Secure Network Monitoring
Using Programmable Data Planes

Fabio Pereira, Nuno Neves, Fernando M. V. Ramos
LaSIGE, Faculdade de Ciéncias, Universidade de Lisboa, Portugal
fpereira@lasige.di.fc.ul.pt, nuno@di.fc.ul.pt, fvramos @ciencias.ulisboa.pt

Abstract—The accuracy provided by traditional sampling-
based monitoring approaches, such as NetFlow, is increasingly
being considered insufficient to meet the requirements of today’s
networks. By summarizing all traffic for specific statistics of
interest, sketch-based alternatives have been shown to achieve
higher levels of accuracy for the same cost. Existing switches,
however, lack the necessary capability to perform the sort
of processing required by this approach. The emergence of
programmable switches and the processing they enable in the
data plane has recently led sketch-based solutions to be made
possible in switching hardware.

One limitation of existing solutions is that they lack security. At
the scale of the datacenter networks that power cloud computing,
this limitation becomes a serious concern. For instance, there is
evidence of security incidents perpetrated by malicious insiders
inside cloud infrastructures. By compromising the monitoring
algorithm, such an attacker can render the monitoring process
useless, leading to undesirable actions (such as routing sensitive
traffic to disallowed locations). In this paper we propose, for
the first time, a secure sketch-based monitoring solution that
can run in programmable switches. Our algorithm — a secure
version of the well-known count-min sketch — was implemented
in P4, a programming language for switches. The evaluation of
our solution demonstrates the performance penalty introduced
by security to be negligible.

I. INTRODUCTION

Monitoring is essential for correct network operation. Ide-
ally, for complete accuracy, the monitoring task should store
all transmitted packets for subsequent analysis. In practice,
however, this technique would lead to storage and processing
scalability issues. Fortunately, exact results are usually not
necessary, and a high quality approximation is enough. This
fact suggests the use of probabilistic algorithms, that use
smaller amounts of memory and require less computation to
achieve the desired goals.

To avoid the storage and processing of all packets, traffic
data can be reduced by sampling, with only a subset of
the traffic being captured. This is the approach followed by
NetFlow and sFlow, the most widely-used techniques. To be
scalable, however, the sampling frequency of these solutions is
kept at low levels (a common figure is 1:1000). This reduces
the accuracy to a level that precludes its use for many of
the advanced monitoring capabilities required in today’s large
scale networks that enable cloud computing.

An alternative approach is sketching [5]. With this approach
the monitoring task takes into account all packets, instead
of only a subset. To maintain memory and processing at ac-
ceptable levels, these algorithms summarize the network data

streams in the data plane (by employing hashing, counting, and
filtering techniques). These solutions have been shown to offer
an interesting trade-off between the accuracy achieved and the
memory used, outpacing the alternative for various monitoring
tasks. Existing switches, however, lack the necessary capability
to enable this approach.

The emergence of programmable switches has given op-
erators the opportunity to run complex processing in the
data plane, radically changing the state of affairs. Recent
proposals [6], [7] have shown the feasibility of sketch-based
solutions in real hardware data planes. One limitation of
existing solutions is that they lack security properties. Indeed,
if the monitoring algorithm itself is not secure, its results
may be corrupted. In the worst-case scenario, the network
administrator does not notice the results are corrupted, and
takes improper actions. For instance, an attacker may persuade
the monitoring system to route sensitive traffic to a location
he controls. Unfortunately, there is evidence that the problem
is real. A recent report mentions malicious insiders as a top
threat in cloud computing [8], and alarming instances of this
problem have been show to occur [9]. The security limitation
of current approaches is therefore already a serious concern.

To the best of our knowledge, no attempt has hitherto been
made to address the security of sketch-based algorithms. Our
work starts filling that gap. We propose a secure version of
a sketch-based algorithm — Count-Min — that enables secure
traffic monitoring. Our solution addresses several technical
challenges, many of which arise from the constraints imposed
by real switches. These include the use of cryptographic hash
functions (not supported in existing switches), avoiding loops
(not directly available as they would limit throughput), and
techniques for secret key renewal. We prototyped our solution
in P4 [2], a programming language for network switches.
Our evaluation using the public-domain behavioral P4 switch
model [1] demonstrates that securing the sketching algorithm
introduces a negligible performance penalty.

