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Abstract. Mobile devices’ user interfaces have some sintiésiwith the
traditional interfaces offered by desktop compuytevghich are highly
problematic when used in mobile contexts. Gest@®ognition in mobile
interaction appears as an important area to progigiéable on-the-move
usability. We present a body space based appr@aghprove mobile device
interaction and on the move performance. The hub@y is presented as a
rich repository of meaningful relations which alevays available to interact
with. Body-based gestures allow the user to ndjurateract with mobile
devices with no movement limitations. Preliminarjudies using RFID
technology were performed, validating the mnemdricaly shortcuts concept
as a new mobile interaction mechanism. Finallystiak sensing prototypes
were developed and evaluated, proving to be seitfminimobile interaction and
efficient, accomplishing a good recognition rate.
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1 Introduction

Mobile computers are currently omnipresent, andaber a part of the user's daily
life. Their capabilities are diverse: communicatip®PS, video and music players,
digital cameras, game consoles and many othercapiplhns. The characteristics of
these multiple-task devices surpass the desktop interfaces and give more
importance to new possibilities in human-computégriaction (HCI).

Mobile devices’ interaction differs from the usualteraction with desktop
computers due to their different physical charasties, input/output capabilities and
interaction demands. They have to be small andvigight to be carriable therefore
limiting battery resources and processor capadslitinput and output capabilities are
reduced. The interaction while mobile is also difg because users' visual attention
is not always focused on the device, making eyes-&nd low-workload important
characteristics to create a suitable mobile interfaAlso, there is a core of
applications that are used recurrently, and th&nunaccess is often too slow due to
the limited input capabilities. This implies theogiing importance of shortcuts: users
need fast application access. To achieve this goahile phones provide voice and
key shortcuts. Voice shortcuts are not suited igynenvironments, are too intrusive,



have a low recognition rate and low levels of slbatxeptance. Key shortcuts don't
provide any auxiliary memorization about which gbot is in which key.

To overcome mobile shortcuts issues and ease emdle mobile device
interaction, a gestural input technique is proposéeéstures are a natural and
expressive method of human communication and des @ombined with body hints
to empathize an idea (i.e. reaching the heart twvslin emotion). It is possible to
apply different technologies to enhance mobile cleviwith gesture recognition,
making those gestures a meaningful triggering metloothe main functions of the
device. We give special attention to the body sgawkrelated mnemonics to increase
shortcut usage and therefore improve user mobifeieance.

2 Related Work

There are many options to detect body or deviceam@nt and allow a response to
the movement. This response may be a shortcut &pplication or any other effect
in internal or external applications. The most camntechniques and works in
gestural recognition for mobile devices were stddieamely Radio Frequency
Identification (RFID), Accelerometers, Cameras, dlowbcreens, Electromyography,
Capacitive Sensing and Infrared Laser beams.

RFID Technology is now starting to be incorporaitednobile devices, making it
possible to read a tag (a small sized chip witraatenna emitting radio frequency
waves and usually storing a unigue identifier) wathapproximation gesture with the
device. Those gestures can only be based on smglgile point recognition as the
gesture information is not recorded. A mobile gedtunteraction with RFID
demands a permanent presence of tags, which isbfgosgith their embodiment
(attaching it to clothes, wallets, etc.) Followitigs idea, Headon and Coulouris [1]
created a wristband to control mobile applicatiarith gestures, based on reading a
grid of RFID tags attached to the user’s shirt. Ffe®nvenience of this solution is the
need to stick tags in clothes or personal objects.

An accelerometer is a small electromechanical isesensor device that measures
its own acceleration, and its currently being usedommercial mobile phones. With
an accelerometer on a mobile device is possibletognize gestures such as hand
gestures based on vibrational [2], tap [3] and [} input or innumerous arm
movements. For example, Choi et al [5] used a reqgfiilone with inertial sensing to
recognize numbers drawn in the air to trigger pheoalés or delete messages with a
double lifting, while Angesleva et al [6] presentgdeliminary studies on the
possibility to associate gestures with parts oflibdy and trigger applications using
those body space mnemonics.

