
Proactive Resilience through
Architectural Hybridization

Paulo Sousa
Nuno Ferreira Neves

Paulo Veŕıssimo

DI–FCUL TR–05–8

May 2005

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

Proactive Resilience through
Architectural Hybridization?

Paulo Sousa, Nuno Ferreira Neves, and Paulo Veŕıssimo

Faculdade de Ciências da Universidade de Lisboa
Bloco C6, Campo Grande, 1749-016 Lisboa, Portugal

{pjsousa,nuno,pjv}@di.fc.ul.pt

Abstract. Recently, we presented a theoretical Physical System Model
(PSM), which introduced a new dimension over which distributed sys-
tems resilience may be evaluated – exhaustion-safety. We showed that it
is theoretically impossible to have an exhaustion-safe f fault/intrusion-
tolerant asynchronous system, even when enhanced with asynchronous
proactive recovery. This paper proposes proactive resilience as a new
and more resilient approach to proactive recovery based on architectural
hybridization. We present the Proactive Resilience Model (PRM) and
describe a design methodology under the PRM . This design methodol-
ogy is formally proved to be a way of building exhaustion-safe systems
and we use it to derive an exhaustion-safe distributed f fault/intrusion-
tolerant secret sharing system.

1 Introduction

Recently, we presented a theoretical Physical System Model (PSM), that takes
into account the environmental resources and their evolution along the timeline
of system execution [15]. The model builds on the concept of resource exhaustion
– the situation when a system no longer has the necessary resources to execute
correctly (e.g., computing power, bandwidth, replicas). PSM allowed us to in-
troduce the predicate exhaustion-safe, meaning freedom from exhaustion-failures
– failures that result from accidental or provoked resource exhaustion.

Using PSM , it was possible to predict the extent to which fault/intrusion-
tolerant distributed systems (synchronous [8, 18] and asynchronous [6, 11, 5]) can
be made to work correctly. Namely, we showed that it is theoretically impossible
to have exhaustion-safe f fault/intrusion-tolerant asynchronous systems, i.e.,
asynchronous systems which can only tolerate a bounded number of faults.

Having proven this impossibility result, the next step was trying to discover
how to build exhaustion-safe systems. We found proactive recovery as being a
very interesting approach [13] to avoid resource exhaustion. The aim of proactive
recovery is conceptually simple – components are periodically rejuvenated to re-
move the effects of malicious attacks/failures. If the rejuvenation is performed

? This work was partially supported by the FCT, through the Large-Scale Informatic
Systems Laboratory (LaSIGE).

frequently often, then an adversary is unable to corrupt enough resources to
break the system. Proactive recovery has been suggested in several contexts. For
instance, it can be used to refresh cryptographic keys in order to prevent the
disclosure of too many secrets [10, 9, 7, 20, 2, 19, 12]. It may also be utilized to
restore the system code from a secure source to eliminate potential transforma-
tions carried out by an adversary [13, 3]. Moreover, it may include substituting
the programs to remove vulnerabilities existent in previous versions (e.g., soft-
ware bugs that could crash the system or errors exploitable by outside attackers).

Therefore, proactive recovery has the potential to allow the construction of
exhaustion-safe fault/intrusion-tolerant distributed systems. But, in order to al-
low this, proactive recovery needs to be architected under a model sufficiently
strong to allow proactive recovery to achieve its goal: regular rejuvenation of the
system. In this context, it was also shown in [15] that proactive recovery has
some limitations when used under the asynchronous model [3, 19, 2, 12]. More
concretely, we showed that it is theoretically impossible to have exhaustion-safe
f fault/intrusion-tolerant asynchronous systems, even when they are enhanced
with asynchronous proactive recovery. This impossibility result was illustrated in
practice, through the identification of some shortcomings on existent asynchro-
nous proactive recovery work [12]. In fact, proactive recovery protocols typically
require stronger environment assumptions (e.g., synchrony, security) than the
rest of the system (i.e., the part that is proactively recovered).

This paper proposes proactive resilience – a new and more resilient approach
to proactive recovery based on architectural hybridization [16]. We argue that the
architecture of a system enhanced with proactive recovery should be hybrid, i.e.,
divided in two parts: the “normal” payload system and the proactive recovery
subsystem, the former being proactively recovered by the latter. Each of these
two parts should be built under different timing and fault assumptions: the
payload system may be asynchronous and vulnerable to arbitrary faults, and the
proactive recovery subsystem should be constructed in order to assure a more
synchronous and secure behavior. We present the generic Proactive Resilience
Model (PRM), which proposes to model the proactive recovery subsystem as
an abstract component – the Proactive Recovery Wormhole (PRW). The PRW
may have many instantiations depending on the application/protocol proactive
recovery needs (e.g., rejuvenation of cryptographic keys, restoration of system
code). Then, a design methodology under the PRM is described and formally
proved to be a way of building exhaustion-safe systems. Finally, we use this
methodology to build an exhaustion-safe distributed f fault/intrusion-tolerant
secret sharing system, which makes use of a specific instantiation of the PRW
targetting the secret sharing scenario [1, 14].

