
(Literally) above the clouds: virtualizing the

network over multiple clouds

Max Alaluna, Fernando M. V. Ramos, Nuno Neves

LaSIGE, Faculdade de Ciencias, Universidade de Lisboa, Portugal

malaluna@lasige.di.fc.ul.pt, fvramos@ciencias.ulisboa.pt, nuno@di.fc.ul.pt

Abstract—Recent SDN-based solutions give cloud providers the
opportunity to extend their “as-a-service” model with the offer
of complete network virtualization. They provide tenants with
the freedom to specify the network topologies and addressing
schemes of their choosing, while guaranteeing the required level
of isolation among them. These platforms, however, have been
targeting the datacenter of a single cloud provider with full
control over the infrastructure.

This paper extends this concept further by supporting the
creation of virtual networks that span across several datacenters,
which may belong to distinct cloud providers, while including
private facilities owned by the tenant. In order to achieve this,
we introduce a new network layer above the existing cloud
hypervisors, affording the necessary level of control over the
communications while hiding the heterogeneity of the clouds.
The benefits of this approach are various, such as enabling
finer decisions on where to place the virtual machines (e.g., to
fulfill legal requirements), avoiding single points of failure, and
potentially decreasing costs. Although our focus in the paper is
on architecture design, we also present experimental results of a
first prototype of the proposed solution.

I. INTRODUCTION

Virtualization gives the degree of flexibility necessary for

cloud providers to achieve their operational goals while sat-

isfying customer needs, by exposing a software abstraction

to tenants (a Virtual Machine, VM) instead of the physical

machine itself. However, until recently, virtualization was

restricted to compute and storage resources. Software Defined

Networking (SDN) has proved to be a key enabling technology

for network virtualization, as it can support logical commu-

nication endpoints coupled with on the fly data forwarding

reconfiguration. Newly proposed platforms [1]–[3] rely on

SDN to offer full virtualization of the network topology and

addressing schemes, while guaranteeing the required isolation

among tenants.

These state-of-the-art platforms show the feasibility of net-

work virtualization but they have been confined to a datacenter

controlled by a single cloud operator. This restriction can

become an important barrier as more critical applications are

moved to the cloud. For instance, compliance with privacy

legislation may demand certain customer data to remain local

(either in an on-premise cluster or in a cloud facility located in

a specific country). This sort of requirement is particularly se-

vere in the health and public administration (e.g., IRS) sectors,

which normally need to resort to ad hoc approaches if they

want to offload part of their infrastructure to the cloud. Being

able to leverage from several cloud providers can potentiate

important benefits. First, a tenant can be made immune to

any single datacenter or cloud availability zone outage by

spreading its services across providers. Despite the highly

dependable infrastructures employed in cloud facilities, several

recent incidents give evidence that they can still generate

internet-scale single points of failures [4]. Second, user costs

can potentially be decreased by taking advantage of dynamic

pricing plans from multiple cloud providers. Amazon’s EC2

spot pricing is an example, which was recently explored

to significantly reduce the costs on certain workloads when

compared to traditional on-demand pricing [5]. As providers

increase the support of dynamic prices, the opportunity for

further savings increases with the user ability to move VMs to

less costly locations. Third, increased performance can also be

attained by bringing services closer to clients or by migrating

VMs that at a certain point in time need to closely cooperate.

In this paper, we propose a new architecture that allows net-

work virtualization to extend across multiple cloud providers,

including a tenant’s own private facilities, therefore increasing

the versatility of the network infrastructure. In this setting, the

tenant can specify the required network resources as usual but

now they can be spread over the datacenters of several cloud

operators. This is achieved by creating a new network layer

above the existing cloud hypervisor to hide the heterogeneity

of the resources from the different providers while providing

the level of control to setup the required (virtual) links among

the VMs. We follow an SDN approach, where the new network

layer contains an Open vSwitch (OvS) that is configured by

an SDN controller, in order to perform the necessary virtual-

to-physical mappings and the set up of tunnels to allow the

network to be virtualized. Our preliminary experiments show

that this extra level of indirection results in a relatively modest

overhead in our target scenarios.

