
Securing Energy Metering Software
with Automatic Source Code Correction

Ibéria Medeiros
University of Lisboa

Faculty of Sciences, LaSIGE
Portugal

ibemed@gmail.com

Nuno F. Neves
University of Lisboa

Faculty of Sciences, LaSIGE
Portugal

nuno@di.fc.ul.pt

Miguel Correia
University of Lisboa

IST, INESC-ID
Portugal

miguel.p.correia@ist.utl.pt

Abstract—Industry is using power meters to monitor the con-
sumption of energy and achieving cost savings. This monitoring
often involves energy metering software with a web interface.
However, web applications often have vulnerabilities that can
be exploited by cyber-attacks. We present an approach and a
tool to solve this problem by analyzing the application source
code and automatically inserting fixes to remove the discovered
vulnerabilities. We demonstrate the use of the tool with two
open source energy metering applications in which it found and
corrected 17 vulnerabilities. By looking in more detail into some
of these vulnerabilities, we argue that they are very serious,
leading to the following impacts: violation of user privacy, counter
the benefits of energy metering, and serve as entering points for
attacks on other user software.

I. INTRODUCTION

The economic cost and environmental impact of energy
production have been fostering the monitoring and analy-
sis of electricity consumption information. A first aspect of
this trend is the adoption of smart meters in substitution
of electromechanical and electronic electricity meters. Smart
meters have processing and communication abilities, which
enable novel functionalities such as the transmission of the
measurements to the electricity distribution system operator
(DSO), the notification of power outages, and the monitoring
of power quality. A second aspect of the trend is the adoption
of plug-in (or plug-load) meters in home environments. These
devices support the measurement of the energy consumed by
the appliance(s) connected to an outlet, allowing a detailed
assessment of the energy consumed. The third aspect is that
industry is also using similar but more sophisticated and, in
some cases, higher voltage power meters for similar purposes.
The motivation is clear from an UK study that has shown that
the use of these meters can lead to considerable energy savings
for the organizations and carbon savings for the country [7].

Many of the meters provide energy consumption informa-
tion that can be stored and processed in computing systems.
This fact has been leading to the development of software
to handle this information with several designations, such as
energy metering software and energy management software.
This software can be used for instance to store and access
real-time and/or historical consumption data, plot this data in
graphical format, analyze consumption trends, identify peak
demand, and raise alarms about anomalous conditions (e.g.,
using email or SMS text messages). Many examples of such
software exist, both commercial and open source. It is also

being made available as software as a service (SaaS) in cloud
computing environments. Examples include the high-profile
but now discontinued Google PowerMeter and Microsoft
Hohm services, or commercial products from companies like
AlertMe and SilverSpring.

Many of these applications have web interfaces, i.e., use
the browser as the interface to access the data. This simplifies
the development of the software as designing graphical user-
interfaces with web technologies is straightforward. However,
this path also renders these applications vulnerable to com-
mon web application vulnerabilities: SQL injection, cross site
scripting, command injection, file injection, etc. [26], [27].
These vulnerabilities allow malicious hackers and various
kinds of cyber-criminals to modify the behavior of the appli-
cation or tamper with its data. In the case of energy metering
software, these attacks can have serious impacts:

• violation of user privacy – they can be used to access
energy consumption data without authorization, which
is a violation of privacy; there are even recent forms
of activism against the adoption of smart meters in
part due to concerns about privacy (e.g., stopsmart-
meters.org);

• countering the benefits of metering – these attacks can
modify the energy consumption information, counter-
ing the benefits of the uses of these applications; for
instance, falsified data can prevent the reduction of
consumption or even have the opposite result;

• attack other user software – these attacks can use the
vulnerable software as a platform to attack users, for
instance, by accessing private data in their computers
or compromising their browsers.

Most of these vulnerabilities correspond to bugs in the
application source code, so they can be avoided simply by
writing secure software. However, programmers often do not
have adequate knowledge about secure programming practices
[11], [8], or simply make human errors.

In this paper we present an approach and a tool to solve
this problem and their use with energy metering software. The
proposed approach has mainly three aspects: (1) analyzing
the application source code searching for vulnerabilities, (2)
inserting fixes in the source code that correct these flaws, and
(3) producing a report that assists the programmer in learning
how to avoid inserting similar vulnerabilities. This approach is

implemented in the WAP (Web Application Protection) tool,
which automates these steps. The current version of WAP runs
with PHP code, which is a language designed specifically for
web applications and currently the one that is used by the
majority of such applications [14]1. WAP analyzes the source
code of a PHP application and outputs a corrected version and
a report.