The paper is organized as follows. Section 2 revisits and complements the
PSM model proposed in [15] and summarizes the theoretical results obtained
by applying it to asynchronous systems, when using and not using asynchronous
proactive recovery. Then, Section 3 presents the Proactive Resilience Model and
shows how to build exhaustion-safe systems based on a novel methodology. Fi-
nally, our conclusions and future work are presented in Section 4.

2 PSM Revisited

Distributed systems usually use in their implementation a set of protocols. Pro-
tocol correctness is thus vital to guarantee system correctness. The process of
building correct protocols is composed by many steps, from the algorithmic spec-
ification until its implementation and testing. We highlight the following:

1. assessing, at algorithm design time, if the algorithm underpinning the pro-
tocol is correct in an abstract computational system;

2. assessing, at system design time, if the protocol will execute correctly in a
concrete computational system;

3. assessing, at implementation time, if the protocol is correctly implemented
and then verifying at run time, if the protocol executes according to its
specification.

PSM is a contribution to steps 1 and 2. Typically, a computational system
is defined by a set of assumptions regarding aspects like the processing power,
the type of faults that can happen, the synchrony of the execution, etc. These
assumptions are in fact an abstraction of the actual resources the protocol needs
to work correctly (e.g., when a protocol assumes that messages are delivered
within a known bound, it is in fact assuming that the network will have certain
characteristics such as bandwidth and latency). The violation of these resource
assumptions may affect the safety or liveness of the protocols and hence of the
system. We propose, through PSM , to augment system models with the no-
tion of the evolution of environmental resources along the timeline of system
execution and its consequent impact on system assumptions.

We start by defining the concept of resource exhaustion.

Definition 1. Resource exhaustion occurs when any of the system resource as-
sumptions is violated.

A resource exhausted system is prone to what we designate as exhaustion-
failures.

Definition 2. An exhaustion-failure is a failure that results from accidental or
provoked resource exhaustion.

Our goal is to prevent exhaustion-failures from happening. Therefore, exhaustion-
safety is defined in the following manner.

Definition 3. Exhaustion-safety is the ability of a system to ensure that exhaustion-
failures do not happen.

Consequently, an exhaustion-safe system is defined in the following way.

Definition 4. A system is said to be exhaustion-safe if it satisfies the exhaustion-
safety property.

We argue that a system, namely a distributed system, in order to be depend-
able, has to satisfy the exhaustion-safety property. In other words, a dependable
distributed system must be exhaustion-safe.

2.1 The Model

The main goal of PSM is to allow a formal reasoning about how exhaustion-
safety may be affected by different combinations of timing and fault assumptions.
So, it takes in account the relevant system resources and their evolution with
time. PSM considers systems that have a certain mission. Thus, the execution of
this type of systems is composed of various processing steps needed for fulfilling
the system mission (e.g., protocol executions). We define three events regarding
the system execution: start, termination and exhaustion. Only the start event
is mandatory to happen: one cannot talk of a system execution if the system
does not start executing. The termination and exhaustion events may or may
not happen. More importantly, the causal relation between them is crucial to
assess system exhaustion-safety.

Now we review the formal definition of PSM presented in [15].

Definition 5. Let A be a system. An A execution is defined by a triple:
A = 〈Atstart

,Atend
,Atexhaust

〉, where

– Atstart
∈ <+

0 represents the real time start instant.
– Atend

∈ [Atstart , +∞[represents the real time termination instant.
– Atexhaust

∈ [Atstart ,+∞[represents the real time instant when resource ex-
haustion occurs. If Atexhaust

≤ Atend
, system correctness may be corrupted

through exhaustion-failures.
– Additionally, let ATend

= Atend
−Atstart , and ATexhaust

= Atexhaust
−Atstart .

So, under PSM , a system is defined by a set of triples A, one for each of its
executions. Next, we formally define what is an exhaustion-safe system under
PSM .

Definition 6. A system A is exhaustion-safe if and only if Atend
< Atexhaust

,∀A.

Definition 6 states that a system is exhaustion-safe if and only if resource
exhaustion does not occur during any execution. This does not mean that the
system fails immediately after resource exhaustion. In fact, a system may even
present a correct behavior between the exhaustion and the termination events.
Thus, a non exhaustion-safe system may execute correctly during its entirely life-
time. However, after resource exhaustion there is no guarantee that an exhaustion-
failure will not happen.

The main advantage of this more expressive model is that condition Atend
<

Atexhaust
can be evaluated, that is, one can determine whether it is maintained,

or not, depending on the type of system assumptions. Note that the idea is not to
know the exact values of Atstart ,Atend

and Atexhaust
, but rather to reason about

constraints imposed on them derived from environment assumptions. With this
goal in mind, one crucial property of PSM follows immediately from the above
definition.

Property 1. IfATexhaust
has an upper bound Texhaustmax (i.e.,ATexhaust

≤ Texhaustmax ,
∀A), then A is exhaustion-safe only if ATend

< Texhaustmax , ∀A.