II. BACKGROUND AND RELATED WORK

Sketching algorithms. In contrast with sample-based tech-
niques, this type of monitoring solution processes every
packet, performing a summarization (mainly by hashing and
counting) for a specific statistic of interest. Importantly,
the algorithms are designed with provable accuracy-memory
tradeoffs. In this paper we focus on one of the most well-
known sketching algorithms: count-min. This sketch solves

Network Link w
| - (ig.ca) (i) e <
N
h1(iq) V1,1 Vi2 V13*Ci Vig4
ha(i1) V2,1 V22 +Cq V23 | V24 ||d
hs(i1) V3,1 V3,2 V3,3 |V34+Cq
y. 4

Cq
C1

Fig. 1. Count-Min update operation. Data structure width w=4; depth d=3.

the Count Tracking problem, where the goal is to find the
frequency of each item in a stream with a large number of
items [4]. In the network monitoring context, the approach
can be used for example to count the number of packets
transmitted from a specific source or to count bytes sent from
that source.

Like in other sketch-based algorithms, the Count-Min algo-
rithm requires a data structure to store the information about
the packet stream and provides two basic operations:

— Data Structure: is a two-dimensional array of counters with
w columns and d rows, both fixed at the time of creation
(illustrated in Figure 1). These values, w and d, are chosen
based on the desired accuracy of the estimates. The counters
are initialized with zero. The algorithm uses d hash functions
from a pairwise-independent family that produce values uni-
formly at random. At update time, each of these functions
maps the item description onto the range {1,2,... ,w}.

— Update(i,c) operation: when a new item ¢ arrives, then for
each row the corresponding hash function is applied to 7 to
determine the column that needs to be modified. Next, a value
c (either positive or negative) is added to the target counter.
— Estimate(i) operation: to estimate the frequency of an item
i, it is necessary to find the values stored in each row for
that item by applying the corresponding hash function. The
estimate is the smallest value stored in all counters.

Accuracy: sketching a stream normally causes some loss
of accuracy. To minimize this loss, the sketch dimensions
should be as high as the target device allows. This way,
the collision probability is lower and, as a consequence, the
average accuracy of the estimates will be higher. Another
factor contributing to the accuracy is the duration of the
monitoring cycles. Whenever the counters are restarted, the
accuracy of the sketch is perfect, starting to decrease after the
occurrence of collisions.

It has been shown, that if NV is the sum of the values of all
the counters in a row of a sketch, the frequency of an item
1 returned by the algorithm is at most % of N more than its

true frequency, with a probability of at least 1 — %d.
Programmable data planes. Common switching chips are
fixed-function. They run a fixed set of protocols, defined at
manufacturing time, and the sort of packet processing avail-
able is therefore restricted. Emerging programmable switching
hardware [3] gives an unprecedented level of flexibility to
packet processing. To program this new generation of switches

an open-source language, P4 [2], has been proposed, already
counting with significant support from the industry. A P4
program enables the definition of packet headers and its
parsers (how packet headers should be extracted), of the set
of match-action tables and the list of available actions (how
packets can be manipulated), and finally of the entire control
program (the sequence of operations that determine the order
in which the match-action tables are applied to each packet).

Leveraging on these advances, recent work has proposed so-
lutions that enable, for the first time, sketch-based algorithms
to run in hardware switches. Liu et al. [7] have proposed
UnivMon, a framework that allows universal streaming: a
single universal sketch that is shown to be provably accurate
for estimating a large class of functions. In [6], V. Sivaraman
et al. propose a heavy-hitter detector that works entirely in
the data plane. These solutions were both prototyped in P4.
Contrary to our proposal, none of these works considers
security in their design.

