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Abstract

Nowadays, one of the major concerns about the services
provided over the Internet is related to their availability.
Replication is a well known way to increase the availabil-
ity of a service. However, replication has some associated
costs, namely it is necessary to guarantee a correct coor-
dination among the replicas. Moreover, being the Inter-
net such an unpredictable and insecure environment, coor-
dination correctness should be tolerant to Byzantine faults
and immune to timing failures. Several past works address
agreement and replication techniques that tolerate Byzan-
tine faults under the asynchronous model, but they all make
the assumption that the number of faulty replicas is bounded
and known. Assuming a maximum number of f faulty repli-
cas under the asynchronous model is dangerous – there is
no way of guaranteeing that no more than f faults will oc-
cur during the execution of the system. In this paper, we
describe a resilient f fault/intrusion-tolerant state machine
replication system, which guarantees that no more than f
faults ever occur. The system is asynchronous in its most
part and it resorts to a synchronous oracle to periodically
remove the effects of faults/attacks from the replicas.

1 Introduction

Nowadays, one of the major concerns about the services
provided by computer systems is related to their availability.
Building highly available services involves, on one hand,
the design and implementation of correct services tolerant
to Byzantine faults [13, 7], and on other hand, the assur-
ance that the access to them is always guaranteed with a
high probability. Interestingly, these two tasks can be both
accomplished by recurring to replication techniques.

Replication is a well known way to improve the avail-
ability of a service: if a service can be accessed through
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different independent paths, then the probability of a client
being able to use it increases. But replication has costs,
namely it is necessary to guarantee a correct coordination
between the replicas. Moreover, the Internet being an un-
predictable and insecure environment, coordination correct-
ness should be assured under the worst possible operation
conditions: absence of timing guarantees and possibility of
Byzantine faults triggered by malicious adversaries.

Several past works address agreement and replication
techniques that tolerate Byzantine faults under the asyn-
chronous model. The majority of these techniques make the
assumption that the number of faulty replicas is bounded by
a known value [1, 3, 9, 8, 6, 10, 5].

This assumption is of course non-controversial in the
context of an abstract algorithm design, but care should be
taken when the same algorithm is used to implement a sys-
tem. Systems are supposed to work in the real world, under
actual physical constraints and concrete assumptions. So,
the system assumption of ’known maximum bound on the
number of failures’ deserves a closer look. In fact, under the
asynchronous model, this type of assumption may be dan-
gerous. There is no way of guaranteeing that no more than
f faults will occur during the execution of the system offer-
ing the service: unbounded processing and message delays
may result in a very long execution time.

Recent works [4, 18, 2, 11] use the proactive recovery
approach [12] with the goal of weakening the assumption
on the number of faults. The above mentioned assumption
’known maximum bound on the number of failures’ is con-
fined to a window of vulnerability, which in turn would al-
low the algorithms proposed in these papers to tolerate any
number of faults over the lifetime of the system. However,
this window is again defined under the asynchronous model,
and can therefore have an unbounded length. This is spe-
cially true in a malicious environment, such as the Internet.

In a recent work, we looked at this problem with the help
of a novel theoretical Physical System Model (PSM ) [15].
PSM takes in account the environmental resources and
their evolution along the timeline of system execution. The
model builds on the concept of resource exhaustion – the
situation when a system no longer has the necessary re-



sources to execute correctly (e.g., bandwidth, replicas).
PSM allowed us to introduce the predicate exhaustion-
safe, meaning freedom from exhaustion-failures – failures
that result from accidental or provoked resource exhaustion.
We showed that, under the asynchronous model, it is theo-
retically impossible to have an exhaustion-safe replication
technique that can only tolerate a bounded number of faults,
even if we enhance it with proactive recovery [16].