Property 1 states a necessary condition for exhaustion-safety, which allows
to prove the following corollary regarding the exhaustion-safety of asynchronous
systems.

Corollary 1. If A is an asynchronous system (i.e., @Tend : ATend
≤ Tend, ∀A),

and ATexhaust
has an upper bound Texhaustmax

(i.e., ATexhaust
≤ Texhaustmax , ∀A),

then A is not exhaustion-safe.

Proof. If ATend
does not have a known bound, it is impossible to guarantee that

ATend
< Texhaustmax ,∀A, and therefore, by Property 1, A is not exhaustion-safe.

This corollary shows that any asynchronous system with an upper bound on
ATexhaust

is not exhaustion-safe. Thus, it is impossible to have an exhaustion-safe
f fault-tolerant asynchronous system, given that ATexhaust

is upper bounded by
a constant that depends on the time needed to occur f + 1 faults.

This impossibility result induced us to research on how to build exhaustion-
safe systems which could somehow maintain the nice characteristics of the asyn-
chronous model. Proactive recovery was found as being a very interesting ap-
proach [13] to avoid resource exhaustion and therefore to enable exhaustion-safe
operation. In the next section, we describe this approach and evaluate it under
the light of PSM .

2.2 Proactive Recovery under PSM

Proactive recovery is based on periodic rejuvenation of components. The goal of
this periodic rejuvenation is to remove the effects caused by accidental and/or
malicious faults. In the case of malicious attacks, if the rejuvenation is performed
frequently often, then an adversary is unable to corrupt enough resources to
break the system. Proactive recovery can be used, for instance, to periodic re-
fresh (all or part of) the state of an application, such as cryptographic keys [10,
9, 7, 20, 2, 19, 12]. Another application of proactive recovery can be the periodic
restoration of system code from a secure source to eliminate potential transfor-
mations carried out by an adversary [13, 3].

A proactive recovery subsystem can be formally defined in the following way.

Definition 7. Let R be a proactive recovery subsystem. An R execution is de-
fined by the sequence of rejuvenations R = 〈R1,R2, ...,Rn〉. Each rejuvena-
tion Ri, i ∈ {1, ..., n}, is defined by the pair 〈Ri

tstart
,Ri

tend
〉, where Ri

tstart
rep-

resents the rejuvenation real time start instant and Ri
tend

represents the re-
juvenation real time termination instant, such that, Ri

tstart
≤ Ri

tend
, ∀i, and

Ri
tend

≤ Ri+1
tstart

, ∀i < n. #R denotes the number n of rejuvenations performed
during an execution R.

Under PSM , a proactively recovered system is defined in the following man-
ner.

Definition 8. Let A∗ be a system A enhanced with a proactive recovery subsys-
tem R. Let A∗ represent an A∗ execution, where A∗tstart

= Atstart , A∗tend
= Atend

,
and A∗texhaust

= ATexhaust
+ D, where the value D may have different values de-

pending on the following conditions:

– D = A∗tstart
, if R1

tend
−A∗tstart

≥ ATexhaust
;

– D = Rj
tend

, if
• ((j = #R) ∨ (Rj+1

tend
−Rj

tend
≥ ATexhaust

))∧
• ((j = 1) ∨ (∀1 < i ≤ j,Ri

tend
−Ri−1

tend
< ATexhaust

)).

Additionally, let Trejuvenation be a constant such that:

– Ri
tend

−Ri−1
tend

≤ Trejuvenation, ∀R, ∀i < #R;
– R1

tend
−A∗tstart

≤ Trejuvenation,∀R,∀A∗;
– A∗tend

−Rn
tend

≤ Trejuvenation, ∀R, ∀A∗.
Using this definition, one can prove sufficient and necessary conditions for

the exhaustion-safety of a system enhanced with proactive recovery. We start
with a sufficient condition.

Theorem 1. Consider A∗ as a system A enhanced with a proactive recovery
subsystem R. Consider also that ATexhaust

has a lower bound Texhaustmin (i.e.,
ATexhaust

≥ Texhaustmin ,∀A). Then, A∗ is exhaustion-safe if Trejuvenation <
Texhaustmin .

Proof. By definition, A∗texhaust
= ATexhaust

+ D. D 6= A∗tstart
given that R1

tend
−

A∗tstart
≤ Trejuvenation < Texhaustmin ≤ Atexhaust

. D = Rn
tend

given that n = #R
and Ri

tend
−Ri−1

tend
≤ Trejuvenation < Texhaustmin ≤ Atexhaust

, ∀1 < i ≤ n. Thus,
A∗texhaust

= ATexhaust
+Rn

tend
. By hypothesis, A∗texhaust

≥ Texhaustmin +Rn
tend

>
Trejuvenation +Rn

tend
≥ A∗tend

. Therefore, A∗ is exhaustion-safe.

This sufficient condition will be used in Section 3 to show that our proactive
resilience approach can be used to design an exhaustion-safe system.

A necessary condition for the exhaustion-safety of a system enhanced with
proactive recovery is presented next.