The paper shows the use of WAP with two open source en-
ergy metering applications: emoncms and measureit. emoncms
is being developed in the context of the OpenEnergyMonitor
project2. It is an open framework for processing, logging and
visualizing energy, temperature and other environmental data.
measureit3 is a simpler application that allows storing and
accessing voltage and temperature data. WAP discovered and
corrected 17 confirmed vulnerabilities in these two applica-
tions, 3 SQL injection and 14 cross site scripting.

II. ENERGY METERING SOFTWARE

An energy metering system can have different degrees
of size and complexity. In the paper, we will consider a
simple scenario, where meters input data into energy metering
software. Although the evaluation section focus only on two
open source energy metering applications, we analyzed others.
From this analysis we concluded that most of them follow a
three-tier architecture. The user interface is a browser in the
user’s computer and the application itself has modules that can
be assigned to three tiers (in some cases, the first two tiers are
difficult to separate):

• presentation tier – modules concerned with the direct
interaction with the user and display of information;

• logic tier – modules that implement the core of the
application;

• data tier – concerned with the storage of data; applica-
tions use for instance a MySQL database management
system (DBMS) to save data.

The two applications that were tested were emoncms, which
is part of the OpenEnergyMonitor project, and measureit. The
OpenEnergyMonitor is an open source project that develops
hardware and software for energy monitoring. emoncms is not
a static software package, but a configurable framework with
many modules that can be combined in different ways. Its main
objective is the processing and visualization of energy data.

emoncms includes five core modules: input, feed, visual-
izations, dashboard, and user. The input module pre-processes
meter input before it is inserted in the database, e.g., for cre-
ating histogram data. The feed module provides functionality
for inserting, storing and retrieving time stamped data in the
database. The visualizations module can analyze large data
sets and generate graphics in different formats. The dashboard
module includes the dashboard builder and viewer. The former
is a visual editor that allows creating dashboards out of several
widgets and visualizations. The user module handles user
actions and data, including authentication and sessions.

1Supporting more than one language requires a great effort and is beyond
the purpose of a proof-of-concept prototype as WAP.

2http://openenergymonitor.org/
3https://code.google.com/p/measureit/

emoncms provides other modules that are optional. For
instance, there are Raspberry PI and Arduino modules to
interface the application with these boards. Another example
is the SAP calculator module that fills and helps the user to
understand the worksheet of the UK’s Standard Assessment
Procedure for Energy Rating of Dwellings [5]. Most emoncms
modules are implemented in PHP, but a few are in JavaScript
and Python.

measureit is a much simpler software package, mostly
focused on storing and visualizing voltage and temperature
data obtained with Current Cost meters4. measureit can for
instance, display last hour / last day / last 7 days / last 30 days
energy consumptions and the associated costs. It can display
graphics with the evolution of the measurements of a meter,
the daily / weekly / monthly usage of energy, and several other
forms of statistic data. The applications is mostly written in
JavaScript, Python and PHP.

III. THE WAP APPROACH AND TOOL

This section presents our approach to automatically detect
and correct vulnerabilities in web applications. We present the
approach in terms of the WAP tool. More details can be found
on a technical report [19].

A. Input validation vulnerabilities

The highest risk vulnerabilities to which web applications
are exposed are input validation vulnerabilities [27]. These
flaws are avoidable by doing proper validation or sanitization
of user input. Consider for instance SQL injection, usually
considered the main web application vulnerability for several
years. The flaw consists in inserting user input in an SQL
query without adequate validation/sanitization. For instance,
the following line in PHP is vulnerable to SQL injection:

echo mysql_query("SELECT * FROM users
WHERE username=’$_POST[’user’]’ AND
password=’$_POST[’password’]’");

The problem with the line is that the two parameters,
username and password, are embedded in the query with the
expectation of real usernames and passwords being received.
If that is the case, information about an user that provides his
password is echoed. However, if a malicious user inserts as
username administrator’ -- and an empty password,
the information of the user administrator is printed because
the query becomes5:

SELECT * FROM users WHERE
username=’administrator’ -- AND password=’’

B. WAP tool

The WAP tool runs essentially three steps: (1) static
analysis of the source code searching for input validation
vulnerabilities; (2) correction of the source code by inserting
fixes, i.e., instructions that validate the input; (3) report the
vulnerabilities detected and how they were corrected. Figure
1 shows its main components.

