Using Behavioral Profiles to Detect Software Flaws in Network Servers*

Jodo Antunes

Nuno Ferreira Neves

LaSIGE, University of Lisboa, Faculty of Sciences — Portugal

{jantunes,nuno } @di.fc.ul.pt

Abstract

Some software faults, namely security vulnerabilities,
tend to elude conventional testing methods. Since the effects
of these faults may not be immediately perceived nor have a
direct impact on the server’s execution (e.g., a crash), they
can remain hidden even if exercised by the test cases.

Our detection approach consists in inferring a behavioral
profile of a network server that models its correct execution
by combining information about the implemented state ma-
chine protocol and the server’s internal execution. Flaws are
automatically detected if the server’s behavior deviates from
the profile while processing the test cases. This approach
was implemented in a tool, which was used to analyze sev-
eral FTP vulnerabilities, showing that it can effectively find
various kinds of flaws.

1. Introduction

Network servers play an important role on the organiza-
tion of distributed systems and applications. Clients com-
municate with servers using protocols that define the correct
format and order in which messages should be exchanged.
Some of the most commonly used protocols were standard-
ized by the Internet Engineering Task Force (IETF) and they
cover areas such as computer bootstrap in a networked en-
vironment [12], distributed name resolution [23] or remote
email access [24]. Due to the important roles that servers
play in the networks, and since they often face the Inter-
net, they are usually interesting targets of attack. Therefore,
vulnerabilities found in these servers are highly coveted by
hackers and potentially valuable items in underground mar-
ketplaces [15, 16].

Over the years, several techniques have been proposed for
the discovery of flaws in network servers. For example, scan-
ners aim at automating the task of identifying the presence
of known vulnerabilities [9, 14,26,28]. A set of vulnerability

*This work was partially supported by EC through project FP7-257475
(MASSIF) and by FCT through the Multi-annual and CMU-Portugal Pro-
grammes and the project PTDC/EIA-EIA/100894/2008 (DIVERSE).

checking modules, normally written as scripts, is responsible
for verifying if known flaws are present. More recently, some
of these scanners have evolved to test for unknown bugs by
employing methods based on fuzzing [1,30]. Fuzzing started
as a technique for robustness testing by providing random in-
put to command line applications [22]. Through the years,
fuzzers have evolved to understand better the interface of the
components, allowing the generation of more effective tests,
and therefore being able to find many of the publicly reported
vulnerabilities [32, 33].

One of the limitations of these tools, however, is that they
focus mainly on the creation and execution of tests, usually
providing limited support for the actual detection of flaws.
Therefore, unless the test provokes a very visible effect on
the target (e.g., a crash), the vulnerability can remain undis-
closed. The testing team can also look for other hints of prob-
lems, but this is usually a tedious process and can require,
for instance, the manual inspection of many log entries (e.g.,
look for a strange server response in a 100k line log file).
Furthermore, several classes of security vulnerabilities tend
to be quite elusive, since the effects of these faults are not im-
mediately perceived nor have a direct impact on the server’s
execution (e.g., a resource exhaustion or a code injection).

In this paper, we present a methodology that can com-
plement existing solutions for the discovery of vulnerabili-
ties (e.g., fuzzers and scanners). The aim of the methodol-
ogy is to find deviations from the expected server’s behavior,
since they can give a strong indication that a flaw was acti-
vated while running a test case. Therefore, during a learning
phase, we collect an extensive amount of information about
the server’s correct execution, which includes both how the
server responds to the clients and how the server uses the op-
erating system and its resources (e.g., the system calls that
are executed or the consumed memory). This information is
used to build a profile of the server’s behavior that combines
a model of the implemented protocol with local monitoring
data. This extended specification is used in a testing phase to
automatically detected if the server’s behavior deviates from
the profile while processing the test cases (e.g., created by
a fuzzer tool). Failing test cases with information about the
expected and observed behaviors are provided to the devel-
opers, so that they can further investigate and correct the flaw.

To evaluate the approach, we have implemented the
methodology in a tool and used it to detect vulnerabilities
in FTP servers [25]. We have looked at all publicly available
descriptions of FTP vulnerabilities over the past 12 years (a
total of 122) and organized them into nine different classes.
Then, we selected some of these vulnerabilities whose fault
pattern is representative of the different classes of vulnerabil-
ities and devised five different experiments. Since the vulner-
abilities occurred in different server applications, it was nec-
essary to create several testbeds. The experiments show that
an accurate behavioral profile can be an interesting solution
for the automatic detection of vulnerabilities. Depending on
the class of vulnerability different sources of data were more
insightful in the detection, suggesting that there are gains in
employing a holistic approach to build the profiles.

2. Methodology

This section presents a methodology for automatic detec-
tion of vulnerabilities in target servers. The methodology
consists of two phases: the Learning phase is responsible
for deriving a specification of the communication protocol
used to exchange messages between the server and clients.
The specification is complemented with detailed operational
data about the server, obtained by monitoring the execution
while it processes regular requests from the clients. This ex-
tended specification is then used in the Testing phase to dis-
cover abnormal behavior while the server executes a battery
of test cases (generated, for instance, by a fuzzer). A devia-
tion from the expected behavior provides a strong indication
about which test cases where effective at triggering faults,
which can then be further investigated by the developers to
correct them.

2.1. Extended specification

In our methodology for vulnerability detection, we want
to automatically obtain a rich set of information about the
server’s execution, so that it can later be employed to provide
evidence about incorrect behavior. Since we want to treat the
server as a black box!, thus avoiding dependencies on pro-
gramming languages and runtime environments, the data that
can be externally collected is: 1) the way the server interacts
through the network (for example, in response to malicious
requests); and 2) how the server relates to the local environ-
ment (namely, how it uses the resources offered by the oper-
ating system). Therefore, in our approach, we combine both
sources of information by capturing the server message ex-
changes in a protocol specification, which is complemented
with monitoring data.

I'The reader, however, should notice that our approach can be easily ex-
tended if white box monitoring data is available, by incorporating it in our
model as an extra data source.