Theorem 2. Consider A∗ as a system A enhanced with a proactive recovery
subsystem R. Consider also that ATexhaust

has an upper bound Texhaustmax (i.e.,
ATexhaust

≤ Texhaustmax ,∀A). Then, A∗ is exhaustion-safe only if min(ATend
,

Trejuvenation) < Texhaustmax , ∀A.

Proof. In order to prove by contradiction, let us assume that ∃A : Texhaustmax ≤
min(ATend

, Trejuvenation) and A is exhaustion-safe.
If min(ATend

, Trejuvenation) = ATend
, then A is not exhaustion-safe by Prop-

erty 1, which contradicts the hypothesis.
If min(ATend

, Trejuvenation) = Trejuvenation, then Texhaustmax ≤ Trejuvenation ⇒
ATexhaust

≤ Trejuvenation. Given that Trejuvenation ≤ ATend
, A is not exhaustion-

safe, which also contradicts the hypothesis.

From this theorem it immediately follows that asynchronous proactive recov-
ery does not guarantee the exhaustion-safety of a f fault-tolerant asynchronous
system. More generally, the following corollary shows that asynchronous proac-
tive recovery does not guarantee the exhaustion-safety of any asynchronous sys-
tem with an upper bound on Atexhaust

.

Corollary 2. Consider A∗ as an asynchronous system A (i.e., @Tend : ATend
≤

Tend, ∀A) enhanced with an asynchronous proactive recovery subsystem R. Con-
sider also that ATexhaust

has an upper bound Texhaustmax
(i.e., ATexhaust

≤
Texhaustmax , ∀A). Then, A∗ is not exhaustion-safe.

Proof. Theorem 2 states that A∗ is exhaustion-safe only if min(ATend
, Trejuvenation) <

Texhaustmax , ∀A. Given that ATend
is unbounded, min(ATend

, Trejuvenation) =
Trejuvenation. If R is asynchronous, then it has unbounded processing time and
thus it is impossible to guarantee that Trejuvenation < Texhaustmax

. Therefore,
A∗ is not exhaustion-safe.

3 An Architectural Hybrid Model for Proactive Recovery

The main difficulty with proactive recovery is not the concept but its imple-
mentation – this mechanism is useful to periodically rejuvenate components and
remove the effects of malicious attacks/failures, as long as it has timeliness guar-
antees. In fact, the rest of the system may even be completely asynchronous –
only the proactive recovery mechanism needs synchronous execution.

This type of requirement make us believe that one of the possible approaches
to dependably use proactive recovery, is to execute it in the context of a worm-
hole: a subsystem capable of providing a small set of services, with good prop-
erties that are otherwise not available in the rest of the system [16]. Notice that
these “good properties” may be of many different types. Until now we have
only tackled certain aspects of the time and security scenarios, but it should be
possible to apply the concept of wormholes to other domains. So, in the past,
two incarnations of distributed wormholes have already been created, one for
the security area [4] and another for the time domain [17]. Wormholes must be
kept small and simple to ensure the feasibility of building them with the expect
trustworthy behavior. Moreover, their construction must be carefully planned to
guarantee that they have access to all required resources when needed, avoiding
in this way resource exhaustion.

We propose the Proactive Resilience Model (PRM) – a more resilient ap-
proach to proactive recovery that is based on a wormhole-enhanced architec-
turally hybrid distributed system model. The PRM defines that the architecture
of a system enhanced with proactive recovery should be hybrid, i.e., divided in
two parts: the proactive recovery subsystem and the payload system, the latter
being proactively recovered by the former. Each of these two parts should be
built under different timing assumptions and with a different fault model.

The payload system executes the “normal” applications/protocols. Thus, the
payload synchrony and fault model entirely depends on the applications/proto-

local

PRW

Host A

local

PRW

Host B

local

PRW

Host C

any synchrony & security (payload)

synchronous & secure

instantiation-dependent

synchrony & security

optional control network

Fig. 1. The architecture of a system with a PRW

cols executing in this part of the system. For instance, the payload may operate
under an asynchronous Byzantine environment.

The proactive recovery subsystem executes the proactive recovery protocols
that rejuvenate the applications/protocols running in the payload part. This
subsystem is more demanding, by definition, in terms of timing and fault as-
sumptions, but some of these assumptions depend on the specific proactive re-
covery protocol, which can be of many types. Thus, we chose to model the
proactive recovery subsystem as an abstract component which allows many in-
stantiations. This abstract component is described in the next section. Then, in
Section 3.2, we propose a design methodology to build exhaustion-safe distrib-
uted f fault/intrusion-tolerant systems, under the PRM . Finally, in Section 3.3,
we conclude by instantiating both the abstract component and the methodology
for a concrete application scenario.

3.1 The Proactive Recovery Wormhole

The Proactive Recovery Wormhole (PRW) is an abstract secure real-time distrib-
uted component that aims to execute proactive recovery procedures. By abstract
we mean that the PRW allows many instantiations. Typically, an instantiation
is chosen according to the concrete application/protocol that needs to be proac-
tively recovered.