4http://www.currentcost.com/
5Recall that -- indicates that the rest of the line is a comment, which

should not be interpreted by the DBMS.

PHP
source code

PHP
source code

Protected
source code
Protected

source code

Code AnalyzerCode Analyzer

Code CorrectorCode Corrector

vulnerable code

tainted symbol table

tainted exec. path tree

taint analysis

tree walkers entry points

untainted data

tainted symbol table tainted exec. path tree

sensitive sinks

PHP sanitization functions

lexer ASTparser

tree generator

PHP & WAP
sanitization functions

Fig. 1. Architecture of WAP with its main modules and data
structures.

The first step, static analysis, starts with a phase similar
to what is done by the front end of a compiler. It first parses
the source code and generates an abstract syntax tree (AST)
that represents that code. Then it does taint analysis: starting
from an entry point (e.g., $_POST), it follows the code by
walking through the AST to see if that input reaches a sensitive
sink (e.g., mysql_query) without proper validation. If such
a case is found, it is a vulnerability. In the trivial example
above both the entry points and the sensitive sink are in the
same line of code, but that is not usually the case as input can
follow complex paths through the code.

The idea of taint analysis is to consider that inputs
are tainted (not trusted, compromised) and to propagate
this taintedness to variables that take this input. For
instance, line $u=$_POST[’user’] propagates the
taintedness of the input on the right hand side to the variable
$u on the left. Sanitization functions, on the contrary,
remove taintedness. For instance, if variable $u was used
in a query to a MySQL database and the assignment was
$u=mysql_real_escape_string($_POST[’user’]),
the variable $u would be untainted because the PHP function
mysql_real_escape_string sanitizes or escapes a
string (i.e., it substitutes dangerous characters like ’ by
escaped versions, e.g., \’).

The second step, code correction, involves identifying the
fix to insert for each vulnerability found, to identify the place
in the source code where the fix needs to be inserted, and
to modify the file where that place is. For instance, for the
SQL injection vulnerability mentioned above the fix consists
in inserting calls to mysql_real_escape_string.

The third step is simply to write a report describing the
vulnerability and the inserted fix.

The tool has mainly two components: the code analyzer
and the code corrector. The former includes a lexer and a
parser created using ANTLR (ANother Tool for Language
Recognition) [21] and written in Java. The other component of
the code analyzer is the taint analyzer that is composed mainly
of tree walkers, i.e., of code that walks through the ASTs to
identify vulnerabilities.

The current version of the WAP tool addresses the 8 classes
of vulnerabilities most common in PHP: SQL injection (SQLI),
cross site scripting (XSS), remote file inclusion, local file
inclusion, path traversal, source code disclosure, OS command
injection and direct dynamic code evaluation (eval injection).
The tool is configured with a list of around 10 entry points (like
$_POST), more than 40 sensitive sinks (like mysql_query)
and one or more sanitization functions per class of vulnerabil-
ity (like mysql_real_escape_string).

C. Challenges

WAP does static analysis of source code, which is known to
be an undecidable problem for non-trivial languages [16]. To
circumvent this result, WAP and, to the best of our knowledge,
all other static analysis tools do only partial analysis of some
language constructs, so they are not sound [2], [6]. In WAP’s
code analyzer this issue appears in conditional statements like
if-then-else, in which in some cases it is not possible to know
which branch will be executed. The impact of this is that if,
for instance, a variable is marked tainted in a branch but not in
the other, WAP is pessimistic and marks it tainted. A similar
issue happens with loops, which may be executed zero, one or
more times.

WAP can raise false positives – detect nonexistent vulner-
abilities – for a number of reasons. An example are functions
written by the programmer that validate or sanitize input by
manipulating this input (typically a string). Since it is difficult
to understand if such function does the check correctly, WAP
does not untaint the variable(s) affected, leading to false pos-
itives. This kind of false alarm can be burdensome with static
analysis tools that produce lists of potential vulnerabilities to
be validated by humans. This is not the case in WAP as the tool
corrects the vulnerabilities automatically. If WAP adds a fix to
an nonexistent vulnerability, this does not modify the behavior
of the application, at least based in our current experience.