USER .*/3.*

PASS */2.*

CWD .#/2.%CWD .*/5.*|CDUP .*/2.*|CDUP .*/5 *|
RMD .*/2.¥RMD .*/5.%MKD .*/2.|MKD .*/5.*|
PWD/2.*PWD/5.*|LIST .*/1.*|LIST .*/5.|
STOR.*/1.*|STOR.*/5.*RETR .*/1 *[RETR .*/5.|
PORT [0-9,]+/2.*[PORT [0-9,]+/5 %]
PASV/2.¥[PASV/5.*

RNFR .*/3.*

Figure 1. Subset of the FTP specification.

We use finite-state machines (FSM) to model protocol
specifications because they are a useful mathematical rep-
resentation to describe the language of the protocol (i.e.,
the format of the accepted messages) and its state machine
(i.e., the rules for exchanging those messages). Usually, it is
advisable to define separate language automata for each en-
tity, for example the client language and the server language,
which may or may not overlap. The specification should also
address the relations among the different types of messages,
both from the same entity (e.g., a client must send the user-
name message before sending a password message) and be-
tween the two entities (e.g., if the username message is cor-
rect, the server returns a message asking for the password).

Mealy machines are regular FSM that can model the inter-
actions between the two protocol entities—they define both
a transition function (i.e., give the next state for a given state
and input) and an output function (i.e., the output for a given
state and input). Hence, we model the specification of the
protocol as a Mealy machine, where each transition is de-
fined by the client message (input), the server response mes-
sage (output), and the following state. More formally, the
Mealy machine (S, I, O, fi, fo, S0, F') is defined as:

S is a finite, non-empty set of states,
I is the input alphabet (finite set of requests),
O is the output alphabet (finite set of responses),
ft is the transition function: f; : S x I — S,
fo is the output function: f, : S x I — O,
sg 1s the initial state, and
F' is the set of final states.

Figure 1 shows an example of a Mealy machine that mod-
els a subset of the FTP protocol (taken from RFC 959 [25]).
This automaton identifies the states and the input and output
symbols (messages) for each transition (labeled as regular
expressions in the form of input/output). The protocol has
an initial login exchange (encompassing states Sg, S1, and
S9), states where the client can issue many different types

of commands to access the remote file system (states S5 and
S4), and a final state (S5). Server replies start with a numeric
code: “2” means a positive completion reply, “3” a positive
intermediate reply, and “5” a permanent negative reply. For
instance, after the server’s welcome banner in state Sy (la-
beled as “2.*”, a regular expression that recognizes messages
similar to “220 Welcome to FTP server.”), the client must
transmit its credentials. First, the client sends the username
(e.g., “USER john” that is labeled as “USER .*”) and then
the respective password (labeled as “PASS .*”). If the pass-
word is correct, the server responds with a positive comple-
tion reply (labeled as “2.*”) and the protocol goes to state S5.
If the password is incorrect, the server responds with a per-
manent negative reply (labeled as “5.*””) and the client must
restart the login process.

Automata, such as Mealy machines, are well suited rep-
resentations for the expected external behavior of protocol
implementations, such as the messages exchanged between
the clients and the server, and for that reason they have been
used in testing [3,7,17,19]. While an analysis based on these
models may be sufficient to detect some types of anomalies
(e.g., wrong message or lack of response), there are many
other types of vulnerabilities that are difficult to address with
this information alone. In fact, more elusive classes of flaws
can trigger faults that either remain dormant or impercepti-
ble, not immediately affecting the server’s compliance with
the protocol specification (e.g., an attacker exploits a com-
mand injection flaw to force the server to execute some local
program).

To support the detection of a larger range of vulnerabili-
ties, we propose to extend the Mealy machine with informa-
tion about the server’s local execution. We call this extended
Mealy machine the Behavioral Profile of the server and it is
defined as the tuple (S, 1,0, M, f, fo, fm, S0, F'), where:

M is the monitoring alphabet (finite set of monitoring
data), and

fm 1s the monitoring function: f,, : S x I — M.

This automaton is obtained by monitoring the server’s ex-
ecution while it progresses through the various states (as de-
fined in the original Mealy machine of Figure 1). Hence,
besides the input and output symbols, we also associate to
each transition the respective monitoring information (m;).
m; corresponds to a tuple (sourcey, ..., source,), where
each source; captures one of the dimensions of the server’s
internal execution as it interacts with the underlying OS and
hardware (e.g., the range of memory consumption or the ex-
ecution of specific OS calls).

This additional information can thus provide valuable in-
sight to the discovery of vulnerabilities. Vulnerabilities that
do not affect the server’s external messages, will neverthe-
less affect the server’s local execution [20]. Thus, depending
on the type of monitoring information that is obtained (e.g.,
system calls, signals, CPU, open files), the extended Mealy

Benign Test Cases

!

Behavioral : :
ehaviora (¢] [0} Server App.
Profile < Test Case |
M Executor S
«—

Constructor <« Monitor
M
i 0.S.
vom (X
O—C 50

Behavioral Profile

(a) Learning phase.

Behavioral Profile Test Cases

vom (X
O—C 50

o

SN
Test Case | O | Serverdpp.
Executor S

: v > Monitor

Output violations 0.8
Transition violations

Monitoring violations

(Attack Injection Tool,
<«— Fuzzer, Vuln. Scanner,
Manual Testing, ...)

«—
Behavioral lo)

Profile R
Checker < M

(b) Testing phase.

Figure 2. Architecture and methodology to
test a target server.

machine can provide a more complete and accurate model of
the server’s behavior, which can then be explored during a
testing phase to detect flaws.

2.2. Learning phase

The first phase of the methodology is the Learning phase,
which is responsible for obtaining the Behavioral Profile of
the server. As input to this phase, we need a set of Benign
Test Cases that corresponds to sequences of interactions be-
tween the clients and the target server. Currently, they can be
provided in two ways. Functional test cases, created by the
developers to test the correct implementation of the server,
can be used as benign test cases since they do not fail (i.e.,
they do not trigger any abnormal server’s behavior). Or, the
simplest method (that we typically use), which is based on
network traces where the messages of the clients can be ex-
tracted and replayed to the server. In both cases, however,
these tests should exercise the whole protocol specification
(or the part of the specification that is going to be analyzed
in the testing phase?) and thus they should cause positive and
negative responses from the server (e.g., login with correct

2Naturally, any test case used later in the testing phase that exercises
some missing part of the specification, cannot be automatically evaluated.

and wrong credentials).