The architecture of a system with a PRW is suggested in Figure 1. An ar-
chitecture with a PRW has a local module in some hosts, called the local PRW.
Depending on the instantiation, these modules may or may not be interconnected
by a control network. This set up of local PRWs optionally interconnected by
the control network is collectively called the PRW. The PRW is used to execute
proactive recovery procedures of protocols/applications running between partic-
ipants in the hosts concerned, on any usual distributed system architecture (e.g.,
the Internet). We call the latter the payload system and network, to differentiate
from the PRW part.

Conceptually, a local PRW should be considered to be a module inside a host,
and separated from the OS. In practice, this conceptual separation between the
local PRW and the OS can be achieved in several ways: (1) the local PRW can
be implemented in a separate, tamper-proof hardware module (e.g., PC board)
and so the separation is physical; (2) the local PRW can be implemented on

AN1 Broadcast – The AN has an unreliable packet broadcast primitive
AN2 Integrity – Nodes can detect if packets were corrupted in the network. Cor-

ruptions are converted to omission failures
AN3 Omission degree – No more than Od omissions may occur in a given interval

of time
AN4 Bounded delay – Any correct packet is received within a maximum delay

Tsend from the send request
AN5 Partition free – The network does not get partitioned
AN6 Broadcast Degree – If a broadcast is received by any local PRW other than

the sender, then it is received by at least Bd local PRWs
AN7 Confidentiality – The content of network traffic cannot be read by unautho-

rized users
AN8 Authenticity – Nodes can detect if a packet was sent by a correct node

Table 1. An example of a set of Abstract Network (AN) properties.

the native hardware, with a virtual separation and shielding implemented in
software, between the former and the OS processes.

The local PRWs are assumed to be fail-silent (they fail by crashing). Every
local PRW preserves, by construction, the following properties:

P1 There exists a known upper bound Tprocmax
on the processing delays;

P2 There exists a known upper bound Tdriftmax
on the drift rate of local clocks.

As mentioned, a PRW instantiation may or may not have a control net-
work. For instance, if a proactive recovery procedure only requires local infor-
mation, then the control network is expendable. Even when the control network
is required, its characteristics will depend on the specific requirements of the
proactive recovery procedure. We specify the characteristics of the control net-
work through abstract network properties. A specific control network will be
characterized by the set of abstract network properties that it fulfils. Table 1
presents an example of a set of abstract network properties which can be used
to characterize a PRW control network.

The PRW offers a single service: periodic timely execution. This service can
be defined as follows:

Definition 9. Given any function F , with a calculated worst case execution time
of TXmax, an execution interval TD, and a time interval (period) TP , satisfying
TXmax < TD < TP , then F is triggered by the PRW periodic timely execution
service at real time instants ti (the i-th triggering occurs at instant ti), with
TD < ti − ti−1 ≤ TP , and F terminates within TD from ti, ∀i.

In short, the PRW has the ability to periodically execute well-defined func-
tions in known bounded time. Moreover, the PRW allows the definition of a set
of fail-safe measures to be triggered in certain situations. For instance, these fail-
safe measures may shutdown the system if the periodic timely execution service
fails to satisfy its specification. These self-checking mechanisms can then be used
to prevent the occurrence of resource exhaustion even if the proactive recovery
procedure fails to achieve its goal.

A PRW instantiation is defined by a triple 〈D, 〈F, TP , TD〉, S〉, such that:

– D represents the set of data which is proactively recovered, in all nodes (e.g.,
private key shares as in CODEX [12], system state and code as in BFT [3]);

– 〈F, TP , TD〉 represents the function F which is periodically triggered with
period TP and timely executed within TD of each triggering, through the
periodic timely execution service, in all nodes. F makes operations over the
data defined in D;

– S represents the set of self-checking mechanisms, which have the goal of
guaranteeing a fail-safe behaviour of all the nodes.

The feasibility of a specific PRW instantiation is assessed at design time. The
system architect defines, at design time, the function F corresponding to the
proactive recovery procedure to be executed, as long as, its required periodicity
TP and execution interval TD. A PRW instantiation is feasible if TP is greater
than TD and TD is greater than the worst-case execution time of F .

3.2 Building Exhaustion-Safe Distributed f
Fault/Intrusion-Tolerant Systems

In order to build an exhaustion-safe distributed f fault/intrusion-tolerant sys-
tem, one has to guarantee that no more than f (accidental or malicious) faults
occur during system execution. If the system maximum execution time is known,
then one may choose a sufficient high f – by endowing the system with suffi-
cient replicas – so that resource exhaustion never occurs. However, if the system
has an unbounded execution time, we have a problem – it is not possible to
estimate how many replicas will be needed to avoid resource exhaustion. One
possible approach to solve this problem is to use the Proactive Resilience Model
– enhance the system with a PRW in order that replicas are periodically and
timely rejuvenated. Notice that this approach may even be applied in systems
with a known bound on execution time when there is the need of minimizing the
number of used replicas.

We propose a design methodology to build exhaustion-safe distributed f
fault/intrusion-tolerant systems, under the Proactive Resilience Model. The method-
ology has 3 steps.