II. DESIGN REQUIREMENTS

The network virtualization platform we propose leverages

on network infrastructure from both public cloud providers

and private infrastructures (or private clouds) of the tenants.

This heterogeneity impacts on the level of network visibility

and control that may be achieved, affecting the type of

configurations that can be pushed to the network, with obvious

consequences on the kind of services and guarantees that can

be assured by the solution.

On one extreme case, the public cloud provider gives

very limited visibility and no (or extremely limited) network

control, which is often the case with commercial cloud service

providers (e.g., AWS). Even in this case, these clouds offer a

full logical mesh among local VM instances (i.e., they provide

a “big switch” abstraction), which we can use to implement

logical software-defined datapaths and thus present a virtual

network to the tenant. On the other extreme, full access may

be attainable if the cloud is private (i.e., the datacenter belongs

to the tenant). This results in a flexible topology that may be

(partially) SDN-enabled, where both software and hardware

switching may be employed.

Considering this setting, we aim to fulfill three requirements

in the design of our multi-cloud network hypervisor. The first

requirement is to have remote, flexible control over the network

elements. Traditional networks’ lack of such control has been

identified as the main reason for the limitations of current

forms of network virtualization [1].

The second requirement is to offer full network virtual-

ization, including topology and addressing abstraction, and

isolation between tenants. For topology abstraction, different

mappings should be created when the network is setup. For

instance, a virtual link can correspond to multiple network

paths connecting the two endpoints. In addition, tenants should

have complete autonomy to manage their own address space

of the virtual network. Lastly, isolation between users should

be enforced at different degrees. A first level is attained by

separating the virtual networks of the users and then hiding

them from each other when they are deployed. A second level

is to prevent the actions of one user to influence the network

behavior observed by the others. For example, if one of the

users attempts to clog a particular link, this should not cause

a significant decrease on the bandwidth available to the other

users.

Requirement number three is the ability to perform net-

work snapshot and migration. After a virtual infrastructure is

deployed and has been running for a while, the user might

want to stop it and then restart it later on (e.g., to improve

dependability or to minimize costs). A fundamental service to

achieve this goal is the ability to snapshot a VM at a particular

instant. In order to offer VM snapshot creation, our platform

needs to capture the network state relevant to the VM and

then update it after the restart. In addition, our platform should

have the ability to migrate a VM along with all network state

associated.

III. ARCHITECTURE

Recently proposed platforms for network virtualization [1]–

[3] share a few characteristics. First, they target datacenter

environments where there is a high level of control over the

resources. Second, they rely on logically centralized control to

achieve full network virtualization. The novelty of our solution

arises from tackling the challenges of using multiple clouds,

including public clouds on which we have very limited control.

The network virtualization architecture we propose is shown

in Figure 1.

The network hypervisor controls and configures the OvS

switches that are installed in all VMs (along with the Open-

VM1

...
TENANT N APPS

TENANT 1 APPS

!"#$%&'()&**+)$

TENANT 2 APPS

#+(,&)-$./0+)123&)$

VM1

!"## !"##

$%&'()*+,(#

-).#

VM1 VM1
VM1

!"## !"##

$%&'()*+,(#

-).#

/012*3#32,04#5%&'()*+,(#

VM1 VM1

!"## !"##

$%&'()*+,(#

-).

/012*3#32,04#5%&'()*+,(#

$%&'()*+,(#

-).#

6789:7;#

VM1

$%&'()*+,(#

-).#

6789:7;#

VM1

!"## !"##

$%&'()*+,(#

-).

VM1

$%&'()*+,(#

-).

6789:7;#

TUNNEL

Cloud provider 1 Cloud provider 2

/012*3#32,04#5%&'()*+,(#

VM1
VM1

!"## !"##

$%&'()*+,(#

-).#

VM1

$%&'()*+,(#

-).#

6789:7;#

VM1

!"## !"##

$%&'()*+,(#

-).

VM1

$%&'()*+,(#

-).