Figure 2a shows the main components involved in the
learning phase. The Test Case Executor component is re-
sponsible for processing each test case and for synchroniz-
ing with the Monitor component. Before each test case is
started, the Test Case Executor instructs the Monitor to setup
the testing environment, such as putting the server into a pre-
defined initial state (launch a new instance of the server, dis-
carding any changes that were previously made) and prepare
the monitoring tasks. Then, once the server is running and
waiting for new requests, the Test Case Executor starts em-
ulating a client by sending request messages to the server
and storing the corresponding responses. In addition, at each
response received from the server, the Test Case Executor
asks for new monitoring data. The Monitor then sends all
information it has gathered since the last monitoring request.
Therefore, the monitoring data depicts the server’s progress
and provides a snapshot of its current internal state (in a later
section we provide more details about our monitoring imple-
mentation).

Next, the Test Case Executor provides the input, output,
and monitoring data of each test case to the Behavioral Pro-
file Constructor component. This component uses the in-
put and output to reverse engineer an approximate protocol
specification [4] and adds the monitoring data to the respec-
tive transitions in the form: f,(s;,4) = m; with s; € S,
ix € I, and m; € M. If the server replies with more than
one message to a request (because the response was split
into multiple packets), the response messages are all concate-
nated as a single output symbol. Additionally, there should
also be multiple instances of monitoring data for the same
transition (typically, one after each split response), which are
also combined into a single monitoring instance. In the ex-
isting implementation, the Behavior Profile Constructor uses
two strategies for combining different instances of monitor-
ing data. For resource usage, it just keeps track of the max-
imum observed values (e.g., maximum time, last count of
CPU cycles, largest memory consumption, total disk utiliza-
tion, total number of open files), or if the monitor tracks se-
quences of operations (such as instructions, system calls, or
signals) they are concatenated since they belong to the same
protocol transition.

At the end of this phase, the Behavioral Profile Construc-
tor produces the Behavioral Profile of the server, i.e., a Mealy
machine modeling the server’s protocol execution with the
additional monitoring data.

2.3. Testing phase

The test cases used in this phase are also designed to com-
mand the server to performing various tasks, while cover-
ing as much of the protocol space as possible (or they can
be focused on a subset of the server’s functionality). How-
ever, besides exercising the normal server operations, they

should mainly evaluate the server’s robustness when con-
fronted with unexpected and/or malicious input in the form
of malformed sequences of messages or messages containing
exploit data for known vulnerabilities. These test cases can
be generated by tools specialized at finding vulnerabilities,
such as Fuzzers or Scanners [3, 10,26], and they can also be
complemented with manually designed tests.

The Test Case Executor carries out each test case like in
the previous phase, collecting the input, output, and the re-
spective monitoring data. A synchronization with the Moni-
tor guarantees that each test case starts executing in the same
initial state. A special evaluator component, the Behavioral
Profile Checker, analyzes the server’s behavior by looking at
the current state of the protocol, the input and output mes-
sages, and at the respective execution data. If the server’s
response is not in accordance with the Behavioral Profile,
the evaluator found an output or transition violation.

An output violation is characterized by having the server
in the correct/expected state producing an erroneous re-
sponse (e.g., provides an incorrect code). A transition viola-
tion occurs when the server moves to a state distinct than the
anticipated, due to a flaw that was activated while process-
ing a request. A transition violation can also cause the server
to send erroneous responses, possibly because the problem
was in a previous transition that made the server jump to the
wrong state. In order to distinguish from the output violation,
we employ the following approach: if the server response is
not in accordance with any of the responses/output recog-
nized in the same state, we consider that the server is in the
wrong state, and thus it has a transition violation for that test
case; otherwise it is an output violation.

Conversely, if the server’s response is in accordance with
the expected output, the evaluator checks the server’s local
execution. Depending on the type of information provided
by the monitor, the evaluator can verify if the resources used
by the server have exceeded the expected values for that tran-
sition, or even compare the sequence of operations (e.g., sys-
tem calls). If the server’s local execution deviates from the
expected, the evaluator has found a monitoring violation.

Besides the type of violation that was detected and the
respective test case, this approach also provides valuable in-
formation to identify the source of the flaw. By looking at the
protocol request (input) that triggered the faulty behavior, the
server’s response (output), utilized resources, and signals or
system calls (monitoring), one can better ascertain the type
of the vulnerability and its location (e.g., a misconfiguration
or a programming bug).

3. Implementation

We developed a tool that implements both phases of our
methodology (see Figure 2). All components, with the ex-
ception of the Monitor, were developed in Java. In this sec-
tion, we provide additional details about the tool. In particu-

lar, the Behavioral Profile Constructor that uses some reverse
engineering techniques to infer a Mealy machine of the pro-
tocol specification, and the Monitor and Behavioral Profile
Checker that resort to monitoring data gathered through OS-
specific tracing and monitoring facilities.

At this moment, we are focusing our research on servers
that implement text-based protocols from the IETF (e.g.,
IMAP, POP, FTP, DNS). This type of protocols usually re-
sorts to requests that are composed of a predefined command
name followed by one or more arguments, and by responses
containing a reply code number with some textual explana-
tion. Our implementation of the Behavioral Profile Construc-
tor uses protocol reverse engineering techniques that have
evolved from ReverX [4], with the traffic generated from the
benign test cases to obtain an approximate protocol specifi-
cation®. First, it builds two FSM to recognize the requests
and responses transmitted to and from the server. Then, each
state of these automata is analyzed to identify transitions that
should be generalized in order to make the FSM accept the
same types of messages with different values (namely to cre-
ate regular expressions that express the command names and
the argument fields). Command fields are distinguished from
parameter fields if the ratio of the number of symbols at a
state over the total frequency of that state is below a certain
threshold. This results in two language FSM that express the
message formats recognized by the server and the clients,
respectively—a message format is a path in a FSM that cor-
responds to a sequence of message fields.