Pressure sensitive surfaces are commonly integritbdscreens in some devices
like PDAs. They are able to detect 2D gesturesh sisctaps, directional strokes or
characters, allowing eyes-free interaction with ttevice. Pirhonen et al [7]
prototyped a mobile music player placed on the, lwelhtrollable with metaphorical
finger gestures, like a sweep right-left to the trigack or a tap to play and pause.
There are other approaches: Friedlander et ali@fested a gestural menu selection
based on directional strokes to select an entryaoconcentric ring of options.



However, applications in touch screens may onlyused in over-sized devices and
are limited to 2D gestures.

Other approaches also relevant but not so commatnde mobile cameras reading
visual tags or processing their optical flow toageize movement, rotation and tilting
of the phone, electromyography where the user aabilys react to events by
contracting a monitored muscle, capacitance sensingre the user can scroll a
presentation, control a DVD or MP3 player by apptoag his finger to the sensor,
and laser beams also used to detect finger movemenar an handheld device being
even able to recognize characters.

The fact that those technigues can be implement@dobile devices doesn't make
them suitable to be used on-the-move. Current egidins lack the possibility of
using gestural shortcuts in mobile scenarios. leuntlore, the gesture selection does
not provide enough mnemonical cues for them todsdyeremembered.

3 Task Analysis

In order to capture the actual panorama considesirggtcuts in mobile devices, 20
individuals were interviewed and observed. The &sklysis consisted on a first part
with questions about current habits on mobile phiateraction and in a second part
where users were asked to reach the most usedaiplis and contacts. It was found
that 75% of the interviewed used key shortcuts)evhone used voice shortcuts due
to its social constraints and low recognition ratks average of 5 key shortcuts is
used, where 93% of the users execute them on & Oasis. Users with more
programmed shortcuts reported difficulties in thmgmorization. In user observation,
results show that people needed an average of strkkgs to access the 3 most used
applications and 5 keystrokes to call the 3 mostiumntacts. Key shortcuts seem to
be used but observation results reflect a largebeurof keystrokes. Users often make
mistakes or simply forget to use them and apply unselection. Mobile device
interaction still needs to find new suitable inpiegrms to increase interaction
efficiency.

4 Proposed Approach

We propose the creation of mnemonics based onsswcmtion between applications
and the body space. Mobile gestural interactiontbalse strongly based on a high
recall of commands and the human body with its nmgdinl associative space offers

the needed, and always available, mnemonical diresuser should be able to create
shortcuts to applications with a simple approximatio the body part associated with
that specific application. For example, the useusthbe able to trigger a clock with a
gesture towards the wrist or open the music playtr an approximation to the ears
(Fig. 1). These associations are intended to aet msemonic when recalling each
application gestural command. As the body limitee thumber of possible

associations, applications can be related withsdrae body parts (with a gesture or
button to recall for the other applications assediavith the performed gesture). The



body functions as an application organizer wheee ubker is able to keep his most
used ones to easily recall them.

Fig. 1. Mnemonical Body Shortcuts — The expressivity aftgees

4.2 Preliminary Evaluation

To validate our approach we developed a RFID-basetbtype able to associate
body parts (through sticker tags) with any givenbiteo device shortcut (i.e. an
application or a call to a certain contact). Weestld RFID technology to apply our
approach because it provides direct mapping, eabmgreation of body shortcuts.
Other solutions were clearly limited as they restthe scope of interaction (touch
screens, cameras, laser beams and EMG).

The prototype was evaluated with 20 users in arobetl environment using a
Pocket LOOX 720 with a compact flash ACG RF PC Hehd Reader. In the first
stage of the evaluation the users were asked éutsile five most frequently tasks
effectuated with their mobile phones and assodteen both with a body part and a
mobile device key (in their own mobile device). Gmering body shortcuts, it is
interesting to notice that 89%, out of 18 userkateel message writing with the hand,
88%, out of 17 users, related making a call torthar or mouth and 91%, out of 11
users, related their contacts to their chest, anobimgr meaningful relations (Table 1).
An hour later, the users were asked to access ringopsly selected applications,
following both approaches (body and key shortcuts). each of the approaches the
users were prompted randomly 20 times (5 for eagugliGtion). Although several
users selected already used key/application relti60% (10 users) made at least
one error, with an average of 9% errors/user. @ensig body shortcuts, only 15%
(3 users) made a mistake with an average of 0.88tséuser.