6789:7;#

Private cloud

TUNNEL

Fig. 1: Network virtualization architecture

Flow hardware switches that may be present in the private

cloud). This hypervisor is built as an application that runs

in the SDN controller, similar to NVP [1] and FlowN [3],

and in contrast with the proxy-based approach followed by

OpenVirteX [2]. Each cloud will have a specific VM, the

gateway, that establishes tunnels with another clouds. As such,

only one public IP address per cloud is needed in our solution.

We build a minimum spanning tree to minimize the number

of tunnels needed. In a distributed configuration the gateway

also hosts an instance of the SDN controller. For each tenant,

a specific set of network applications that control the tenants’

virtual network runs on top of the network hypervisor.

The design of the architecture aims to fulfill the three re-

quirements defined before. To fulfill the first requirement – net-

work control – the platform resorts to the SDN paradigm [6].

The data plane element of our solution is OvS, a software

switch for virtualized environments that resides within the hy-

pervisor or management domain. OvS exports an interface for

fine-grained control of packet forwarding (via OpenFlow [7])

and of switch configuration (via OVSDB [8]). This allows

SDN-based logically centralized control.

In public clouds, our platform does not have access to

the cloud hypervisor. For this reason, we have an additional

virtualization layer on top of the cloud hypervisor to provide

virtualization between multiple tenants. Our architecture sup-

ports both nested virtualization [9] and container-based [10]

approaches for isolation between virtual machines. OvS is part

of this hypervisor that runs inside each VM. Private clouds

include the proposed network hypervisor, with OvS, running

on bare metal.

For the second requirement – full network virtualization

– the network hypervisor has to guarantee isolation between

tenants, while enabling them to use their desired addressing

schemes and topologies. Our network hypervisor runs on top

of the SDN controller to map the physical to virtual events

by intercepting the flow of messages between the physical

network and the users’ applications. This, along with flow

rule redefinition at the edge of the network, allows isolation

between tenants’ networks. For addressing virtualization, the

traffic that originates from tenant VMs is all tagged. The first

16 bits of the MAC address are used as tenant ID. This design

choice offers some advantages compared to using VLAN tags

(the technique used by FlowN [3], for instance), namely the

fact that our solution represents a 10-fold increase in the

number of tenants allowed. In addition, our tenants can use

the services provided by VLANs. For topology abstraction we

intercept all LLDP (Link Layer Discovery Protocol) messages.

LLDP is the protocol used in OpenFlow networks for network

discovery. By intercepting all topology-related messages the

SDN controller can offer arbitrary virtual topologies to tenants.

Our platform also integrates VM snapshot and migration –

its third requirement. Our system leverages on well-proven

techniques for VM snapshotting and extends them for a

multi-cloud setting. In addition, we snapshot and migrate not

only the VM, but also the network state. The first step in

snapshotting an SDN switch is the flow table, the list of

pattern-action rules. Flow table rules include not only the

actions that match a certain packet header pattern, but may also

include traffic counters and timers for deleting expired rules.

In addition to the flow table rules, the switch configuration

and its queues are also snapshotted.

One option to migrate the tenant’s VM and its virtual

network could be to iteratively copy the VM and switch state,

“freeze” the old network, and then start the new network.

This technique is undesirable, as freezing the network can

lead to long outages. To make live migration completely

transparent to tenants we follow a cloning approach [11]. The

idea is to clone one or more switches at a time, and then

iteratively move the VMs associated, creating the necessary

tunnels not to break connectivity. This leads to two copies of

the same switch to co-exist, potentially forwarding traffic and

generating events at the same time. To avoid inconsistencies

it is necessary to limit, during the migration period, the

switch actions taken autonomously (e.g., deleting rules after a

timeout expires). In addition, to respect packet dependencies,

specific rule updates need to be serialized. This is done by

setting the rule to temporarily send packets from this particular

flow to the controller until it is guaranteed that the rules

are installed in both switch replicas (e.g., using a barrier).

Differently from [11], that targets a datacenter, our multi-

cloud solution should perform efficiently in a (potentially)

high-latency, bandwidth-constrained WAN environment.