III. SECURE COUNT-MIN SKETCH

Today’s network links operate at very high speeds, decreas-
ing the time that can be spent processing each packet. This
constraint has led to monitoring approaches that completely
neglect security in favor of ones that minimize the time
and space requirements. In some controlled environments
this lack of security might be acceptable because threats are
limited, but in general it is difficult to assume that no attacks
will ever occur. In addition, monitoring activities are often
used in the context of network defense applications, such
anomaly detection and intrusion prevention. Therefore, if the
monitoring algorithms are insecure then their results may not
be trustworthy, what makes their activities worthless or, in
a worse case, counter-productive — since corrupted results
could lead the network administrator to take inappropriate
actions. Therefore, choosing a secure version of a monitoring
is crucial to ensure that the decisions are always adequate.

A. Attack Model

We assume an adversary that might be anywhere inside
the network but that has not compromised the device where
the monitoring solution is deployed. All details about the
implemented algorithms are known to the adversary, and
therefore he may be able to perform the following actions.

Eavesdrop: If the adversary is placed right before the
monitoring device, he can observe exactly the same traffic.
As he knows the implementation details of the algorithm, it
becomes possible to predict the actions to be taken.

Drop packets: Assuming that the adversary possesses the
same knowledge as the legitimate monitoring task, he can drop
some packets in order not to trigger a specific event by the
algorithm, which could uncover an attack being executed in
background. The dropped packets may be chosen in a way
that simulates the usual losses of the network, without any
suspicious activity.

Modify packets: If an adversary can capture, modify and
then replay the packets being transmitted without being no-
ticed, he will be able to corrupt a monitoring algorithm that

does not ensure the authenticity of the monitored traffic. The
adversary can, for example, modify the packets in such a way
that they will collide when the algorithm’s hash functions are
applied to them. This would cause counters to be incorrect.
Another example attack is the overflow of counters before the
monitoring entity reads their values. This may be specially
destructive if some action is programmed to be taken when a
counter is close to its limit. For example, right before counters
overflow, their values may be collected and written to a slower
memory. Since in normal situations each counter overflows at
a different time, the algorithm may not be designed to handle
situations in which there are many counters overflowing at the
same time.

Generate traffic: Assuming that the monitoring task is
keeping track of the frequency of each source IP address, the
adversary can spoof his IP address to one that, by applying the
algorithm’s hash function, will collide with an IP address of
a legitimate user. By repeating this action, the adversary can
trick the monitoring task into thinking that a specific legitimate
user is generating more traffic load than he truly is.

B. Sketching in a Secure Way

Our objective is to take the Count-Min sketch algorithm
and modify its operation in such a way that it is no longer
vulnerable to attacks, but without compromising its accuracy,
performance, and simplicity of design.

Many of the problems that were identified can actually be
prevented if the attacker is no longer capable of predicting
the behavior of the algorithm. In particular, if he is unable
to guess which entries in the Count-Min data structure are
modified with the arrival of a packet, then he cannot emulate
the algorithm behavior just by observing the arriving traffic.

Therefore, an effective way to achieve this goal is to
substitute the original hash functions by a fast cryptographic
hash function that receives as input also a strong key (128-
bits). Since the key is unknown to the adversary, it becomes
extremely hard to brute-force in an attempt to create for
instance hash collisions. Since network monitoring is often
required to be continuously active, we need to provide the
possibility to change this key at runtime (i.e. without having
to restart the switch). The periodicity of the key change is
decided by the network administrator, who should consider
the accuracy guarantees of the Count-Min sketch (see II). The
sum of a line of the sketch could be a good metric to decide
if it is necessary to renew the key as accuracy benefits from
keeping this value low. In addition, the existence of counters
that are about to reach their maximum value should also trigger
a key change.

However, it is not possible to exchange the key and keep
using the same data structure because two equal items would
be mapped to different positions. Lets call monitoring period
to the interval of time during which the same key is used
by a switch. The key should be renewed at the end of each
monitoring period and the data structure copied to a different
memory before its clean up. All the estimate operations access

not only the data structure being used by the switch but also
the data structures previously stored.