The results were still very favorable for Mnemoni8aody Shortcuts one week
later, with an error rate of 22% for key shortcatsl 6% for the gestural interaction.
The results showed that, even against some establikey shortcuts, gestural
mnemonics had better results and may surpass tidepr of low memorization of
key shortcuts, providing also a wide range of gaesassociations, when compared
with the physical limit of keys present on a molkvice.



Table 1. Most common associations gesture-application

SMS 10 1 6

Call 2 1 12
Contacts 3 5 2 1

Clock 10 1

Photos 2 8

Calculator 3

Mp3 2

Agenda 1 3 1

Alarm- 2 2 2 3!

clock

5 Accelerometer Prototypes

Task analysis suggests that a new interaction mgarads important to increase
mobile devices’ usability and evaluation of the BRprototype demonstrated that
mnemonical gestures are a good candidate solutsimge it surpasses the
memorization issue existent on key shortcuts. Hanee RFID-based system is
inconvenient regarding the need of using RFID tagslothes or personal objects to
allow an always available interaction. Followingethine of the major part of the
related work on this area, we decided to use aawaleters for a new prototype,
mainly because of its precise measure of acceteratnd self-contained hardware,
already present in some mobile devices. We usebpllB4 wireless system and an
ADXL330 MEMS tri-axial accelerometer. The three chels of the accelerometer
were connected to three of the analog channeleeoflevice that delivers the RAW
data of the accelerometer through Bluetooth commectvith a sample rate of 1024
samples per second.

Focusing on mnemonical body shortcuts recognitiom followed two approaches
using the accelerometer data. In both approaclegekture starts in the chest, with
the screen facing the user, and the user has $s preaction button during the whole
gesture. The first approach is based on the finsitipn and rotation of each gesture,
while the second one is a feature based algoriteimg a set of 12 features and
classified using both Naive Bayes and K-NearestgMaours learners. Our goals
constructing these algorithms were a high recogmitiate and the importance of
being lightweight to be executed on mobile deviwéh low processing capabilities



5.1 Position-Based Prototype

In this prototype data was captured and processeti Pocket LOOX 720 using .Net
programming (C#). We decided to map the dislocatibthe mobile device on a 2D
plan, calculating the distance between an initial fixed point (the chest) and a final
point (relative position). The distance calculatwas based on a double integration of
the signal (Fig. 2). However, since this integnatéelivers some error and the mobile
device may suffer some unexpected rotation, we a@bgdied a moving average filter
and a threshold to isolate the part of the sigrie e the real movement was present.
With this processing, it was possible to detect tievement on both x and y axis.
This approach is suitable for movements fixed mxly axis, but the users are likely
to perform gestures that are characterized by thm@tion. Those gestures are
recognized taking in account the final rotationtttd device (divided in six different
classes) and reusing the position calculation,esihgaries even when gestures have
the same final rotation. Using this method, it @sgible to join the recognition of
gestures with or without rotation. The recognizedtgre has to belong to the same
final rotation class of the performed gesture anthe one with the minor Euclidean
distance when compared with the position changéiseoperformed gesture.
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Fig. 2. Signal Processing Evolution a) Raw Signal b) Féltec) Velocity d) Position

There are two different modes to interact withslhstem:

e Train the system and relate the given values with body parts. The train set will
be used to calculate the mean of each positioritseand the majority of final
rotation classes. To recognize which gesture wademihe algorithm finds the
nearest position of a training gesture within thms rotational class.

e Pre-process data based on samples of correct gestures. This mode permits
default gestures based on the height of the petbas, removing the need of
further training. We defined 10 default gesturessda on the body points users
most referenced during the validation of the coticéfouth, Chest, Navel,
Shoulder, Neck, Ear, Head, Leg, Wrist and Eye.