The Behavioral Profile Constructor starts by inferring the
protocol state machine by creating another automaton that
accepts valid sequences of message formats (e.g., a login
message, followed by a password message and a quit mes-
sage). First, it takes the messages exchanged in each test
case and converts them into the corresponding message for-
mats (obtained from both language FSM). Next, a Mealy ma-
chine is created to accept every sequence of input and output
message formats (i.e., tuples of requests and responses) is
accepted. While performing this activity, monitoring data is
obtained from the Monitor component and associated with
the corresponding transitions. To later compare different in-
stances of monitoring data, we resort to a resumed represen-
tation that maintains the maximum values of each resource
utilization, the set of unique system calls and signals, and
the sequence of system calls (in Section 4, we provide spe-
cific examples). The Behavioral Profile is obtained by ex-
tending each transition of the Mealy machine, which models
the input and output of the protocol specification, with the
respective monitoring data.

In the testing phase, the Behavioral Profile Checker is
able to detect abnormal behavior by analyzing the requests,
responses, and monitoring data of the execution of the test

3This approach is impervious to the existence of other types of traffic,
since our tool selects only messages to and from the server’s predefined
network port number.

Input

Output Main process +

Server Application
children and threads %

Synchronize

Process Syscalls Time
Sync ¥ Control Tracing Tracking
. . I I
Momtormg Open Files and Network Memory Disk
Sockets Usage [T\ _Usage /7| Usage
Monitor
Operating System

Figure 3. Monitoring component.

cases. It uses each input/output to follow the server’s exe-
cution of the protocol (Mealy machine) and to identify the
current state and the relevant transition. Then, it compares
the server’s current behavior with the one defined in the Be-
havioral Profile.

The scope, accuracy, and thoroughness of the monitor de-
termines the ability to detect deviations from the correct be-
havior. A more capable monitor can provide a more com-
plete view of the server’s execution, which can be crucial
to detect some classes of vulnerabilities. A memory leak, for
instance, may only be detected if the monitor is able to obtain
memory usage data. On the other hand, a detailed monitor
may impose harder implementation and operational require-
ments (e.g., it needs low level OS information or a patched
kernel) and may even cause some perturbation on the server
that can affect the server’s execution (e.g., intrusive probing,
increased system overhead). For instance, to access some
low-level monitoring facilities, such as tracing the execution
of processes, our Monitor component was developed in C++
for Unix-based platforms to make use of the monitoring fa-
cilities provided by that kind of OS. These tracing capabil-
ities are achieved with the PTRACE* family functions by
catching any signals and system calls received and sent by
the server process and any of its children/threads. System
calls are interesting operations to monitor because they are
requests made to the OS for services not available to user
level processes, e.g., allocate memory, write to disk, or send
a message to the network. The sequence (or more simply the
set) of system calls also provides a pattern of the execution
of the server for a given task [38]. If the server executes a
set of instructions distinct from the expected, this could re-
veal for instance that the flow of control is being hijacked.
Besides system calls, UNIX signals are also intercepted. A
signal interrupts the process execution to indicate that a spe-
cial condition, such as an error, was triggered. For example,
a SIGSEGYV signal indicates that a memory access violation
has occurred, which may occur due to a integer overflow/un-
derflow used in an allocation of memory.

In addition, the Monitor also observes the resource us-
age of the server process and its children/threads by resort-

“http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html

Table 1. Reported known FTP vulnerabilities.

Vulnerability

Bugtraq

CVE

Main faulty
pattern

Exper-
iment

Buffer overflow

113,269, 599, 612, 679, 726, 747,
818,961,966, 1227, 1638, 1675,
1690, 1858, 2120, 2124, 2242,
2242, 2342, 2496, 2548, 2550,
2552, 2782, 3507, 3581, 3884,
4482, 5427, 7251, 7278, 7307,
8315, 8668, 8679, 8893, 9483,
9675, 9767, 9953, 10078, 10834,
11069, 11508, 11589, 11645,
11772, 12139, 12155, 12463,

CVE-1999-0911, CVE-1999-1058,
CVE-2001-0247, CVE-2001-0248,
CVE-2001-0325, CVE-2001-0550,
CVE-2003-0466, CVE-2003-0831,
CVE-2004-0185, CVE-2004-0340,
CVE-2004-2111, CVE-2004-2111,
CVE-2004-2533

executes a
different set
of

12487, 12632, 12704, 12755,
13454, 14077, 14138, 14339
1387, 1425, 1560, 2296, 6781,

7776, 9800, 14380, 14381, 14381

7974, 34288

instructions

CVE-2000-0573, CVE-2000-0574,

Format string CVE-2005-2390, CVE-2005-2390

SQL injection
External app.

. 2240, 2241
execution

Resource
exhaustion

CVE-2003-0853, CVE-2003-0854,
CVE-2004-0341
CVE-1999-0838, CVE-2000-0644,
CVE-2000-0645, CVE-2000-0647, |consumption| 3,4

271, 2698, 8875, 14382

217, 859, 1456, 1506, 1677, 3409, resource

Denial of 6297, 6341, 7425, 7473, 7474,
. 7900, 9573, 9585, 9627, 9651, | CVE-2000-0648, CVE-2001-1156,| increases
service 9657, 9668, 9980, 11065, 12384, | CVE-2004-0252, CVE-2004-0342,
12790, 12865, 13054, 17398 | CVE-2005-0779, CVE-2005-1034
Directory |301: 2444, 2489, 2618, 2655, 2786,

2789, 5168, 6648, 7472, 7718,
9832, 11159, 12586, 13292, 16321

1016, 1452, 2564, 3331, 3333,
7825, 11430, 13479, 14124, 14653

7359, 5200, 20721

CVE-2002-0558, CVE-2004-0148
traversal
output

differs

Information 2,5
disclosure

Default account

CVE-2000-0176, CVE-2000-0646

ing to the LibGTop® library functions. Given the perfor-
mance impact of such calls, the monitor only probes for
resource utilization at the relevant system calls (e.g., open-
ing/closing files or allocating/deallocating memory). The
Monitor tracks the following information regarding the re-
sources: total number of processes, including forked children
and threads of the target server; memory pages, given by the
number of pages in the resident set minus the shared pages;
files and network sockets, by analyzing open file descriptors;
disk usage, specified by the number of bytes written to any
of the file descriptors belonging to file disks; and execution
time, which corresponds to the wall time taken by the server
since the protocol request.