It should be noted that estimations based on more than
one data structure will not have the same accuracy guarantees
as the original Count-Min algorithm, based on a single data
structure. For each stored data structure, a estimation for
the given item is done and the final estimation returned
by the algorithm is the sum of the individual estimations.
This means that the final estimation will have an error of at
most the error of the Count-Min algorithm multiplied by the
number of data structures the estimation is based on. However,
since item values are typically obtained periodically for a
restricted period, this means that the administrator only needs
to keep the stored data structures that are still needed for the
measurements. The older ones can be deleted, which ensures
that the accuracy is only affected in a very limited way.

Algorithm 1 Update Operation
1: // constants gathered during switch initialization

2: width, height, cSize = read(“inputFile”)
3: /* Stateful memories that persist across packets */
4: lastRow = width = (height — 1)
5: // array of counters with cSize bits each
6: ¢ = Array[width x height x cSize]
7: /I allocate 128 bits to store the hash_function key
8: key_register = Register[128]
9: /* Executed to every packet that arrives */
10: procedure UPDATE(PACKET)
11: // item can be any field of the packet header
12: item = PACKET.src_ip
13: /I read the current version of the key
14: key = read_register(“key_register”)
15: targetRow = 0
16: while target Row <= last Row do
17: /l set the input of the hash function
18: hash_input = {item, key, target Row}
19: /I get a column number
20: targetColumn = hash(hash_input) % width
21: /I get counter of that column in the current row
22: targetSlot = target Row + targetColumn
23: /I ensure that overflows do not occur
24: if c[targetSlot] < 2¢9%%¢ — 1 then
25: cltargetSlot] = c[targetSlot] + 1
26: end if
27: target Row = target Row + width
28: end while

29: forward_packet(PACKET)
30: end procedure

1) The Algorithm: In order to facilitate the dynamic de-
ployment of the monitoring algorithm in the network, we have
designed it to run in programmable switches supporting the P4
language. Below, we present its main operations:

Update Operation: Algorithm 1 implements the operation
that processes each arriving packet. The initial part of the
algorithm defines the variables that must persist across packets

Simulated Bidimensional Array

targetColumn targetSlot

cSizeL 0 1 2 3 4

targetRow —| s | & 7 8 o |height

lastRow —»| 10 11 12 13 14
width

Counter Array
targetSlot

° !

width*height

i lastRow
cSize
.

8 8 10 1 12 13 14

Fig. 2. Count-Min bidimensional array simulated into a linear array.

(Lines 1-9). The main data structure of the algorithm is
the array c of counters. Its dimensions are read from a
configuration file. The key_register allocates memory to
store the key. An external function accesses this memory to
keep it updated with the current version of the key.

The second part of the algorithm is executed for every
packet that arrives. item defines the information that is
tracked by the sketch, which in the displayed code is the source
IP address of the packet (Line 12). The current version of
the key is read from the key_register memory so it can
be used by the hash function (Line 14). Next, the algorithm
loops through each row of the array to modify a counter.
The hash function uses as input the key, the item, and the
row number to determine the column/counter that should be
updated (Lines 17-22). Figure 2 illustrates how an access to
the c array corresponds to an access of a Count-Min data
structure. Then, the counter is incremented (Lines 24-26). It
is possible to observe that the algorithm precludes the wrap
around of counters (Line 24) to prevent certain forms of attack,
such as making a heavy hitter source look like a normal sender
(e.g., to avoid DoS attack detection).

Estimate Operation: Algorithm 2 produces an estimate
for the value being monitored. It is implemented in two
procedures, the first that loops through all ¢ data structures
that exist (current and past) to get the global estimate (Lines
1-15). The second provides an estimate based on a single data
structure by searching for the minimum value of all counters
associated with the item (one per row) (Lines 17-38). For
example, if the program defines item as the source IP address,
then the algorithm returns an estimation for the number of
packets that were received from item.

The ESTIMATE procedure starts by fetching the data struc-
tures that were stored previously whenever there was a key
update (and which were not deleted by the administrator) (Line
5). Then it gets an estimate from each one of them (Lines 6-
10), and also from the one being currently utilized by the
switch (Lines 12-13). The sum of all estimations is the value
returned by the procedure. The ESKETCH procedure calculates
the target counter to be read (Lines 18-25), one per row of
the data structure, and then returns the minimum value found
(Line 34).