5.2 Feature-Based Prototype

The first step to create a feature-based model chbose features that characterize
each gesture with accuracy. Since this was thensepoototype, we already have
some prior knowledge about which characteristiciebedefine the body based
gestures. We decided to choose 12 different fegtuw@nsidering gesture starting in
the chest and finishing in a body point. Firstlye wse the maximum and the
minimum values from the X, Y and Z axis. These &ees are essential to determine
the direction and position variation of the gesti8anilarly to what was done in the
position-based prototype, we added 3 features thighfinal value of each gesture,
corresponding to the final rotation. Finally, thégral's amplitude was also
considered, since some gestures have differentitaiplvariation. The maximum
and minimum values were added, as well as the &mplimean value during the
whole gesture (Fig. 3). The captured signal isaligunoisy and not suitable for a
correct feature extraction. We used a smooth dlgaribased on the Hanning
window, which has a better performance comparell aviMoving Average approach,
because each sampled signal within the window idtipied by the Hanning
function, giving more importance to the middle ththose in the extremities of the
window [9].

Focusing on the classification problem we had indsawe decided to use both K-
nearest-neighbors with Euclidean distance and N8ages algorithm to test the
effectiveness of the selected features and to deettich was the best classifier to
use.
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Fig. 3. Features from y axis 1) Minimum value 2) Maximuntuea3) Final rotation

6 Evaluation

We user evaluated the developed prototypes tondisish which approach suits better
the mnemonical body gestures scenario. Theseitgstsl to select the solution with
highest recognition rate.



6.1 Position-Based Prototype Evaluation

Both approaches present on this prototype wereraegha tested. User tests were
made with 10 users averaging 24 years. First, ttefgastures were tested. After a
brief demonstration of each gesture, users werenpted to perform 5 random

different gestures out of the available 10 gestutetimes each, totaling 20 gestures.
The general recognition rate was set on 82%.

Training gestures was also tested. Users weretér@hoose 5 free gestures and
then repeat those gestures 5 times each, serviregtasning set. After, they were
prompted to perform 4 times each gesture, as it da®e with default gestures.
Results showed a recognition rate of 71%.

6.2 Feature-Based Prototype Evaluation

This prototype evaluation was based on signal a@itpn of 12 default gestures.

Those gestures were similar to those tested wéltptsition-based prototype, adding
a gesture towards the hip and the back, and theg performed while standing. A

total of 20 users were asked to perform the 12ugest 5 times each. Then, an offline
evaluation was performed, using different trainamy testing sets and both Naive
Bayes and KNN classifiers.

Table 2. Feature-Based Test results

User Training
12 Gestures

1 Training 79,5% 88,5%
2 Trainings 86,8% 92,4%
3 Trainings 91,9% 92,8%
5 gestures
1 Training 88,2% 90,8%
2 Trainings 96,1% 98,2%
3 Trainings 96,3% 97,9%
Total Training Set
12 Gestures [ 936% [ 92,8%
5 Gestures | 973% | 962%

Total Training Set + User Training
12 gestures

1 Training 93,8% 93,2%
2 Trainings 94,3% 92,4%
3 Trainings 95,8% 95,0%
5 gestures
1 Training 97,1% 9,7%
2 Trainings 96,1% 95,8%
3 Trainings 96,8% 97,9%
Knn Bayes

The test was divided in two phases:

User Training
In this first phase, we tested the recognition nageg as training set only the
gestures performed by the user. The training seedidetween 1, 2 or 3 gestures.



This approach was tested using the whole set gfekures but also using 5 random
gestures, which was the mean number of key shertautiser commonly have
available.

Total Training Set

The second phase was based on using the whold satning from all the users,
excluding one that was discarded due to its diffiesi of performing some gestures.
This set of 1080 gestures worked as a training as&d, each user’'s gestures were
classified using that training set, adding noneg,dwo or three user trainings, also
using the 12and 5 gestures set. The final restilisese tests are available in Table 2
and the Confusion Matrix of 12 and 5 gesture testgionly the training set (without
user training) and KNN classifier are availableghle 3 and 4 respectively.