4. Evaluation

This section presents the results of the experimental eval-
uation of our methodology to detect different classes of se-
curity vulnerabilities. For this purpose, we exhaustively
searched the Internet for known FTP vulnerabilities in spe-
cialized websites like SecurityFocus (Bugtraq) and Common
Vulnerabilities and Exposures (CVE), and we found a total
of 122 reported flaws, including traditionally elusive faults
that do not affect the external behavior of the server. The
vulnerabilities were grouped in the following classes: buffer
overflow, format string, SQL injection, external application
execution, resource exhaustion, denial of service, directory
traversal, information disclosure, and default account vulner-
abilities (see Table 1).

Furthermore, we analyzed the typical fault patterns of

Shttp://ftp.gnome.org/- pub/GNOME/sources/libgtop/

each type of vulnerability (forth column in Table 1) and de-
vised a set of experiments covering the respective faulty be-
haviors (last column), such as the execution of a different
set of instructions, an increase in some resource utilization,
or an incorrect server response. For instance, vulnerabilities
of buffer overflow, format string, SQL injection, or exter-
nal application execution, force the server into inadvertently
change its control flow of execution, making it execute code
that was not intended by the developers. Unusual resource
consumption is a clear faulty characteristic of resource ex-
haustion vulnerabilities and also of denial of service flaws
(cpu/time is also a resource). Directory traversal and infor-
mation disclosure vulnerabilities can be characterized by the
server’s behavior in granting illegal access to some private
resources. This behavior is depicted in the server’s output by
responding positively when it should be denying access. The
same faulty behavior is observed in misconfiguration issues,
such as the existence of default accounts.

We then created a series of experiments based on specific
security flaws that are representative of the faulty patterns of
the different classes of vulnerabilities:

o Experiment I - buffer overflow: a test case that triggers
this vulnerability should either cause a memory access
exception (e.g., SIGSEGV signal) or the execution of a
different set of instructions;

e Experiment 2 - directory traversal: this vulnerability
can be detected by looking at the server’s output (e.g.,
if it grants access when it should deny it);

o Experiment 3 - SQL injection: this kind of vulnera-
bilities usually cause the server to execute more in-
structions, such as additional SQL queries, and conse-
quently, to consume more resources, even though the
server may still respond in accordance;

o Experiment 4 - illegal program execution: executing an
external program will cause the server to fork its execu-
tion: the main process will continue to handle the proto-
col requests, while a child process carries out additional
instructions;

e Experiment 5 - default account: configuration vulnera-
bilities, such as accessible default accounts, typically
permit some illegitimate protocol transition that may
lead the server to reply and/or execute in some unex-
pected way.

4.1. Testbeds

The experiments were devised to activate various security
flaws, present in different FTP servers and configurations,
that trigger distinct types of faulty behavior. Three of the
five experiments are based on specific vulnerability reports,
while the other two are general security problems, usually
due to misconfiguration issues, and are therefore not specific

to a particular server implementation. To replicate the envi-
ronment conditions described in the vulnerability reports, we
created five distinct virtual machine (VM) images (with Or-
acle’s VirtualBox virtualization product). Whenever stated,
we installed the appropriate version of the OS, including the
libraries and applications, and always compiled and installed
the vulnerable version of server from source. In addition, we
installed our monitor component and the required libraries in
each VM.

In the first and second experiment, we installed proftpd
version 1.2prel (taken from the CVS repository) in two
Ubuntu 10.10 VM images. The third experiment was also
related with a vulnerability in proftpd server, however it also
required the use of a database—as described in the vulner-
ability report, we configured the VM with Debian 5.0 and
MySQL 5.0. The forth experiment was related to a vulnera-
bility present in wu-ftpd, which we installed from the source
files obtained from a mirror repository that contained old ver-
sions of the server. The server was configured to enable SITE
EXEC commands, whose vulnerability would allow users to
execute programs from /bin directory, instead of “/bin. Fi-
nally, for the fifth experiment, we used the most recent build
of proftpd (1.3.3) in the latest Ubuntu version (11.04) to de-
tect the existence of default (and unwanted) accounts, such
as the anonymous FTP account.

The same set of benign test cases was used to automati-
cally infer the protocol specification and the internal server’s
behavior. To correctly infer the FTP specification with a
good protocol coverage we used a total of 1000 messages
taken from publicly available FTP traces®. The subset of
messages we selected contained the most used types of FTP
requests, which exercised the server into executing a series
of tasks while our tool collected the requests, responses, and
monitoring data. The messages covered most of the protocol
specification, including positive and negative responses (e.g.,
from requests with correct and incorrect parameters, such as
wrong usernames or non-existent files).

For the testing phase, and since we are not focused on the
test case generation, we manually defined the test cases based
on the proofs of concept exploits that are provided in the vul-
nerability reports (but test cases generated from fuzzers or
scanners could also be used).

4.2. Results

Figure 4 shows the relevant results of the test cases that
triggered vulnerabilities in each of the five experiments. For
the purpose of clarity and due to space constraints, we are ig-
noring some of the monitoring details, such as the actual se-
quence of systems calls or the utilization of some resources.