Algorithm 2 Estimate Operation

1: /* Estimates the frequency of item */

2: procedure ESTIMATE(ITEM)

3: est =0

4: //file with past arrays and respective keys

5: old_sketches_file = “old_sketches”
6: for each element in old_sketches_file do
7
8
9

oldSketch = element.get_sketch()
key = element.get_key()
: est = est+ ESKETCH(oldSketch, key, ITEM)
10: end for
11: //get the key currently being used by the switch
12: key = read_register(“key_register”)
131 est = est+ ESKETCH(NULL, key, ITEM)
14: return est
15: end procedure

17: procedure ESKETCH(SKETCH, KEY, ITEM)
18: width, height, cSize = read(“inputFile”)
19: targetRow = 0

20: lastRow = width x (height — 1)

21: result = +o00

22: while target Row <= last Row do

23: hash_input = <ITEM, KEY, target Row >

24; targetColumn = hash(hash_input) % width
25: targetSlot = target Row + targetColumn

26: if SKETCH == NULL then

27: /I read from data structure kept in the switch
28: rowRes = counter_read(“c”, targetSlot)
29: else

30: // read from a stored sketch

31: rowRes =SKETCH][targetSlot]

32: end if

33: /I calculate the minimum between obtained values
34: result = minimum(result, rowRes)

35: target Row = target Row + width

36: end while

37: return result

38: end procedure

IV. IMPLEMENTATION

The implementation of the algorithm in P4 presented a few
challenges, not only because of limitations of the language but
also due to the constraints imposed by the interface between
a P4 program and the software switch. This section briefly
explains how the main obstacles were overcome.

One-dimensional array: The main data structure of the
algorithm had to be linearized to an array with a single
dimension (instead of a two-dimensional array like in the
original algorithm’s description). There are two reasons for
this modification: (i) P4 does not support multi-dimensional
arrays; and (ii) the size of the array has to be specified at
start time (no dynamic allocation). Consequently, to define the
desired data structure’s size, the user writes a configuration

file with the width, height and number of bits in each entry.
To initiate monitoring, a script is run that starts by reading
that configuration file and, based on it, calculates a set of
values that are written to a constants file. Those values are then
used inside the P4 program through the preprocessing directive
#include, which makes the content of the constants file
available to the P4 code.

The P4 code bellow shows the definition of the main
data structure, which has NUMBER_OF_INSTANCES entries
(equal to width * height), each one with SLOT_SIZE bits.
The attribute saturating prevents counters to wrap around
by stopping to count if they reach their maximum value
(according to P4 version 1.0.3).

counter counters{
type: packets;
instance_count: NUMBER_OF_INSTANCES;
min_width: SLOT_SIZE;
saturating; //prevents overflows

Repeat actions: P4 does not support loops. Therefore, a
workaround had to used: (i) the loop is unrolled, creating an
if statement per iteration; (ii) the if condition stops processing
(becomes false) when a counter reaches a previously defined
maximum value. Below, it is exemplified a loop through the
lines of the data structure, which could be executed up two
times (depending on the value of LAST_ITERATION).

if (c_metadata.target_row <= LAST_ITERATION)
apply (update_tablel);

if (c_metadata.target_row <= LAST_ITERATION)
apply (update_table2);

Since P4 does not allow an action to be applied to the
same table more than once, we had to create distinct tables
per iteration. To ensure the desired effect, all these tables are
associated with identical actions and memory locations, as
exemplified in the next code listing.

table update_tablel{
actions{update_row;}
size: 1;

}

table update_table2{
actions{update_row;}
size: 1;