This theoretical result applies to most of the systems de-
ployed over the Internet, specially to those using replica-
tion to achieve fault-tolerance and availability. Practical
systems are typically not completely asynchronous under
normal operation – some eventual guarantees can be given
on the bounds of processing and message delays. However,
in an environment prone to malicious faults an adversary
may make the system as asynchronous as she or he wants.

Therefore, a replicated system is adequate to be deployed
in an asynchronous and insecure environment, such as the
Internet, if it does not make timing assumptions and if it
does not assume a maximum number of faulty replicas.
This could be done by enhancing the system with a detec-
tion mechanism responsible for detecting faulty replicas and
recovering them. This is relatively easy if replicas can only
suffer crash or omission faults, but things get more com-
plicated with Byzantine faults – a malicious adversary may
remain dormant until the compromise of f + 1 replicas and
only deploy the “real” attack afterwards.

Given that it is difficult to detect faults, and assuming
that compromising a replica takes some time, in alternative
one can calculate the minimum time necessary for f + 1
replicas to be compromised and periodically trigger the ex-
ecution of a recovering procedure. If an appropriate trig-
gering period is chosen and if the recovering procedure is
timely executed in every replica, one can guarantee that no
more than f faults will occur, for some f . In a recent work
we present a system design methodology based on this rea-
soning and formally prove that it allows the construction of
exhaustion-safe systems [16]. The present paper proposes
to use this methodology in order to build a resilient state
machine replication system, i.e., a system which triggers
periodic rejuvenations and in this way guaranteedly toler-
ates the assumed number of faults. A rejuvenation proto-
col is presented and the conditions for exhaustion-safety are
derived. The protocol is executed by a synchronous and se-
cure component, which guarantees that these conditions are
either satisfied or the system switches to a fail-safe state.

2 Resilient State Machine Replication

2.1 State Machine Replication

Almost every computer program can be modeled as
a state machine [14]. In particular, we will focus on

client/server applications, which also fit under this model.
The simplest form of implementing a client-server appli-
cation is by deploying a single centralized server which
processes all the commands issued by clients. As long as
the server does not fail, commands are performed accord-
ing to the order they are received from clients. But if one
considers that failures may happen, then this centralized ap-
proach does not work. The server may crash and render the
system unavailable or, worst, the server may be compro-
mised by some malicious adversary, which can arbitrarily
modify the state. In order to tolerate these types of fail-
ures, one has to replicate the server. The replication degree
depends both on the type (e.g., crash, Byzantine) and quan-
tity of the failures to be tolerated. Several protocols have
been proposed to implement state machine replication tol-
erant to crash faults, and some also targeting the Byzantine
scenario. Given that, our focus in this paper is on Internet
services, we will not make any restrictions on the type of
faults that can happen – a server may fail arbitrarily, either
by crash or by compromise of the state and/or the execu-
tion logic. The current state-of-the-art allows one to build
client/server applications resilient to a specified number f
of arbitrary faults – we call this f -resilient systems.

f -resilient systems (with f ≥ 1) are not necessarily bet-
ter than systems without fault-tolerance. In fact, given that
f -resilient systems have an increased complexity, the per-
formance of the replicated system is typically worse than
of the centralized version. The advantage is, of course, the
resilience to a certain number of faults. However, the ac-
tual resilience of the replicated system depends both on the
correlation between replica failures and on the strength of
the malicious adversary. On the one hand, if all the replicas
use the same operating system and the service implementa-
tion is equal in all of them, then, an adversary only needs
to discover how to compromise a single replica in order to
easily compromise more than f replicas. On the other hand,
even if all the replicas operate over different operating sys-
tems and use different implementations, a malicious adver-
sary with the ability of triggering attacks in parallel may
substantially reduce the time needed to corrupt more than
f replicas. Moreover, in long-lived systems, even if repli-
cas are attacked in sequence, the probability of more than f
being compromised is significant.