In the first experiment we tested a FTP server with a buffer
overflow vulnerability. Normally, these vulnerabilities are

Shttp://ee.lbl.gov/anonymized-traces.html

easy to detect because they often crash the server while it
tries to access an illegal memory address. However, modern
FTP servers usually either create a child process to handle
each client and/or intercept this specific type of signals to
gracefully terminate and automatically restart the execution.
This effectively masquerades the fault from the clients and
makes the detection unfeasible only by looking at the ex-
ternal behavior. However, our tool was able to detect these
monitoring violations because it intercepted different set of
signals from those present in the behavioral profile for that
particular protocol transition—the test case that triggered the
abnormal behavior caused a signal 11 (segmentation fault).
Additionally, the tool also provided evidence that the server
executed significantly less code (i.e., less system calls), cer-
tainly due to the premature termination of the child process
that received the signal 11. Also, because the server’s lack
of response is not recognized by any of the acceptable re-
sponses for that protocol state, the tool identified a transition
violation (instead of a simple output violation).

The second experiment is related to a directory traversal
vulnerability and illustrates the necessity of looking at the ex-
ecution of the protocol, i.e., at the messages exchanged. The
test case that triggered this vulnerability caused the server
to respond affirmatively to an access request for a directory
outside the user’s scope. The server responded with a “226
Transfer complete.” when it should have denied access with
a reply of the type “450 .*”, thus it is an output violation.
Because the server processed the request differently, it also
executed a different sequence of system calls, thus the tool
also identified a monitoring violation.

The following two experiments are related to vulnerabil-
ities that cause the server to execute additional code. In the
third experiment, a server vulnerable to SQL injection is lead
to execute additional SQL queries. The vulnerability, present
in the USER command, cannot be detected by looking at the
server’s response alone because it always accepts the user-
name parameter (whether it contains SQL statements or not).
However, the expected behavior for processing a USER com-
mand is to execute 1154 system calls, as observed during the
learning phase. Yet, the test case caused the server to execute
1704 system calls, i.e., an additional 550 system calls (mon-
itoring violation). In addition, due the server’s database log-
ging mechanisms, our tool also detected a significantly larger
number of bytes written to disk. This also illustrates the abil-
ity to detect discrepancies in the utilization of resources, such
as memory or disk resource exhaustion vulnerabilities.

The forth experiment also aimed at causing the server to
execute additional code, although through the execution of
an external program. In this case, the server has a vulnera-
bility that allows a remote user to run a program outside the
user’s bin directory. The previously inferred behavior of the
server for processing a SITE EXEC command with an unau-
thorized program path, defined three processes and the exe-
cution of 1063 system calls. However, the test case caused

Experiment 1 - buffer overflow
Server: proftpd 1.2prel
Vulnerability: buffer overflow in command MKD (bugtraq 612)

Behavior Profile Test Case
output "o A"

processes 2 +0 2

unique syscalls 510 40
seq of syscalls 1639 £3 1015

seq of signals 5,19,13 5,19,11

memory usage 250 250

disk usage 0 0

Experiment 2 - directory traversal
Server: proftpd 1.2prel
Vulnerability: accessing the root contents (bugtraq 2618, 2786, 5168,

and 11159)
Behavior Profile Test Case
output "450 .*" '"226 Transfer complete."

processes 20 2

unique syscalls 49+0 49
seq of syscalls 1087 £10 1244
seq of signals 5,19 5,19
memory usage 250 250

disk usage 0 0

Experiment 3 - SQL injection
Server: proftpd 1.3.1
Vulnerability: SQL injection in USER command (bugtraq 33722)
Behavior Profile Test Case

output "331 .+" "331 Password req..."
processes 2 +0 2
unique syscalls 49+0 49+0
seq of syscalls 1154 +0 1704
seq of signals 5,19 5,19
memory usage 1180 1188
disk usage 10702 19903

Figure 4. Vulnerability detection of test cases.

the server to fork two additional child processes and to ex-
ecute an additional 907 system calls and four more signals,
thus reflecting the external program execution. These ad-
ditional process and code also caused the server to allocate
more memory than the expected. Both discrepancies indicate
a monitoring violation and therefore reveal that the test case
triggered an existing fault in the server.

The fifth and last experiment is also related with a widely
known class of vulnerabilities. Some servers are configured
by default with special accounts, such as for testing or debug-
ging purposes, or simply with an anonymous account, which
may also be considered a security risk. This particular exper-
iment shows that besides the server’s response being diver-
gent from the expected on the behavioral profile (it accepts
the credentials, when it should deny them), the server’s inter-
nal execution is also in violation (it is carrying out a different
protocol transition). In fact, the correct behavior for that test
case would be to send a “530 .*” type of reply and to exe-
cute 264 system calls, which is being clearly violated by the
server’s execution (output and monitoring violations).

These five experiments demonstrate that although some
vulnerabilities can be detected by looking solely at the
server’s output (i.e., experiment 2 and 5), other kinds of

Experiment 4 - illegal program execution
Server: wu-ftpd 2.6.0
Vulnerability: Illegal acess in command SITE EXEC (bugtraq 2241)
Behavior Profile Test Case

output "200-.*" "200-bash -c id"
processes 30 5
unique syscalls 300 98
seq of syscalls 1063 +0 1970
seq of signals 5,5,19,19,17 5,5,19,19,19,19,17,17,17
memory usage 794 1206
disk usage 0 0

Experiment 5 - default accounts
Server: proftpd 1.3.3
Vulnerability: server accepts unexpected credentials (bugtraq 5200,
7359, and 20721)

Behavior Profile Test Case
output "530 .*" "230 user ..."

processes 20 2

unique syscalls 430 47
seq of syscalls 264 0 412

seq of signals 5,19 5, 14,19

memory usage 610 1088
disk usage 1024 996

faulty behavior can only be detected if the server’s internal
execution is also observed and compared, such as by looking
at the number of system calls and/or the amount of used re-
sources. There also a couple of points to note. First, as in any
approach that learns the correct behavior and tries to detect
any deviations as anomalies, it is susceptible to false posi-
tives. However, in the case of testing and detecting vulnera-
bilities it is always better to later inspect a few false positives
than to miss a false negative. Second, constantly probing the
server for monitoring data is cpu intensive and may result in
some overhead. This overhead, however, is acceptable as it
does not prevent the tests from being carried out at a good
pace’—our aim is not to test live systems.