Hash function: To implement the hash, we used the “sim-
ple_switch” target from the behavioral-model [1]. However, it
restricts the exchange of data between the switch and the P4
program to 64 bits, which is not enough to hold a MDS5 hash
function output (128 bits). To overcome this, we divided the
hash computation in two calls, where one calculates the actual
MDS5 function and returns the 64 most-significant bits of the
result and the other simply returns the 64 less-significant bits
(of that same result). The following code shows how the 64
bits returned values are aggregated into a 128 bit field in P4.
modify_field_with_hash_based_offset(

c_metadata. full_hash, 0, hash_pl, MAX);
modify_field_with_hash_based_offset(

c_metadata.second_part, 0, hash_p2, MAX);

shift_left (c_metadata.full_hash ,
c_metadata. full_hash , 64);

bit_or (c_metadata. full_hash ,
c¢_metadata . full_hash ,
c_metadata.second_part);

Constant MAX has value of 264, which is required by the P4
function modify_field _with_hash_based_offset
to apply a modulo operation to the result of the hash function.

V. EVALUATION

We carried out two sets of experiments to evaluate the
performance of our algorithm. The first group measured the
latency and throughput of the secure count-min sketch, while
the second set tested the error estimations in several settings.

The testbed was composed of three machines, where one
emulates a P4 switch inside a mininet instance connecting
the other two. The switch machine was an Intel(R) Xeon(R)
CPU E5-2407 v2 @2.40GHz with 64GB of RAM, and the
other hosts were standard Intel PCs. The virtual switch imple-
mented the second version of P4, known as behavioral-model
(bmv2) [1]. It was loaded with our P4 algorithm to monitor
and forward the received traffic.

A. Performance of traffic forwarding

The developed solution was compared against two other
P4 programs: (i) the original Count-Min algorithm was used
as baseline; and, (ii) we employed a program that simply
forwards the traffic to understand the cost of monitoring. As
explained previously, the size of the data structure of the count-
min sketch allows to trade accuracy for overheads, as for
each additional line in the data structure there should be a
performance degradation due to the computation of an extra
hash function. Therefore, we provide experimental results for
different number of lines in the data structure.

1) Latency: To measure the delay introduced by the switch,
we calculated the average round trip time (RTT) of 10000
pings between the two end hosts. Figure 3a shows the observed
average latency and standard deviation for the three P4 pro-
grams. As expected, the forwarding program shows a constant
latency of around 500 microseconds. The secure version of
Count-Min performed worse than the original algorithm, with
an average overhead of around 10%. The difference between
them was approximately 40 microseconds for a sketch with
one line, and around 160 microseconds for a sketch with 20
lines. This is an interesting result because it demonstrates that
with a relatively small rise in the overheads, it is possible to
offer increasingly low error probabilities (see II). Of course, if
there was hardware support for P4, one should see a significant
decrease on these values.

2) Throughput: The throughput was measured with iPerf
between the two nodes. In order to obtain the maximum
throughput, the traffic rate of iPerf was increased until the
network started to drop packets (i.e., loss rate > 0). Although
each experiment was repeated 20 times, the calculated standard
deviation was not big enough to be observable in Figure 3b.

Latency
-e-Secure Count-Min -#Count-Min -«Forward
1,8

N
~
o

Throughput

-e-Secure Count-Min -w-Count-Min -«~Forward

Monitoring Source IPs - Error in
Estimations
100000

N
N
o

1,3

~
o

0,8

\

=
1000

10

$éﬁ

* * *

Throughput in
Mbits/second

03

N
o

5 10 15
Number of lines of the sketch

(a)

20 1 5

Average RTT in miliseconds

Number of lines of the sketch

(b)

k=]
i

Gap between the
estimation returned and
the real frequency

10 15 20 4 8 16 32

Memory used in KB

©

Fig. 3. (a) Latency between the two hosts; (b) Maximum throughput; (c) Estimation errors when monitoring by source IP address

Monitoring Flows - Error in Estimations
100000

1000

10

0,1

Gap between the
estimation returned and
the real frequency

1 4 8 16 32

Memory used in KB

64 128

Fig. 4. Estimation errors when monitoring by flow identifier

The forward-only solution got the best results, achieving
a throughput of around 159 Mbits/second. The performance
cost imposed by adding security to Count-Min was on aver-
age about 5 Mbits/second. Our secure Count-Min algorithm
achieved a throughput of 112 Mbits/second with a data struc-
ture with 1 line. With 10 lines, the throughput drop was to 44
Mbits/second and to 27 Mbits/second with 20 lines.