Definition 10. The design methodology Mexhaustion−safe is defined by the fol-
lowing steps:

1. Define the data D to rejuvenate, the rejuvenation procedure F , the required
periodicity TP , the execution interval TD, and the actions S to be performed
if F is not executed with the required periodicity and execution time.

2. Build a PRW instantiation 〈D, 〈F, TP , TD〉, S〉.
– If not feasible, increase the values of TP and/or TD.

3. Define the degree fsafe of fault-tolerance, such that, the minimum time nec-
essary – Texhaustmin – for fsafe+1 faults to be produced satisfies the condition
Texhaustmin > TP + TD.

The following theorem shows that a system built using this methodology is
exhaustion-safe.

Theorem 3. Consider A∗ as a distributed fsafe fault/intrusion-tolerant system
A enhanced with a proactive recovery subsystem R, both built according to the
design methodology Mexhaustion−safe. Consider also that ATexhaust

has a lower
bound Texhaustmin (i.e., ATexhaust

≥ Texhaustmin
,∀A), with Texhaustmin

corre-
sponding to the minimum time necessary for fsafe + 1 faults to be produced.
Then, A∗ is exhaustion-safe.

Proof. Theorem 1 states that A∗ is exhaustion-safe if Trejuvenation < Texhaustmin
.

Given that A∗ is built using the design methodology Mexhaustion−safe, then the
PRW periodic timely execution service guarantees that Trejuvenation = TP +TD

and step 3 of Mexhaustion−safe guarantees that TP + TD < Texhaustmin
. There-

fore, A∗ is exhaustion-safe.

3.3 The Proactive Secret Sharing Wormhole

Secret sharing schemes protect the secrecy and integrity of secrets by distributing
them over different locations. A secret sharing scheme transforms a secret s into
n shares s1, s2, ..., sn which are distributed to n share-holders. In this way, the
adversary has to attack multiple share-holders in order to learn or to destroy
the secret. For instance, in a (k + 1, n)-threshold scheme, an adversary needs to
compromise more than k share-holders in order to learn the secret, and corrupt
at least n− k shares in order to destroy the same secret.

Various secret sharing schemes have been developed to satisfy different re-
quirements. In this paper we use Shamir’s scheme [14] to implement a (k+1, n)-
threshold scheme: given an integer valued secret s, pick a prime q which is bigger
than both s and n. Randomly choose a1, a2, ..., ak from [0, q[and set polynomial
f(x) = (s + a1x + a2x

2 + ... + akxk) mod q. For i = 1, 2, ..., n, set the share
si = f(i). The reconstruction of the secret can be done by having k + 1 par-
ticipants providing their shares and using polynomial interpolation to compute
s.

In many applications, a secret s may be required to be held in a secret-
sharing manner by n share-holders for a long time. If at most k share-holders
are corrupted throughout the entire lifetime of the secret, any (k+1, n)-threshold
scheme can be used. In certain environments, however, gradual break-ins into a
subset of locations over a long period of time may be feasible for the adversary. If
more than k share-holders are corrupted, s may be stolen. An obvious defense is
to periodically refresh s, but this is not possible when s corresponds to inherently
long-lived information (e.g., cryptographic root keys, legal documents).

Thus, what is actually required to protect the secrecy of the information is to
be able to periodically renew the shares without changing the secret. Proactive
secret sharing (PSS) was introduced in [10] in this context. In PSS, the lifetime
of a secret is divided into multiple periods and shares are renewed periodically.
In this way, corrupted shares will not accumulate over the entire lifetime of the

secret since they are checked and corrected at the end of the period during which
they have occurred. A (k +1, n) proactive threshold scheme guarantees that the
secret is not disclosed and can be recovered as long as at most k share-holders
are corrupted during each period, while every share-holder may be corrupted
multiple times in some periods.

The Proactive Secret Sharing Wormhole (PSSW) is an instantiation of the
PRW presented in Section 3.1. The PSSW targets distributed systems which are
based on secret sharing and the goal of the PSSW is to periodically rejuvenate
the secret shares of each system node.

The PSSW is defined by the triple 〈DPSSW , FPSSW , SPSSW 〉, such that:

– DPSSW = { share }, where share is the secret share to be periodically
refreshed.

– FPSSW = 〈 refresh share, TP , TD〉, where the concrete values of TP and TD

depend on the requirements of the application/protocol, and refresh share
function is presented as Algorithm 1, and based on the share renewal scheme
of [10]. Each process Pi, i ∈ {1..n}, executes Algorithm 1 at the beginning
of the time periods defined by TP . In lines 1–2, Pi picks k random numbers
{δim}m∈{1...k} in [0, q[. These numbers define the polynomial δi(z) = δi1z

1 +
δi2z

2 + ... + δikzk. In lines 3–7, Pi sends the value uij = δi(j) mod q to all
other correct servers Pj . Then, in lines 8–10, Pi receives the values uji from
all other correct servers. These values are used to calculate, in line 11, the
new share. Finally, in line 12, the old share is erased, namely any copy which
could have been stored in the payload side. This action is vital in order to
guarantee the effectiveness of proactive secret sharing. Reliable erasure could
be implemented, for instance, through a reboot of the payload system.