5. Related Work

It is very common for traditional software testing tech-
niques to miss vulnerabilities because the test cases that
could trigger them would need to resort to more unconven-
tional ways of interaction, such as illegal and unexpected in-
put, or because their effects are unclear or too subtle to de-
tect by conventional means. In this section, we provide an
overview of the current state in testing and in vulnerability
discovery to which our work may be related.

Our work has been influenced by fault and attack injection
techniques. Traditionally, fault injection has been utilized
to emulate several kinds of hardware and software faults,
ranging from transient memory corruptions to permanent
stuck-at faults, for the verification of fault handling mech-
anisms [5,8,35]. By forcing and reproducing the occurrence
of irregular and unusual events, fault injection can evaluate
the target system’s ability to cope with the presence of faults.

TTypically, one test case takes one or two seconds with a few more sec-
onds to restart the environment conditions.

Our methodology also consists in injecting faults (test cases)
at the interface of target systems. Robustness testing and
fuzzers are some approaches that study the system’s abil-
ity in handling with erroneous input conditions at their in-
terface [2, 18, 22]. Throughout the years, these approaches
have evolved into more intelligent, and less random, vulner-
ability detectors [6, 31, 36]. However, in some cases they
have become too specialized, and lack more thorough moni-
toring and detection mechanisms—usually only fatal crashes
or predefined vulnerability behaviors are detected.

Other works in fault injection use an established baseline
of the correct behavior to detect problems while testing, by
resorting to a golden run that is compared against the state
of the faulty runs [29]. However, this approach can only be
used in test cases that consist in valid execution runs where a
single fault can be inserted. When the whole test case is the
actual fault (i.e., a protocol request sent to the server), there
is no easy way to devise a golden run.

In our approach, we infer a model of the correct behavior
of the system under testing. We rely on the capture and auto-
matic analysis of program executions to derive the expected
behavior. Analyzing the execution of applications has been
addressed before. Some authors showed that failed runs tend
to have execution profiles that diverge from the normal ex-
ecutions [11]. One work, for instance, uses the sequence of
function calls performed by different program runs to ob-
serve how they cluster in a 2D multidimensional scatter plot,
revealing how similar or dissimilar the executions are [20].

Besides program executions, other techniques were de-
vised to identify failures caused by specific sequences of
events that were reported in log files [21]. This approach
consists first in using the logs of correct executions to auto-
matically infer dependencies between events and values and
to generate a model of the correct behavior. Then, the logs of
the faulty executions are compared with the generated mod-
els to detect anomalous event sequences. This approach is
more suitable to detect problems that exist in the interaction
between components in larger networking systems, as long
as they are properly logged. While our approach does not
actually resort to log files (although they could be accommo-
dated as part of the monitoring data), we do use other sources
of information to detect abnormal behavior, more appropri-
ate for the type of faults we wish to detect, i.e., vulnerabilities
in a server under test.

Other works are not focused on detecting new and un-
known vulnerabilities, but on guaranteeing that known vul-
nerabilities do not slip into the systems. These solutions usu-
ally provide a great level of automation and require an exten-
sive and constantly updated repository of known vulnerabil-
ities with the respective test cases to detect them [26,28,34].
A set of vulnerability checking modules, written as scripts,
is responsible for checking for specific known vulnerabili-
ties. Some known vulnerabilities may even be fixed by spe-
cial vulnerability fixing modules. Other solutions are used

in industry to automate the process of testing and to mea-
sure their products. In one published work, the authors pro-
pose an automated assessment infrastructure that provides a
complete framework to manage a test case repository and to
deploy the test cases automatically, from the initial configu-
ration and setup to the respective execution, monitoring, and
reporting [37].

Our approach uses a specification of the protocol as a for-
mal model that represents the external behavior of a server
under test that implements that protocol. Specification-based
testing has been used before, both to generate test cases and
to verify the compliance of the results (e.g., protocol test-
ing [19], conformance testing [7], software testing [17], vul-
nerability discovery [3]). Specifications are usually written
in special purpose tools that model and design test cases to
validate high level functional specifications [13]. One ap-
proach resorts to formal specifications to generate input data
for test cases [27]. Specifications are written in Lustre and
are translated into test data generators that implement several
testing strategies, such as random testing, operational profile,
behavioral pattern or safety-property guided testing. Lutess
then sends the generated input test sequences to the software
under test and checks the corresponding output with a test
oracle to detect faults. The test oracle is usually derived
from previously specified safety properties. While our ap-
proach resorts to a specification of the protocol, these works
could potentially be utilized as a complement since they can
be used to write specifications and to automatically generate
test cases based on those specifications.

6. Conclusions

The paper presents a new approach that can complement
existing testing tools that generate and execute test cases but
lack monitoring and automatic analysis capabilities to dis-
cover security vulnerabilities. Our methodology infers a be-
havioral profile that models the server’s correct execution
of the protocol combined with local monitoring data. This
profile is then used as a reference to detect any deviation
from the expected behavior while the server executes the test
cases. Violations to the behavioral profile indicate that a test
case has triggered some fault and provide additional infor-
mation about the faulty behavior.

Our experimental evaluation show that since this ap-
proach uses external and internal sources of execution infor-
mation, it is able to detect the types of faulty behavior found
in all 122 known FTP vulnerabilities, from wrong responses
to the execution of an unexpected set of instructions or to the
unusual amounts of resource utilization.

References

[1] Acutenix. Acunetix web vulnerability
http://www.acunetix.com/, retrieved on 2011.

scanner.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

A. Albinet, J. Arlat, and J.-C. Fabre. Characterization of the
impact of faulty drivers on the robustness of the Linux ker-
nel. In Proc. of the Int. Conf. on Dependable Systems and
Networks, pages 867-876, 2004.

J. Antunes, N. Neves, M. Correia, P. Verissimo, and R. Neves.
Vulnerability removal with attack injection. /IEEE Trans. on
Software Engineering, 36:357-370, 2010.

J. Antunes, N. Neves, and P. Verissimo. ReverX: Reverse
engineering of protocols. In Proc of the Working Conference
on Reverse Engineering, 2011.