B. Observed errors in estimations

The error associated with the estimations returned by our
secure sketch was also evaluated. We used a five minute trace
of IPv4 traffic captured on busy private network’s access point
to the Internet. We injected this set of well known packets in
our network so the switch could process them all. Then, for
each distinct monitored item (source IP or flow identifier),
we queried the sketch for that item’s estimated frequency.
The difference between the estimated frequency and its true
frequency is the estimation’s error of that item.

The goal was to compare how different data structure
dimensions would affect the errors observed in estimations
of two monitoring conditions — count packets by sender (i.e.,
source IP address) and by flow (i.e., 5-tuple with source/des-
tination ports and IPs for TPC connections). Since there are
many more distinct flows (22310) than source IP addresses
(1845), we expect to see larger errors when monitoring by
flow for a given memory size. The number of lines of the
data structure was fixed to ten, since it would only affect the
probability of the error and not its extent. To test different
memory usages, we used data structures with increasing num-
bers of columns, starting from 25 (1 KB).

1) Source IP: In this case the monitored item was the
source IP address of 791179 packets. Calculating the estima-
tions error of all items allowed us to find the minimum and
maximum error, and the percentiles 10, 50 (median) and 90
for each experiment, as displayed in Figure 3c.

It was observed that the error decreases as the data struc-
ture’s size increases. For a data structure with width 25 (1
KB if its height is 10 and each counter occupies 32 bits) the
median of the errors was around 12000, which may not be
tolerable. However, for a data structure with just 400 columns
(16 KB required), the sketch could already achieve relatively
small errors, with a median of around 20. Finally, by using 32
KB of memory, the median of the errors was 0.

2) TCP Flows: We also monitored the traffic by flows,
where the total number of relevant packets sent through the
monitoring device was 633746 (corresponding to all TCP
packets). Figure 4 shows that a data structure with 25 columns
(1 KB) leads to a median of errors around 18000. As the
memory used increases, the error in estimations decreases,
with a median of 646 when 16 KB of memory was used.
We also tested our solution using 128 KB of memory, where
the median of the errors was only 36.

VI. CONCLUSION

This paper proposed a secure sketch-based monitoring al-
gorithm. We secured the Count-Min sketch and adapted it to a
network monitoring context. Our prototype was implemented
in P4, leveraging from recent programmable data planes. The
experiments show that making a sketch secure does not intro-
duce relevant performance penalties in latency or throughput.

Acknowledgment: This work was partially supported by the
EC through project FP7-607109 (SEGRID), and by national
funds through Fundacdo para a Ciéncia e a Tecnologia (FCT)

with reference UID/CEC/00408/2013 (LaSIGE).
REFERENCES
model)

(1]

2

P4 software switch (behavioral
https://github.com/p4lang/behavioral-model.
P. Bosshart et al. P4: Programming protocol-independent packet proces-
sors. ACM SIGCOMM Computer Communication Review, 44(3), 2014.
P. Bosshart et al. Forwarding metamorphosis: Fast programmable match-
action processing in hardware for SDN. In ACM SIGCOMM 2013

G. Cormod et al. An improved data stream summary: The count-min
sketch and its applications. Journal of Algorithms, 55(1), 2005.

A. Gilbert et al. Quicksand: Quick summary and analysis of network data.
Technical report, 2001

V. Sivaraman et al. Heavy-hitter detection entirely in the data plane. In
SOSR 2017

Z. Liu et al. One Sketch to Rule Them All: Rethinking Network Flow
Monitoring with UnivMon. In SIGCOMM 2016.

Cloud Security Alliance, The notorious nine: Cloud computing top threats
in 2013.

M. Kandias et al, The insider threat in cloud computing, in Critical In-
formation Infrastructure Security, ser. LNCS. Springer Berlin Heidelberg,
2013, vol. 6983, pp. 93—-103.

—

(3]
[4

=

[5

—_

[6

=

[7

—

[8

—_

[9

—