To reduce the number of false positives, the tool performs
advanced forms of analysis. It does global, interprocedural
and context-sensitive analysis, which means that data-flows
are followed even when they enter new functions and other
modules/files. This involves handling several data structures,
global variables, and resolving module names (which can con-
tain paths taken from web application environment variables).

IV. VULNERABILITIES DISCOVERED

We used the WAP tool to analyze emoncms and measureit.
The tool focus the analysis on the PHP files of those applica-
tions, as most of the interaction with the users is performed in
this code. Therefore, they contain most of the attack surface of
the applications, and this form of analysis should find highly
relevant vulnerabilities from a security standpoint.

Table I displays the modules that were analyzed and
summarizes the results. The table presents the number of PHP
files analyzed, the lines of code (LOCs) per application and
per file with vulnerabilities, the number of SQL injection and
cross site scripting vulnerabilities found (no vulnerabilities of
the other classes were discovered). The vulnerabilities that
we managed to attack are in bold; the others 3 may be false
positives (see Section IV-D). In the following sections we will
discuss three representative vulnerabilities.

webapp / vuln. files files app. LOCs file LOCs SQLI XSS
emoncms - modules 7 1,089
- igraph3.php 63 3+3
emoncms - extras 7 291
- embed.php 48 1
- kwhdstacked.php 47 1
- kwhdzoomer.php (old) 44 1
- kwhdzoomer.php 72 3
emoncms - examples 62 5,496
- user.php 177 2 1
measureit v.1.14 2 967
- measureit functions.php 915 1 4
total 78 7,843 1,366 3 17
TABLE I. SUMMARY OF THE ANALYSIS OF EMONCMS/MEASUREIT.

A. emoncms: reflected cross site scripting

WAP found several cross site scripting (XSS) vulnera-
bilities in emoncms, four of which we managed to attack.
Figure 2 shows an excerpt of the output of the tool for
file kwhdzoomer.php of the visualizations module. The
figure shows the two vulnerabilities and the respective fixes.
Interestingly the two involve lines quite far apart in the source
file, which make them hard to find manually: the first in lines
18 and 69; the second in lines 17 and 70.

A reflected XSS vulnerability is a piece of code that
essentially sends input back to the user without sanitization.
For instance, in the first vulnerability in the figure the input
parameter kwhd is written in a page sent back to the user.
This type of vulnerability is usually considered very serious,
and appears in the second place in the OWASP top 10 rank of
web vulnerabilities [27]. An attacker can exploit it to make the
user send a malicious script – usually written in JavaScript –
to the web server that is reflected and executed in the browser.
The solution for this vulnerability is to encode the input in
such a way that the script is interpreted in the browser as text
to be displayed, not as code to be executed. This is done by
a function that is specific of the WAP tool, san_out, which
calls functions of the OWASP PHP Anti-XSS Library6.

An attacker can exploit a vulnerability like these two to
achieve any of the three impacts mentioned in the introduction.
The execution of the malicious script can violate user privacy
by accessing user data in the emoncms server and sending it to
some server controlled by the attacker. The script can counter
the benefits of metering by sending a request to the server
causing the modification of the data stored there. Finally, the
script can attack the software user directly for instance by
stealing his cookies and sending them to some server, or by
running an exploit against the browser or some add-on (e.g.,
to the Java runtime in which many vulnerabilities have been
discovered in recent months). This user can be, for instance,

6http://code.google.com/p/php-antixss/

an engineer or an administrator of a company, so this can be
used as platform for another more pernicious attack.

= = = = Vulnerability n.: 1 = = = =
Vulnerable code:
18: $kwhd = $_GET[’kwhd’];
69: echo $kwhd;

Corrected code:
18: $kwhd = san_out($_GET[’kwhd’]);
69: echo $kwhd;

= = = = Vulnerability n.: 2 = = = =
Vulnerable code:
17: $power = $_GET[’power’];
70: echo $power;

Corrected code:
17: $power = san_out($_GET[’power’]);
70: echo $power;

Fig. 2. Output of the WAP tool showing two reflected XSS vulner-
abilities found in emoncms’ file kwhdzoomer.php.

