new Inputs and Applications; and the user’s role considering
control tasks and the performance obtained while executing them.
Considering Inputs we will develop composed actions and
commands focusing on multimodal parsing. To achieve this goal
we will enrich our framework with Composed Inputs that
subscribe several device messages, parse and disambiguate them
and create higher level messages available to Applications.

6. CONCLUSIONS
We presented a framework to manage multimodal interfaces in a

distributed environment focusing on the extensibility and
reusability of input modalities. We achieve this goal by separating
inputs and applications and managing their communication
through a protocol over a message-based system. The main
contributions of the presented idea are the possibility to adapt
inputs and applications on-the-fly accordingly to the available
capabilities and user’s desire at any given time and allowing
direct-connections between Inputs and Applications without
Manager / OSGA after negotiation. Collaborative scenarios are
well suited with this framework focus and goals. We presented an
application scenario in an immersive environment where the
collaborative and multimodal advantages are huge.

7. ACKNOWLEDGMENTS
This work was supported in part by European Commission grants
IST-2003-004785 (IMPROVE) and IST-2006-034525 (SATIN).

8. REFERENCES
[1] Araújo, B., Guerreiro, T., Jorge, J., Pereira, J., Jota, R. Leme

Wall: Desenvolvendo um sistema de Multi-projecção.
Proceeding of 13º EPCG , Vila Real, Portugal, Oct 2005.

[2] Bolt, R. A., July 1980., Put-that-there: Voice and gesture at
the graphics interface, in Computer Graphics

(SIGGRAPH’80 Proceedings), 14(3):262–270.

[3] Cohen, P.R., Chen, L., Clow, J., Johnston, M., McGee, D.,
Pittman, J., and Smith, I., 1996, Quickset: A multimodal
interface for the distributed interactive simulation, in
Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST'96), Demonstration Session,
Seattle, WA.

[4] Fritzson, Rich, Finin, Tim, McKay, Don and McEntire,
Robin, 1994, KQML - A Language and Protocol for
Knowledge and Information Exchange, in 13th International

Distributed Artificial Intelligence Workshop, Seattle WA.

[5] Flippo, F., Krebs, A., and Marsic, I. 2003. A framework for
rapid development of multimodal interfaces. In Proc. of the

5t h ICMI 03. ACM Press, New York, NY, 109-116

[6] Jorge, J.,Silva, N., Cardoso, T. Gides++, Proceedings of 12º
EPCG, Porto, Portugal, Oct 2003.

[7] Martin, D. L., Cheyer, A. J., Moran, and D. B., 1999, The
open agent architecture: a framework for building distributed
software systems, in Applied Artificial Intelligence, vol. 13,
nos. 1-2, pp. 21-128.

[8] OSGA, 2007, Open Source Groupware Architecture (April 5,
2007), http://www.osga.net.

[9] Krahnstoever, N., Kettebekov, S., Yeasin, M. and Sharma,
R., 2002, A Real-Time Framework for Natural Multimodal
Interaction with Large Screen Displays, in Fourth IEEE

ICMI 2002.

[10] Shehory, O. and Sycara, K., 2000, The RETSINA
communicator, in Proceedings of the Fourth international

Conference on Autonomous Agents (Barcelona, Spain, June
03 - 07, 2000), AGENTS '00. ACM Press, New York, NY,
199-200.

[11] XMLBlaster, 2007, XMLBlaster (April 5, 2007);
http://www.xmlblaster.org.