J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell.
Fault injection and dependability evaluation of fault-tolerant
systems. [EEE Trans. on Computers, 42(8):913-923, 1993.
T. Biege. Radius fuzzer. http://www.suse.de/"thomas/-
projects/radius-fuzzer/, retrieved on 2011.

B. Bosik and M. Umit Uyar. Finite state machine based for-
mal methods in protocol conformance testing: From theory
to implementation. Computer Networks and ISDN Systems,
22(1):7-33, 1991.

J. Carreira, H. Madeira, and J. G. Silva. Xception: A tech-
nique for the experimental evaluation of dependability in
modern computers. IEEE Trans. on Software Engineering,
24(2):125-136, 1998.

Core Security Technologies. Core impact.
http://www.coresecurity.com/content/core-impact-overview,
retrieved on 2011.

K. Derderian, R. Hierons, M. Harman, and Q. Guo. Auto-
mated unique input output sequence generation for confor-
mance testing of FSMs. The Computer Journal, 49(3):331,
2006.

W. Dickinson, D. Leon, and A. Podgurski. Finding fail-
ures by cluster analysis of execution profiles. In Proc. of
thelnt. Conf. on Software Engineering, pages 339-348, 2001.
R. Droms. Dynamic Host Configuration Protocol (DHCP).
RFC 2131, 1997.

L. du Bousquet, F. Ouabdesselam, J. Richier, and N. Zuanon.
Lutess: a testing environment for synchronous software. Tool
Support for System Specification, Development and Verifica-
tion, pages 48—61, 1998.

eEye Digital Security. Retina network security scanner.
http://www.eeye.com/, retrieved on 2011.

M. Fossi, J. Blackbird, G. Egan, M. K. Low, K. Haley,
D. Mazurek, E. Johnson, D. McKinney, T. Mack, P. Wood,
and T. Adams. Symantec internet security threat report:
Trends for 2010. Volume XVI, 2011.

M. Fossi, E. Johnson, D. Turner, T. Mack, J. Blackbird,
D. McKinney, M. Low, T. Adams, M. Laucht, and J. Gough.
Symantec report on the underground economy. Technical re-
port, Symantec, 2008.

R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland,
J. Derrick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor,
P. Krause, G. Liittgen, A. J. H. Simons, S. A. Vilkomir, M. R.
Woodward, and H. Zedan. Using formal specifications to sup-
port testing. ACM Computing Surveys, 41(2):1-76, 2009.

P. Koopman and J. DeVale. The exception handling effective-
ness of POSIX operating systems. IEEE Trans. on Software
Engineering, 26(9):837-848, 2000.

R. Lai. A survey of communication protocol testing. Journal
of Systems and Software, 62(1):21-46, 2002.

10

[20]

(21]

(22]

(23]
[24]
[25]
[26]

(27]

(28]

(29]

(30]

(31]

(32]

[33]

[34]

(35]

(36]

(37]

(38]

D. Leon, A. Podgurski, and W. Dickinson. Visualizing
similarity between program executions. In Proc. of the
Int. Symp. on Software Reliability Engineering, pages 311—
321, 2005.

L. Mariani and F. Pastore. Automated identification of failure
causes in system logs. In Proc. of the Int. Symp. on Software
Reliability Engineering, pages 117-126, 2008.

B. P. Miller, L. Fredriksen, and B. So. An empirical study
of the reliability of UNIX utilities. Communications of the
ACM, 33(12):32-44, 1990.

P. Mockapetris. Domain names — implementation and speci-
fication (DNS). RFC 1035, 1987.

J. Myers and M. Rose. Post Office Protocol — Version 3
(POP). RFC 1939, 1996.

J. Postel and J. Reynolds.
RFC 959, 1985.

T. N. Security. Nessus open source vulnerability scanner.
http://www.tenable.com/products/nessus, retrieved on 2011.
B. Seljimi and I. Parissis. Using CLP to automatically gen-
erate test sequences for synchronous programs with numeric
inputs and outputs. In Proc. of the Int. Symp. on Software
Reliability Engineering, pages 105-116, 2006.

A. Sharma, J. Martin, N. Anand, M. Cukier, and W. Sanders.
Ferret: a host vulnerability checking tool. In Proc. of thelEEE
Pacific Rim Int. Symp. on Dependable Computing, pages
389-394, 2004.

V. Sieh, O. Tschiche, and F. Balbach. VERIFY: Evaluation of
reliability using VHDL-models with embedded fault descrip-
tions. In Proc. of the Int. Symp. on Fault-Tolerant Computing,
pages 32-36, 1997.

C. Sullo and D. Lodge. Nikto2. http://www.cirt.net/nikto2,
retrieved on 2011.

M. Sutton. FileFuzz. http://labs.idefense.com/software/-
fuzzing.php#more_filefuzz, retrieved on 2011.

M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional, 2007.
A. Takanen, J. DeMott, and C. Miller. Fuzzing for software
security testing and quality assurance. Artech House Pub-
lishers, 2008.

M. Tamizi, M. Weinstein, and M. Cukier. =~ Automated
checking for Windows host vulnerabilities. In Proc. of the
Int. Symp. on Software Reliability Engineering, pages 139—
148, 2005.

T. K. Tsai and R. K. Iyer. Measuring fault tolerance with
the FTAPE fault injection tool. In Int. Conf. on Modeling
Techniques and Tools for Computer Performance Evaluation,
volume 977 of LNCS, pages 26—40. 1995.

University of Oulu. PROTOS - secu-
rity testing of protocol implementations.
http://www.ee.oulu.fi/research/ouspg/protos/, 1999-2003.

X. Wang, H. Shi, T. Huang, and F. Lin. Integrated soft-
ware vulnerability and security functionality assessment. In
Proc. of the Int. Symp. on Software Reliability Engineering,
pages 103-108, 2007.

C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intru-
sions using system calls: Alternative data models. In IEEE
Security and Privacy, pages 133-145, 1999.

File Transfer Protocol (FTP).