B. emoncms: SQL injection

emoncms provides a set of example files for user authenti-
cation. These files are not part of the core system, but can be
set as the entry page as they are or after being modified. WAP
found the same two SQL injection vulnerabilities in several of
these files, for instance in user.php. The output of the tool
for one of these vulnerabilities can be seen in Figure 3. SQL
injection was already explained in Section III-A. In this case,
the code inserts supposedly an username provided by the user
into the WHERE clause of an SQL query, but this username
is not validated.

Vulnerable code:
140: $username = $_POST[’username’];
144: $result = db_query("SELECT id,password,
salt FROM users WHERE username = ’$username’");
16: return $result = mysql_query($query); (/home/
iberiam/Desktop/Grib/emoncms_1/emoncms_examples
-master/feed01/includes/db.php)

Corrected code:
140: $username = mysql_real_escape_string($_POST
[’username’]);
144: $result = db_query("SELECT id,password, salt
FROM users WHERE username = ’$username’");
16: return $result = mysql_query($query); (/home/
iberiam/Desktop/Grib/emoncms_1/emoncms_examples
-master/feed01/includes/db.php)

Fig. 3. Output of the WAP tool showing one of the two SQLI
vulnerabilities found in emoncms’ file user.php.

Interestingly the structure of the query in line 144 does not
allow the most common SQLI attacks: (1) circumventing the
process of logging in (as in the example of Section III-A); (2)
changing a SELECT query to extract more/other information
than what was desired by the programmer (because the appli-
cation does not print the output of the SELECT). However, it
does allow attacks. For example, in the attacker can insert as
username:

’ OR 1=1 INTO OUTFILE ’/var/www/html/vulnsite/
login-info.html’ --

The resulting query is:

SELECT id,password, salt FROM users
WHERE username = ’’ OR 1=1 INTO OUTFILE
’/var/www/html/vulnsite/login-info.html’ --

The substring OR 1=1 creates a tautology, so the query
writes all user identifiers, salts and hashed passwords in
file login-info.html. The attack requires that the at-
tacker knows the document root directory of the web site
(/var/www/html/vulnsite/) but this is normally easy
to find by trial and error or by using a spider tool. It also
requires that this directory can be written by the application,
which is often the case.

The second step is the attacker accessing the login-
info.html file (e.g., by opening in the browser the URL
http://www.vulnsite.com/login-info.html)
and doing a brute force attack or a dictionary attack to find
user passwords in a few seconds or minutes. From there the
attacker can impersonate a valid user and do anything that he
can do. The attacker can violate user privacy by accessing
user data in the emoncms server or counter the benefits of
metering by modifying this data.

C. measureit: stored cross site scripting

measureit has also several XSS vulnerabilities, one of them
a stored XSS (file measureit_functions.php). This
variant of XSS involves two steps: first the attacker inserts the
malicious script in the application’s database; second, the script
is sent to one or more users. In the measureit’s stored XSS
vulnerability, the first step of the attack consists in inserting
a malicious script in the parameter sensor_name, which
should take the name of a sensor. Then this parameter is
inserted in the database by the following line:

$db->query("INSERT INTO measure_sensors
(sensor_id, sensor_title) VALUES (
’$params[sensor_id]’, ’$params[sensor_name]’
)");

The second step happens whenever an user accesses this
field of the database. Consider the case in which the attacker
inserted the following input in sensor_name:

<script>alert(\’Sensor 1 - XSS\’)</script>

In the panel of the application, whenever an user clicks on
Sensor 1, the script is executed. In this example the script is
not really malicious: it simply shows a window with “XSS”
written. Figure 4 shows the effect of this action.

The impact of this vulnerability is similar to the reflected
XSS in emoncms: possible violation of user privacy, countering
the benefits of metering, and attacking the software user.
However, the risk is higher because any user that accesses
the application can be affected.

D. False positives

In Section III-C we discussed the challenges of doing static
analysis of source code and explained that the problem is
undecidable. After running WAP we tried to attack all the

Fig. 4. Execution of the example script inserted exploiting the stored
XSS vulnerability in measureit.

vulnerabilities found. We were successful with the vulnera-
bilities in bold in Table I, but not with the 3 in normal font
(all in emoncms). This can mean one of two things: these
were false positives as they are not vulnerabilities; or they
are vulnerabilities but for some reason we were not successful
exploiting them.