– SPSSW = {shutdown if share is not periodically and timely refreshed, as
specified by TP and TD}.
The following assumptions are needed in order to prove the properties of

Algorithm 1, which are presented more ahead in Theorem 4.

A1 There exists a known upper bound Tprocmax
on local processing delays;

A2 Nodes can detect if packets were corrupted in the network. Corruptions are
converted to omission failures;

A3 No more than Od omissions may occur per sending node, in each execution
of the algorithm;

A4 Any correct packet is received within a maximum delay Tsendmax from the
send request;

A5 The content of network traffic cannot be read by unauthorized users;
A6 Nodes can detect if a packet was sent by a correct node;
A7 Nodes are fail-silent (they fail by crashing). At most n− (k + 1) nodes are

crashed in any time period. A crashed node does not recover. Nodes do not
crash during the execution of the algorithm;

A8 Nodes have access to a perfect failure detector pfd, such that, pfd(Pi) =
correct iff Pi is not crashed, ∀Pi;

A9 There exists a known upper bound Ttriggermax
on the difference between the

real time instants when the algorithm is triggered in all the nodes.

Algorithm 1 refresh share() for each node Pi, i ∈ {1...n}
1: for m = 1 to k do
2: δim ← generate random number([0, q[)
{{δim}m∈{1...k} defines the polynomial δi(z) = δi1z

1 + δi2z
2 + ... + δikzk}

{send δi(j) to each correct server Pj}
3: for j = 1 to n do
4: if j 6= i and pfd(Pj) = correct then
5: uij ← δi(j) mod q
6: for l = 1 to Od + 1 do
7: send uij to Pj

{receive δj(i) from each correct server Pj}
8: for j = 1 to n do
9: if j 6= i and pfd(Pj) = correct then

10: receive uji from Pj

{calculate the new share and erase the old one}
11: share ← share + (u1i + u2i + ... + uni)(mod q)
12: erase old share()

Assumptions A1–A6 are guaranteed by construction, given that Algorithm 1
is executed in the context of the PSSW. Assumption A1 is guaranteed by the
property P1 of the PSSW. Assumptions A2–A6 are guaranteed by deploying a
control network with the abstract network properties AN2, AN3, AN4, AN7 and
AN8 presented in Table 1.

Assumption A7 is deliberately strong in terms of the type of faults considered.
We could make a weaker assumption allowing Byzantine behaviour, recovery,
and faults during execution, but this would result in a more complex and time-
consuming algorithm (see [10]). Moreover, PSSW is secure by construction and
therefore immune to Byzantine faults. Regarding the number of faults tolerated,
the bound n−(k+1) is simply to assure the liveness of the secret sharing scheme
– the secret cannot be reconstructed with less than than k + 1 correct nodes.

The perfect failure detector assumed in A8 can be trivially implemented
under assumptions A1–A4, which, as explained, are guaranteed by construction.

Assumption A9 requires the existence of a global clock, or some sort of trig-
gering synchronization. These mechanisms can also be easily implemented under
assumptions A1–A4.

Theorem 4. If all correct nodes follow Algorithm 1 under assumptions A1–A9,
then:

Bounded execution time There is an upper bound Texecmax
on the difference

between the real time instant when the first node starts executing the algo-
rithm and the real time instant when the last node finishes executing it.

Robustness After all nodes finishing algorithm execution, the new shares com-
puted correspond to the initial secret (i.e., any subset of k + 1 of the new
shares interpolate to the initial secret).

Secrecy An adversary that at any time knows no more than k shares learns
nothing about the secret.

Proof. Robustness and Secrecy are proved in [10].
Bounded execution time: Let I be the set of all instructions used in the algo-

rithm. Let Texeci
be a bound on the execution time of instruction i,∀i ∈ I. The

execution time of any instruction, with the exception of receive, depends only on
the local processing delays, such that, Texeci

= ciTprocmax
, ∀i ∈ I \ {receive}, ci

constants. The execution time of receive depends on the local processing de-
lays, on Ttriggermax

, and on Tsendmax , such that, Texecreceive = creceive(Tprocmax
+

Ttriggermax
+Tsendmax

), creceive constant. Thus, we can upper bound the local exe-
cution time of the algorithm by T local

execmax
=

∑
i∈I ciTprocmax

+creceiveTtriggermax
+

creceiveTsendmax . Finally, Texecmax = T local
execmax

+ Ttriggermax
.

We now apply the methodology Mexhaustion−safe, presented in the previous
section, to build an exhaustion-safe distributed f fault/intrusion-tolerant secret
sharing system:

1. D = {share}, F = refresh share(), TP = cpTexecmax , TD = cdTexecmax , cp, cd

constants with cp > cd > 1, and S = SPSSW .
2. Build the PSSW with the parameters defined in step 1. This PSSW is feasible

given that TP > TD and TD > T local
execmax

.
3. fsafe is chosen in order that (cp + cd)Texecmax < Texhaustmin .