Table 3. Confusion Matrix for Total Training Set with 12gjares
1140 gestures, Recognition Rate of 92.8%

Gestures Mouth Shoulder Chest Head Wrist Neck
Mouth 87,5% 6,2% | 0,0%| 0,0%| 51%| 0,0%| 0,0% | 0,0% 0,0%| 0,0%| 0,0%| 0,0%

Shoulder ERPAZ) 90,7%| 2,0%| 1,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%,| 0,0%
Chest 0,0% 1,0%[94,9%| 00%| 00%| 0,0%| 0,0%| 00%| 0,0%| 0,0%| 0,0%| 0,0%
NEVZE] 0,0% 0,0%| 3,0%|958%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%

Ear 4,2% 0,0%| 0,0%| 0,0%|92,9%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%,| 0,0%

Back 3,1% 0,0%| 0,0%| 1,0%| 1,0%|97,8%| 0,0%| 0,0% 0,0%| 0,0%| 0,0%| 2,9%
Head 1,0% 2,1%| 0,0%| 0,0%| 0,0%| 0,0%|97,8%| 0,0% 0,0%| 0,0%| 2,0%| 0,0%
Wrist 0,0% 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 2,2%|94,6%| 0,0%| 0,0%| 1,0%| 4.8%

Neck 0,0% 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 3,3%|100,0%| 0,0%| 2,0%| 0,0%
Leg 0,0% 0,0%| 0,0%| 0,0%| 0,0%| 1,1%| 0,0%| 0,0%| 0,0%)955%| 0,0%| 9,5%
Eye 0,0% 0,0%| 0,0%| 0,0%| 1,0%| 0,0%| 0,0%| 1,1%| 0,0%| 0,0%|949% | 0,0%
Hip 0,0% 0,0%| 00%| 21%| 0,0%| 1,1%| 0,0%| 1,1%| 0,0%| 45%| 0,0% 82,9%

Table 4. Confusion Matrix for Total Training Set with 5 geres
475 gestures, Recognition Rate of 96,2%

Gestures Mouth Shoulder Head Wrist
Mouth 89,5% 7,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%
ELGNILETE  0,0% 93,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%]| 0,0%| 0,0%
Chest 0,0% 0,0% | 100%| 0,0%| 0,0% | 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%
INEE] 0,0% 0,0%| 0,0%| 100%| 0,0% | 0,0%| 0,0%| 0,0%| 0,0% | 0,0%| 0,0%| 0,0%
Ear 0,0% 0,0%| 0,0%| 0,0%| 100%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%
Back 5,3% 0,0%| 0,0%| 0,0%| 0,0% | 100%| 0,0%| 0,0%| 0,0% | 0,0%| 0,0%| 5,7%
Head 0,0% 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 100%| 0,0%| 0,0% | 0,0%| 0,0%| 0,0%

Wrist 0,0% 0,0%] 0,0%| 0.0%| 0,0%) 0,0%| 0,0%[93,8%]| 0,0%| 0,0%[ 0,0%]| 0,0%
Neck 0,0% 0,0%] 0,0%| 0.0%| 0,0%) 0,0%| 0.0%| 4.2%| 100%| 0,0%| 0,0%| 0,0%
Leg 0,0% 0,0%| 0,0%| 00%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 100%| 0,0%| 3.8%
Eye 0,0% 0,0%| 0,0%| 0,0%]| 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 0,0% | 100%| 0,0%
Hip 5,3% 0,0%] 0,0%| 0,0%| 0,0%| 0,0%| 0,0%| 2,1%| 0,0%| 0,0%| 0,0%]90,6%




6 Discussion

After evaluation, it is clear that feature-basegbathm is a better solution, but there
are some considerations to make about each pretotyp

6.1 Position-Based Prototype

The evaluation on the first prototype revealed séiméations. The recognition rate
of 5 different gestures was 82%, which is very @dering the reduced number of
gestures to be recognized. A system with such agreton rate would probably
make users unconfident and consequently drop suisé. Besides, this recognition
rate is based on default gestures, which does raide users the possibility to
choose personal gestures. This option was testdédeirsecond test phase, but the
gesture recognition dropped to 71%. This lower ga@@on rate occurred because
users sometimes chose gestures with similar fioi@ltion and position, which were
not correctly recognized. Besides, there was nbeowtetection, so one training error
or bad gesture spoiled some recognitions. One owiclusion is that position is not
so effective to disambiguate gestures outside bag,pand to enhance this algorithm
three things should be modified: the position calton should work correctly even
with rotations, a KNN algorithm has to be implenezhtand outliers should be
discarded.