The 3 possible false positives happened in file
igraph3.php. The issue is that the input comes through
the $_SERVER entry point and is concatenated with other
data and manipulated in such a way that the script no longer
runs in the browser, even if there is no explicit sanitization.

V. RELATED WORK

We use the output of static analysis to remove vulner-
abilities automatically. We are aware of a few works that
search for the specific case of SQL injection vulnerabilities,
but usually without attempting to insert fixes in a way that
can be replicated by a programmer. For instance, AMNESIA,
does static analysis to discover SQL queries, not necessarily
vulnerable, and in runtime checks if the call being made
satisfies the format defined by the programmer [9]. Buehrer
et al. do something similar by comparing in runtime the parse
tree of the SQL statement before and after the inclusion of
user input [4]. WebSSARI is much simpler than WAP (e.g.,
does not do interprocedural and context-sensitive analysis) but
inserts some kind of fixes, although no information is given
about what those fixes are [13].

There are several other techniques to find vulnerabilities
other than static analysis. Testing finds bugs or vulnerabilities
by executing the code [12]. Web vulnerability scanners use
signatures of vulnerabilities to detect if they exist in a web site,
many discrepancies between the results of different scanners
have been identified [25]. Fuzzing and fault/attack injection
search for vulnerabilities by injecting well-chosen inputs and
trying-out a wide range of possible inputs [3], [1]. Neither of
these techniques correct the code.

Dynamic taint analysis tools do taint analysis in runtime.
PHP Aspis does dynamic taint analysis of PHP applications
with the objective of blocking XSS and SQLI attacks [20].
ARDILLA observes the execution of a PHP web application
then generates inputs trying to exploit XSS or SQLI vulnera-
bilities [15].

There are also tools and mechanisms that protect appli-
cations in runtime without searching for vulnerabilities. For
instance, CSSE protects PHP applications from SQLI, XSS and
command injection by modifying the platform to distinguish
between what is part of the program and what is user input,

defining checks to be performed to the user input [22].WASP
does something similar to block SQLI attacks [10].

We were unable to identify other work on the analysis of
security vulnerabilities of energy metering software. There is
however a considerable literature on the privacy of the use
of smart meters. A recent study has shown that smart meters
that use wireless communication can let anyone monitor the
energy usage of hundreds of homes with a modest technical
effort [24]. The authors propose defenses at communication
level involving jamming. Lisovich et al. go further and show
that it is possible to extrapolate activity information from
power-consumption data [17]. Other authors proposed a pro-
tocol based on zero-knowledge proofs to allow the DSO to
bill consumers about their energy consumption without the
consumers disclosing consumption data [23]. McLaughlin et
al. present electrical mechanisms to reach the same goal [18].

VI. CONCLUSION

The paper presents an approach and a tool called WAP to
automatically identify and correct vulnerabilities in web appli-
cations. We used the tool to analyze two open source energy
metering applications, emoncms and measureit. WAP identified
and corrected 17 vulnerabilities in these two applications, 3
SQL injection and 14 cross site scripting vulnerabilities. It also
identified other 3 XSS vulnerabilities in emoncms that may be
false positives since we did not manage to attack them. We
discuss three of the vulnerabilities found: a reflected XSS in
emoncms, a SQL injection in emoncms, and a stored XSS in
measureit. We provide an argument that these vulnerabilities
can allow a malicious hacker or a cyber-criminal to achieve
three impacts: violation of user privacy, countering the benefits
of energy metering, and attacking other software of the user.

ACKNOWLEDGMENT

This work was partially supported by the EC through
project FP7-257475 (MASSIF) and the FCT through project
RC-Clouds (PTDC/EIA-EIA/115211/2009), the Multiannual
Program (LASIGE), and contract PEst-OE/EEI/LA0021/2013
(INESC-ID).

REFERENCES

[1] J. Antunes, N. F. Neves, M. Correia, P. Verissimo, and R. Neves.
Vulnerability removal with attack injection. IEEE Transactions on
Software Engineering, 36(3):357–370, Mar. 2010.

[2] D. Babic and A. J. Hu. Calysto: scalable and precise extended static
checking. In Proceedings of the 30th International Conference on
Software Engineering, pages 211–220, May 2008.