In order to build truly dependable systems, one has to
guarantee, by construction, that no more than f faults ever
occur during system execution. With this goal in mind,
proactive recovery seems to be a very interesting approach:
replicas can be periodically rejuvenated and thus the effects
of accidental and/or malicious faults can be removed. How-
ever, proactive recovery execution needs some synchrony
guarantees in order that rejuvenations are regularly trig-
gered and have a bounded execution time.

In the case of state machine replication, we argue that de-



spite being difficult to guarantee a bounded execution time
on the proactive recovery procedure, because it involves
time-consuming tasks such as state transfer, one can de-
vise an architecture under which anomalous recovery times
can be dependably detected before more than f replicas be-
ing compromised. We propose to apply the Proactive Re-
silience Model (PRM ) [16] to the state machine replica-
tion scenario. Under PRM , the proactive recovery proce-
dure is executed in the context of a synchronous and secure
distributed architectural component – the Proactive Recov-
ery Wormhole (PRW). The PRW timely execution service
is used to proactively recover replicas, guaranteeing that: 1)
no more than f replicas are ever corrupted; and 2) the exe-
cution of the distributed state machine is never interrupted.
Our approach is minutely explained in the next section.

2.2 The State Machine Proactive Recovery
Wormhole

In [16], we describe the PRW as an abstract component,
and explain that a PRW instantiation is defined by a triple
〈D, 〈F, Tp, Td〉, S〉, such that:

• D represents the set of data which is proactively recovered;
• 〈F, Tp, Td〉 represents the function F which is periodically

triggered with period Tp and timely executed within Td of
each triggering. F makes operations over the data defined in
D;

• S represents the set of self-checking mechanisms, which
have the goal of guaranteeing a fail-safe behaviour.

In this section, we describe an instantiation of the PRW
for state machine replication – the State Machine Proactive
Recovery Wormhole (SMW). The goal of the SMW is to
periodically rejuvenate replicas such that no more than f
replicas are ever compromised.

The SMW is defined by the triple 〈DSMW , FSMW ,
SSMW 〉, such that:

• DSMW = { OS code, SM code, SM state }, where
OS/SM code is the code of the operating system/state ma-
chine and SM state is the state of the state machine. These
are the three types of data to be periodically refreshed.

• FSMW = 〈 refresh, Tp, Td〉, where the concrete values
of Tp and Td depend on several factors that will be dis-
cussed later in the section, and the refresh function is
presented as Algorithm 1. Each non crashed local SMW
Pi, i ∈ {1..n}, executes Algorithm 1 at some point of each
time period defined by Tp. The precise execution start in-
stant depends on the recovery strategy that will be discussed
in Section 2.3.

• SSMW = {switch to a fail-safe state and/or alert an admin-
istrator, if the state is not periodically and timely rejuvenated,
as specified by Tp and Td}.

Regarding Algorithm 1, we assume that the state of
both operating system and local state machine is stored in

Algorithm 1 refresh() for each local SMW Pi, i ∈ {1...n}

1: shutdownOS()

2: if OS code is corrupted then {restore operating system code}
3: restoreOScode()

4: if SM code is corrupted then {restore state machine code}
5: restoreSMcode()

6: bootOS() {at this point, the OS and the SM can be safely booted
because their code is correct}

7: wait until state recovery is finished

volatile Random-Access Memory (RAM). Moreover, the
state of the local state machine is periodically saved to sta-
ble storage. Also, we assume that the local state machine is
automatically started after every boot of the operating sys-
tem, and that the previous state is loaded from the stable
storage.