IV. PRELIMINARY IMPLEMENTATION AND EVALUATION

The first prototype of our network hypervisor consists of

nearly 4000 lines of Java code and is implemented as a module

of the Floodlight controller. GRE tunnels are used between

the gateways, and a reactive SDN approach is used. The flows

rules are installed in the switches when the first packet-in is

generated and sent to the controller.

The evaluation of our solution answers two main questions.

First, it shows the cost of deploying the environment by

analyzing the different components that make up the setup

time. In particular, we study how the creation of tunnels and

the tunnel topology itself influence the setup time, and how

this variable scales with network size. Second, we evaluate

the overhead introduced by our virtualization layer, both in

the control and data planes.

The experiments were run on a testbed composed of two

servers equipped with 2 Intel Xeon E5520 quad-core, HT, 2.27

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

T
im

e
 (

m
s
)

10 20 30 10 20 30

Number of Virtual Networks

 MST

 full mesh

 tunnel creation time

Fig. 2: Setup time (left: MST; right: full mesh)

GHz, and 32 GB RAM. The hypervisor used is Xenserver 6.5,

running OvS 2.1.3. There is a router between the servers to

simulate a multi-cloud environment. One of the servers hosts

one VM dedicated to the Floodlight controller, and another to

host Mininet 2.2.0.

Setup time. The setup time is the time between the moment

the tenant submits a virtual network request until the instant

when the whole network components are initialized and in-

stantiated. This time is composed of two components: time to

populate network state in the resilient network hypervisor, and

time to configure and initialize all tunnels.

We compare two different tunnel topologies. The first is a

setup with a full mesh of tunnels between all VMs, creating a

one-hop tunnel between each pair of VMs, to serve as baseline.

The second is our solution: we set up a minimum spanning

tree (MST) between those same VMs. The results are shown

in Figure 2.

As expected, for the MST case the setup time grows linearly

with network size. By contrast, a full mesh has an O(n2) cost,

and hence the setup time grows quadratically. As can be seen

in the full mesh case, tunnel creation has a visible effect on

setup time as the network grows, making it a fundamental

component for large scale scenarios. This motivates the need

to minimize the number of tunnels for the system to scale.

In any case, these setup times are still two to three orders of

magnitude below the time to provision and boot a VM in the

cloud [12].

Control plane overhead. We measure the cost of network

virtualization in the control plane using cbench, a control plane

benchmarking tool that generates packet-in events for new

flows. In this test, cbench is configured to spawn a number of

switches equal to the number of virtual networks, each switch

having 5 hosts with unique MAC addresses. The tests are run

with cbench in latency mode. In this mode cbench sends a

packet-in request and waits for a response before sending the

next request. This allows measuring the controllers request

processing time. We consider two scenarios: one with network

virtualization, and another without network virtualization. We

present the results in Figure 3.

As can be seen, the virtualization layer adds a very small

overhead of less than 0.1 ms compared to the baseline.

Importantly, the latency overhead is mainly independent of

network size (i.e., as the network grows the latency overhead

0.030

0.050

0.075

0.100

100 200 300 400 500 600 700 800 900 1000

L
a

te
n

c
y

 (
m

s
)

Number of switches

Virtualized
Non−virtualized

Fig. 3: Control plane overhead

1
0

5
0

5
0
0

5
0
0
0

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Non−virtualized Virtualized

−71%
−18%

−6%

10 Gbps
1 Gbps
100 Mbps

0
.0

0
.2

0
.4

0
.6

R
o

u
n

d
−

tr
ip

 t
im

e
 (

m
s
)

Non−virtualized Virtualized

+57%

+27%
+25%

10 Gbps
1 Gbps
100 Mbps

Fig. 4: Data plane overhead

remains relatively stable). Further, for multi-cloud scenarios

the inter-cloud latency is in the order of the tens of hundreds

of milliseconds [12], and hence this overhead is negligible.

Data plane overhead. To evaluate data plane overhead

we make two experiments. We measure network latency by

running several pings between two virtual machines executing

in different servers (emulating different clouds). To measure

network throughput we run netperf’s TCP STREAM test

between those same virtual machines. Again, we consider two

scenarios: one virtualized and one non-virtualized. The results

are shown in Figure 4.