[3] R. Banabic and G. Candea. Fast black-box testing of system recovery
code. In Proceedings of the 7th ACM European Conference on
Computer Systems.

[4] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using parse tree
validation to prevent SQL injection attacks. In Proceedings of the
5th International Workshop on Software Engineering and Middleware,
pages 106–113, Sept. 2005.

[5] Building Research Establishment. The government’s standard
assessment procedure for energy rating of dwellings. http://www.
bre.co.uk/filelibrary/SAP/2012/Draft SAP 2012 December 2011.pdf,
Dec. 2011. Draft 2012 edition.

[6] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic
programming errors. Software Practice and Experience, 30:775–802,
2000.

[7] CarbonTrust. Advanced metering for SMEs: Carbon and cost savings,
May 2007.

[8] M. A. Davidson. The Supply Chain Problem, Apr. 2008. http://blogs.
oracle.com/maryanndavidson/2008/04/the supply chain problem.html.

[9] W. Halfond and A. Orso. AMNESIA: analysis and monitoring for neu-
tralizing SQL-injection attacks. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, pages
174–183, Nov. 2005.

[10] W. Halfond, A. Orso, and P. Manolios. WASP: protecting web
applications using positive tainting and syntax-aware evaluation. IEEE
Transactions on Software Engineering, 34(1):65–81, 2008.

[11] M. Howard and D. LeBlanc. Writing Secure Code. 2nd edition.
Microsoft Press, 2003.

[12] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web application security
assessment by fault injection and behavior monitoring. In Proceedings
of the 12th International Conference on World Wide Web, pages 148–
159, 2003.

[13] Y. W. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. Securing
web application code by static analysis and runtime protection. In
Proceedings of the 13th International World Wide Web Conference,
pages 40–52, May 2004.

[14] Imperva. Hacker intelligence initiative. Technical Report 8, Imperva,
Apr. 2012.

[15] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic cre-
ation of SQL injection and cross-site scripting attacks. In Proceedings
of the 31st International Conference on Software Engineering, pages
199–209, May 2009.

[16] W. Landi. Undecidability of static analysis. ACM Letters on Program-
ming Languages and Systems, 1(4):323–337, 1992.

[17] M. A. Lisovich, D. K. Mulligan, and S. B. Wicker. Inferring personal
information from demand-response systems. IEEE Security and Pri-
vacy, 8(1):11–20, Jan. 2010.

[18] S. McLaughlin, P. McDaniel, and W. Aiello. Protecting consumer
privacy from electric load monitoring. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, pages 87–98,
2011.

[19] I. Medeiros, N. Neves, and M. Correia. WAP: Automatic detection and
correction of web application vulnerabilities. Technical report, INESC-
ID, 2013. http://homepages.gsd.inesc-id.pt/∼mpc/pubs/wap-tr.pdf.

[20] I. Papagiannis, M. Migliavacca, and P. Pietzuch. Php aspis: using partial
taint tracking to protect against injection attacks. In Proceedings of the
2nd USENIX Conference on Web application Development, 2011.

[21] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007.

[22] T. Pietraszek and C. V. Berghe. Defending against injection attacks
through context-sensitive string evaluation. In RAID’05 Proceedings
of the 8th International Conference on Recent Advances in Intrusion
Detection, pages 124–145, Sept. 2005.

[23] A. Rial and G. Danezis. Privacy-preserving smart metering. In
Proceedings of the 10th Annual ACM Workshop on Privacy in the
Electronic Society, pages 49–60, 2011.

[24] I. Rouf, H. Mustafa, M. Xu, W. Xu, R. Miller, and M. Gruteser.
Neighborhood watch: Security and privacy analysis of automatic meter
reading systems. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, pages 462–473, 2012.

[25] M. Vieira, N. Antunes, and H. Madeira. Using web security scanners
to detect vulnerabilities in web services. In Proceedings of the
39th IEEE/IFIP International Conference on Dependable Systems and
Networks, July 2009.

[26] Web Application Security Consortium. WASC Threat Classification.
Technical report, Jan. 2010. Version 2.00.

[27] J. Williams and D. Wichers. OWASP Top 10 - the ten most critical web
application security risks (2010). Technical report, OWASP Foundation,
2010.