In Algorithm 1, Line 1 shutdowns the operating system,
and consequently stops the execution of the local state ma-
chine. Notice that the algorithm continues to execute even
after the operating system being shutdown. This happens
because the SMW does not depend on the operating sys-
tem, which can be achieved in practice by implementing
each local SMW in a PC board. Line 2 checks if the oper-
ating system code is corrupted. To accomplish this task, a
digest of the operating system code can be initially stored
on some read-only memory, and then assessing if it is cor-
rect is only a matter of comparing the digest of the current
code with the stored one. In Line 3, the operating system
code can be restored from a read-only medium, such as a
Read-Only Memory (ROM) or a write-protected hard disk
(WPHD), where the write protection can be turned on and
off by setting a jumper switch (e.g., Fujitsu MAS3184NP).
In Lines 4–5, the state machine code can be checked and
restored using similar methods to the ones we used to check
and restore the operating system code. Alternatively, both
the operating system and the state machine code can be in-
stalled on a read-only medium, thus avoiding the execution
of Lines 2–5. Line 6 boots the operating system from a
clean code and thus brings it to a correct state. The local
state machine is also automatically started.

Given that the state of the local state machine may have
been compromised before the rejuvenation, it may be neces-
sary to transfer a clean state from remote replicas. In Line
7, we wait until a potential state recovery is finished. A
generic state recovery mechanism for fail-stop replicas is
described in [14]. This mechanism can be easily general-
ized to the case when we can have Byzantine failures. State
recovery introduces an unbounded delay on the proactive
recovery procedure, given that it requires the exchange of
information through the regular network. Since the regular
network is asynchronous, messages sent through it can take
an unbounded time to be delivered. However, one can es-



timate an upper-bound on the delivery time which will be
satisfied with high probability in normal conditions.

In the worst-case scenario, i.e., when the code of both
the operating and the local state machine is corrupted, Al-
gorithm 1 executes a total of 7 operations. The execution
time of these operations can be upper-bounded by a con-
stant Tlocalexec, as explained in [17].

2.3 Bounding the Number of Faults

We now discuss the recovery strategy to be applied in
order that no more than f replicas are ever corrupted, and
the execution of the distributed state machine is never in-
terrupted. Consider that there exists a function Texhaust(x)
which returns the minimum time needed to compromise x
replicas.

If all replicas are periodically rejuvenated within a pe-
riod Tp and the rejuvenation execution time is bounded by
Td, then one can guarantee a maximum of f faulty replicas
if Tp +Td < Texhaust(f +1). A straightforward solution to
achieve this objective would be to rejuvenate all the replicas
at once: the replicas would be simultaneously stopped in a
consistent state, rejuvenated, and restarted again. Given that
no progress would occur during rejuvenation, only the pre-
viously compromised replicas would have to restore their
state. The problem with this solution is that the distributed
state machine would be unavailable during the rejuvenation,
which is contrary to one of our goals. However, in scenar-
ios where the interruption of the service is not a problem,
this solution has the advantage of minimizing the number
of state transfers, given that only compromised states have
to be restored.

In order to avoid service interruption, the number k of
replicas simultaneously recovered should be such that k ≤
f . If k is greater than f , then the state machine may not
continue its operation during a recovery. Moreover, we have
to guarantee that the maximum number k′ of faults that can
occur between rejuvenations is such that k + k′ ≤ f . In
the worst case scenario, k′ replicas are compromised when
a different set of k replicas are recovering.

Each recovering replica executes the code presented in
Algorithm 1. Replicas are recovered in groups of at most k
elements, by some specified order: for instance, replicas
P1, ..., Pk are recovered first, then replicas Pk+1, ..., P2k

follow, and so on. A total of dn/ke replica groups are
rejuvenated in sequence. Figure 1 illustrates the rejuve-
nation process. The SMW coordinates the rejuvenation
process, triggering the rejuvenation of replica groups one
after the other. The maximum execution time of the re-
juvenation process, i.e., the maximum time interval be-
tween the first group rejuvenation start instant and the last
group rejuvenation termination instant, is upper-bounded by
Texec = dn/keTlocalexec.

at most k’ replicas fail

time

Tp

Td

P1...Pk Pn-k+1...Pn...

Tp

Td

recover

k replicas

recover

k replicas

recover n replicas

Figure 1. Relationship between the rejuvena-
tion period Tp, the rejuvenation maximum ex-
ecution time Td, k and k′.