6.2 Feature-Based Prototype

A feature based approach achieved a high recognitite in the majority of the tests,
both using user training and the general trainiegod 1080 gestures. Naive Bayes
and KNN algorithms were tested, and Naive Bayetopaed better when only user
training was present (low number of sample gesjumehile KNN achieved better
results with a large set of training.

Considering the results of isolated user trainifighe 12 gestures set, the best
recognition was achieved with 3 trainings with ®& This recognition rate,
although acceptable, is still vulnerable to somssfse misjudge gestures. However,
we do not believe users would want to use simutiagly all the 12 gestures. The test
using a reduced set of 5 gestures achieved, usiigeNBayes, a recognition rate of
98,24% with only 2 gestures, with no positive impata third training. For those
default gestures, user training seems to be a gppdoach, but it is not guaranteed
the same recognition rate using free gestures. diso problematic if users perform
training gestures inconsistently, because it woelkbct a lower recognition rate.

Results were also positive considering the usagehef training set of 1080
gestures (1140 gestures minus the 60 gesturespeddy each user). Using all the
12 gestures, we achieved a recognition rate of%3Mthough not very high, this
recognition rate is achieved without any user trejnwhich is a crucial point for a
good user acceptance. This value reaches 97,3% edreidering 5 gestures. When
we increasingly introduce the training set of theern the recognition rate didn’t
increase significantly using KNN algorithm, buirfluenced positively Naive Bayes



by 2 percentual points. Yet, KNN algorithm stillshthe best performance using the
total training set. User training could be added I explicitly asking the user to
train the system, but instead using an adaptagpmoach: when a user correctly
performs a gesture, it should be possible to erttiehtraining set and successively
increase the recognition rate.

The study on this prototype proved the feature-thaspproach as the most
successful and appropriate, but possible free gestwere not tested. However, we
tend to believe that recognition rates would desgebut maintain an acceptable
margin, capable to perform as a suitable gestatataction algorithm.

7 Conclusions and Future Work

During previous chapters, a novel interface for ileodevices was discussed. Mobile
devices interfaces are still chained to the deskisgy interfaces, but there are some
potentialities of mobile interaction that can belexed. Our approach, based on the
creation of shortcuts using gestures and the dasivei potential existent in different
body parts, proved to be a suitable method of aotéwn using a RFID based
prototype. Users were more likely to remember whigsture indexes a certain
application using our Mnemonical Body Shortcutsnthasing the common key
shortcuts.

In order to accomplish a self-contained interfasee decided to create
accelerometer-based prototypes. Accelerometersadhireexist in some mobile
devices, and might be increasingly used in theréutWith accelerometers, we
followed two different approaches. One prototypes Wwased on position variation and
the final rotation of the device to recognize diéfiet gestures. The second approach is
a feature-based prototype, using 12 different featdrom the inertial data, and
classified using two different learners, Naive Bagad Knn. The first approach only
achieved a recognition rate of 82% for a set ofésgefined gestures and 71%, while
the second had a better performance. Using only wraging and Naive Bayes
algorithm, with 3 training repetitions is possibie achieve almost 93% for 12
gestures or 98% for a set of 5 recognizable gestike also experimented using as
training the whole set of performed gestures, athie93,6% and 97,3% recognition
rate with no user training, for 12 and 5 gestumsrespectively. This results show
that choosing an accelerometer to recognize mnerabbiody shortcuts is a valid
approach.

In the future, we will evaluate the usability ofwdl-developed solution (featuring
audio and vibrational feedback) under real-life rgg@s, namely while users are
moving.
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