Corollary 3. Consider A∗ as a distributed fsafe fault/intrusion-tolerant secret
sharing system A enhanced with a proactive recovery subsystem R, executed un-
der a PSSW defined by 〈DPSSW , 〈 refresh share, cpTexecmax , cdTexecmax〉, SPSSW 〉.
Consider also that ATexhaust

has a lower bound Texhaustmin (i.e., ATexhaust
≥

Texhaustmin ,∀A), with Texhaustmin corresponding to the minimum time neces-
sary for fsafe + 1 faults to be produced. Then, A∗ is exhaustion-safe.

Proof. Given that fsafe and the PSSW are derived using methodologyMexhaustion−safe,
then, by Theorem 3, A∗ is exhaustion-safe.

In each node, applications/protocols running in the payload get the current
valid share through some interface function. We let the discussion of the appro-
priated interface as future work.

4 Conclusions and Future Work

In [15], we showed that it is theoretically impossible to have exhaustion-safe f
fault/intrusion-tolerant asynchronous systems, i.e., asynchronous systems which

can only tolerate a bounded number of faults. These include systems that use
asynchronous proactive recovery.

Based on this finding and on the fact that proactive recovery protocols typi-
cally require stronger environment assumptions (e.g., synchrony, security) than
the rest of the system, in this paper, proactive resilience was proposed as a novel
approach to proactive recovery that is based on an architectural hybrid dis-
tributed system model: the proactive recovery protocols are executed through
a subsystem with “good” properties that are not available in the rest of the
system.

The Proactive Resilience Model (PRM) was presented and we formally
proved that there exists a design methodology under the PRM allowing to build
exhaustion-safe systems. This methodology was applied to the secret sharing sce-
nario in order to derive an exhaustion-safe distributed f fault/intrusion-tolerant
secret sharing system.

As future work, we intend to implement an experimental prototype of the
proposed secret sharing system, and to evaluate and compare, in practice, its
actual resilience with the resilience of previous approaches. We also plan to
apply the PRM and the methodology Mexhaustion−safe to different application
scenarios.

References

1. G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the National
Computer Conference, volume 48 of AFIPS, pages 313–317. 1979.

2. C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl. Asynchronous verifiable
secret sharing and proactive cryptosystems. In CCS ’02: Proceedings of the 9th
ACM conference on Computer and communications security, pages 88–97. ACM
Press, 2002.

3. M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recov-
ery. ACM Transactions on Computer Systems, 20(4):398–461, November 2002.

4. M. Correia, P. Veŕıssimo, and N. F. Neves. The design of a COTS real-time
distributed security kernel. In Proceedings of the Fourth European Dependable
Computing Conference, pages 234–252, October 2002.

5. F. Cristian and C. Fetzer. The timed asynchronous system model. In Proceedings
of the 28th IEEE International Symposium on Fault-Tolerant Computing, pages
140–149, 1998.

6. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

7. J. A. Garay, R. Gennaro, C. Jutla, and T. Rabin. Secure distributed storage and
retrieval. Theor. Comput. Sci., 243(1-2):363–389, 2000.

8. V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical Report TR94-1425, Cornell University, Department of
Computer Science, May 1994.

9. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive
public key and signature systems. In Proceedings of the 4th ACM Conference on
Computer and Communications Security, pages 100–110. ACM Press, 1997.

10. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or:
How to cope with perpetual leakage. In Proceedings of the 15th Annual Interna-
tional Cryptology Conference on Advances in Cryptology, pages 339–352. Springer-
Verlag, 1995.

11. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
12. M. A. Marsh and F. B. Schneider. CODEX: A robust and secure secret distribution

system. IEEE Transactions on Dependable and Secure Computing, 1(1):34–47,
January–March 2004.

13. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended
abstract). In Proceedings of the tenth annual ACM symposium on Principles of
distributed computing, pages 51–59. ACM Press, 1991.

14. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
15. P. Sousa, N. F. Neves, and P. Veŕıssimo. How resilient are distributed f

fault/intrusion-tolerant systems? In Proceedings of the 2005 International Con-
ference on Dependable Systems and Networks (DSN’05), June 2005. to appear,
http://www.navigators.di.fc.ul.pt/archive/sousa05how.pdf.

16. P. Veŕıssimo. Uncertainty and predictability: Can they be reconciled? In Future
Directions in Distributed Computing, volume 2584 of Lecture Notes in Computer
Science, pages 108–113. Springer-Verlag, 2003.

17. P. Veŕıssimo and A. Casimiro. The Timely Computing Base model and architec-
ture. IEEE Transactions on Computers, 51(8):916–930, August 2002.

18. P. Veŕıssimo and L. Rodrigues. Distributed Systems for System Architects. Kluwer
Academic Publishers, 2001.

19. L. Zhou, F. Schneider, and R. van Renesse. COCA: A secure distributed on-line
certification authority. ACM Transactions on Computer Systems, 20(4):329–368,
November 2002.

20. L. Zhou, F. B. Schneider, and R. van Renesse. Proactive secret sharing in asyn-
chronous systems. Technical Report TR 2002-1877, Cornell University, Ithaca,
New York, October 2002.