The results show that the virtualization layer introduces an

overhead, in particular at very high bit rates. This overhead is

mainly due to the use of tunnels. This motivates the need to

minimize the use of tunnels by increasing traffic locality as

much as possible. This can be done by maintaining VMs that

communicate frequently closer to each other. For instance, VM

migration could be triggered when this type of communication

pattern is detected. Anyway, for the multi-cloud scenarios we

target the inter-cloud throughput is in the order of the hundreds

of Mbps [12]. At these rates, the overhead is relatively low.

The additional latency is also negligible when compared with

typical inter-cloud latencies.

V. CONCLUSIONS

In this paper we have proposed the architecture of a

network virtualization platform that spans across multiple

cloud providers. Such multi-cloud solution allows a tenant to

be made immune to any single cloud outage, reduce costs

by taking advantage of pricing plans from multiple cloud

providers, and increase performance by bringing services

closer to clients. We introduce a new network layer above

the existing cloud hypervisor to hide the heterogeneity of the

different clouds. SDN-based logically centralized control is

used to offer full network virtualization. We have focused our

discussion on the architecture, namely on its requirements and

the techniques used to fulfill them. In addition, we presented

a first prototype, along with an evaluation aimed primarily at

understanding the overhead introduced by the virtualization

layer. As work in progress, we are improving our platform

to allow tenants to use the full header space (both L2 and

L3) by rewriting IP and MAC addresses, instead of using

a subset of the MAC address as tenant identifier. We are

also implementing and evaluating the techniques included

in the architecture for network migration in a multi-cloud

environment.

ACKNOWLEDGMENTS

This project has received funding from the European

Union’s Horizon 2020 research and innovation programme

under grant agreement No H2020-643964 (SUPERCLOUD),

and by national funds through Fundação para a Ciência

e a Tecnologia (FCT) with reference UID/CEC/00408/2013

(LaSIGE).

REFERENCES

[1] T. Koponen et al. Network virtualization in multi-tenant datacenters. In
11th USENIX Symposium on Networked Systems Design and Implemen-

tation, NSDI ’14, 2014.
[2] A. Al-Shabibi et al. OpenVirteX: Make your virtual SDNs pro-

grammable. In Proceedings of the Third Workshop on Hot Topics in

Software Defined Networking, HotSDN ’14, 2014.
[3] D. Drutskoy, E. Keller, and J. Rexford. Scalable network virtualization

in software-defined networks. Internet Computing, IEEE, 17(2):20–27,
March 2013.

[4] R. Los, D. Shackleford, and B. Sullivan. The notorious nine cloud
computing top threats in 2013. In Cloud Security Alliance, 2013.

[5] L. Zheng et al. How to bid the cloud. In Proceedings of the 2015

ACM Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, 2015.

[6] D. Kreutz et al. Software-Defined Networking: a comprehensive survey.
Proceedings of the IEEE, 103(1):14–76, January 2015.

[7] N. McKeown et al. OpenFlow: enabling innovation in campus net-
works. SIGCOMM Computer Communication Review, 38(2):69–74,
March 2008.

[8] B. Pfaff and B. Davie. The Open vSwitch Database Management
Protocol. RFC 7047 (Informational), December 2013.

[9] M. Ben-Yehuda et al. The turtles project: Design and implementation
of nested virtualization. In Proceedings of the 9th USENIX Conference

on Operating Systems Design and Implementation, OSDI’10, 2010.
[10] L. M. Vaquero, L. Rodero-Merino, and R. Buyya. Dynamically scaling

applications in the cloud. SIGCOMM Computer Communincation

Review, 41(1), January 2011.
[11] S. Ghorbani et al. Transparent, live migration of a software-defined

network. In Proceedings of the ACM Symposium on Cloud Computing,
SOCC ’14, 2014.

[12] A. Li et al. Cloudcmp: Comparing public cloud providers. In Proceed-

ings of the 10th ACM SIGCOMM Conference on Internet Measurement,
IMC ’10, 2010.