Therefore, if one sets Td ≥ Texec, Tp > Td, and choose
k′ (with k + k′ ≤ f ), such that, Tp + Td < Texhaust(k

′ +
1), then no more than f faults will occur. A more detailed
explanation can be found in [16].

Given that we need to tolerate at least one faulty replica
between rejuvenations1, k′ should be greater than zero.
This implies that f ≥ 2, given that k ≥ 1 by definition.
Therefore, a Byzantine fault-tolerant state machine (where
n ≥ 3f + 1) should apparently have a minimum of 7 repli-
cas in order to satisfy availability and no more than f faults.
However, albeit k′ faults may be of Byzantine nature, the k
faults provoked by the rejuvenation process are fail-silent.
So, we need in fact n ≥ 3k′ + 2k + 1 replicas, and thus a
minimum of 6 replicas. This is further discussed in [17].

3 Related Work

Castro and Liskov were the first ones to propose the com-
bination of asynchronous state machine replication with
proactive recovery [4]. They propose BFT-PR – a Byzantine
fault-tolerant, state machine replication algorithm, which
uses proactive recovery. BFT-PR can tolerate any number
of faults provided fewer than one third of the replicas be-
come faulty within a window of vulnerability.

BFT-PR works mainly under the asynchronous model,
but the proactive recovery mechanism makes some extra
assumptions, namely about watchdog timers and eventual
timely delivery of messages. Watchdog timers are used to
periodically interrupt processing and hand control to a re-
covery monitor that executes the (proactive) recovery pro-
cedure. And it is assumed that there is some unknown point
in the execution after which either all messages are deliv-
ered within some constant time ∆ or all non-faulty clients
have received replies to their requests. If these assumptions
are satisfied, then BFT-PR works correctly. Namely, authors
point out that ∆ is a constant that depends on the timeout
values used by the algorithm and that an appropriate choice
of ∆ allows recoveries at a fixed rate. This suggests that the

1We could assume no faults between rejuvenations, but then we would
be assuming that the adversary would be unable to compromise any replica.



length Tv of the window of vulnerability can have a known
bounded value in normal conditions.

However, given that BFT-PR targets malicious environ-
ments (e.g., Internet), the bound on Tv should either be
guaranteed under an attack, or it should be possible to
timely detect any increase on the window of vulnerability
and then take the necessary actions in order to avoid the
compromise of the system. The problem is that BFT-PR
does not provide adequate mechanisms to achieve any of
these goals. Our approach, on the other hand, guarantees
precisely this behaviour: in normal conditions, the rejuve-
nation is periodically and timely executed, and if some ab-
normal situation occurs, the system switches to a fail-safe
state or alerts an administrator, before being compromised.

4 Conclusions

One of the current main challenges is how to build and
deploy highly available services on the Internet. The tradi-
tional approach, and the one which seems more appropriate,
is based on replication. But replication has costs, namely on
how to guarantee a correct coordination between the repli-
cas. These costs are even higher on the Internet, given that
its unpredictability and insecurity forces the coordination
protocols to be Byzantine fault-tolerant and immune to tim-
ing failures. Several agreement and replication techniques
of this type were already described in the past, but all of
them make the dangerous assumption that the number of
faulty replicas is bounded by a known value during an un-
bounded execution time interval.

In this paper, we described a resilient f fault/intrusion-
tolerant state machine replication system, which guarantees
that no more than f faults ever occur. The system is asyn-
chronous in its most part, using a synchronous oracle – the
State Machine Proactive Recovery Wormhole – to period-
ically remove the effects of faults/attacks from the repli-
cas. We performed a quantitative assessment of the level
of redundancy required to achieve resilient state machine
replication, i.e., simultaneously securing availability and
exhaustion-safety. We see that 6 replicas are required for
tolerating one Byzantine failure, versus the 4 replicas re-
quired in sheer algorithmic terms, believed until now suffi-
cient.
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