

 4

previous round are distributed among the other flows. This
algorithm has a worst case processing complexity of ! !!
whenever a flow is updated. PACE uses a weighted max-min
fairness algorithm based on a B-Tree that allows us to reduce
the processing complexity to!! !"# ! , the Max-Min B-Tree.
PACE has a storage complexity of ! ! .

The rationale of the Max-Min B-Tree data structure is
represented in Fig. 4. Given a set of flows !!! !!! ! ! !! , each
with demand and weight d!,w! , we maintain a list of flows
sorted according to the demand normalized by the flow’s
weight, d!,! = d! w!. We also maintain a cumulative sum of
the demand and weight D!,W! . To reduce complexity of
computing the allocation, we maintain a set of 𝐿 pointers
k!, k!,… , k! , which we call allocation level pointers. Each

allocation pointer k!, contains variables representing the total
allocation for the level, C!, a fair allocation per weight, a!!!
and the non-allocated credits or remainder, !!. Each allocation
level pointers represents one round of allocation. For instance,
the first pointer (!!) represents the initial allocation obtained
by dividing the maximum allocation by all the flows. In the
example of Fig. 4, the total allocation (!! ! !) is divided by
the total weight, providing an allocation of !!! per weight unit.
Thus !! points to !!, which is the last flow requiring less than
its allocation (!!!!! ! !!!"! ! !!!). The second pointer (!!)
distributes the remainder of the first level, !!, among the rest
of the flows. As shown in Fig. 4, the flows to the left of an
allocation level pointer are flows whose demand (!!) is
fulfilled by the allocation of the pointer. Consider !! to be the
flow just before allocation level pointer !!. Then the values of
!! are given by:

 !! ! !! ! !!!!! (1)

 !! ! !!!!! (2)

 !!!! ! !! !! ! !!!!!!! (3)

 !! ! !"# !! !!!! ! !! ! !!!! ! !! ! !!!! ! (4)

The last pointer has either no credits left (!! ! !) or no more
flows requiring allocations (!! ! !). The allocation values
used in the online processing are !! ! !!!! and ! ! !!.

The sorted list is represented as a B-Tree. B-Trees are
hierarchical structures that allow any operation (insert, delete,
search and/or update) in ! !"# ! time. Each node in the
B-Tree keeps track of the total demand and weight of its sub-
tree. These variables are updated when inserting or deleting
key without increasing processing complexity. The processing
complexity of updating the levels is ! ! ! !"# ! , where ! is
the number of levels and ! is the number of flows. Typically,
three to four levels are enough to allocate all the credits.

In our implementation, all demand and allocation values in the
B-Tree are normalized. Each flow has a given demand for a
specified period. The normalized value corresponds to the
demand divided by the total credits that the interface can
transmit within the period of the flow. This normalization

allows a node to vary the period of allocation without
changing the Max-Min B-Tree values (see Section III.E.3).
When the period of the forwarder is larger than the period of
the flow, the forwarder update the period of the flow (in the
allocation message) to match the local period.

Fig. 4. Rationale of the Max-Min B-Tree Data Structure.

2) Constrain Allocations (online)

In the online procedure, the following expressions are used to
compute the output values:

 !! ! !"# ! ! ! ! ! !!! !!!! ! (5)

 !!!! ! !"# ! ! ! ! ! !! ! !! !!!!!! ! (6)

where ! ! is the number of credits computed using the
period in the allocation message (!!!! ! !).

As shown in Eq. (5), the output demand only depends of the
fair allocation algorithm. However, the actual allocation for
the current period, !! depends on the forwarder having enough
free credits to allocate when the allocation message arrives.
The forwarder can allocate a total of credits equivalent to
! ! !! ! ! ! ! ! !. The forwarder keeps a counter, !!!!, of the
allocated credits. When the forwarder allocates new credits, it
decreases the allocated credits from the counter. When a data
message is received the counter is increased.

The allocation !! is obtained using Eq. (7), where !! ! is the
current usage of the output queue.

 !! ! !!"# ! ! !! ! ! ! ! !! ! ! !! (7)

In typical rate-based protocols like RCP [6], whenever an
allocation message arrives, the flow immediately receives its
fair allocation. As fair allocation changes with the arrival of
new flows, this may lead to periods of congestion. D3 [8]
avoids this issue by pausing every non-deadline flow for one
RTT. This solution leads to unnecessary latency and under-
allocation. PACE avoids this over-allocation by filtering the
credits based on queue usage and allocation not yet used.

Flows flow 1 flow 2 flow 3 flow 4 flow 5 flow 6

(d, w) (0.08, 1) (0.24, 3) (0.11, 1) (0.12, 2) (0.15, 2) (1.00, 1)

dw 0.08 0.08 0.11 0.06 0.15 1.00

Flows flow 4 flow 2 flow 1 flow 3 flow 5 flow 6

(d, w) (0.12, 2) (0.24, 3) (0.08, 1) (0.11, 1) (0.30, 2) (1.00, 1)

dw 0.06 0.08 0.08 0.11 0.15 1.00

Flows flow 4 flow 2 flow 1 flow 3 flow 5 flow 6

(D, W) (0.12, 2) (0.36, 5) (0.44, 6) (0.55, 7) (0.85, 9) (1.85, 10)

k0

C0 = 1.00
w0 = 10

aw,0 = 0.1
r0 = 0.16

k1

C1 = 0.16
w1 = 4

aw,1 = 0.14
r1 = 0.02

step 1: compute normalized demand

step 2: sort by normalized demand

step 3: compute cumulative demand and weight

D =0.36, W = 7

D = 1.85, W = 10

(0.08, f1)
w=1,

d=0.08

(0.06, f4)
w=2,

d=0.12

(0.08, f2)
w=3,

d=0.24

D = 1.41, W = 4

(0.11, f3)
w=1,

d=0.11

(0.30, f5)
w=2,

d=0.30

(1.00, f6)
w=1,

d=1.00

Allocation Level Pointers

Max-Min B-Tree Nodes

step 4: represent
as B-Tree

step 5: compute
allocation level
pointers

Max-Min B-Tree
k2

C2 = 0.03
w2 = 3

aw,2 = 0.15
r2 = 0

 5

3) Dynamic Periods

The period of allocation influences the performance of PACE.
If we use small periods, the flows’ rates adapt quickly when a
flow starts or ends. However, as the number of concurrent
flows increases, the allocation per flow gets smaller. At some
point, smaller allocations mean shorter packets increasing the
overhead per packet. In order to allow PACE to scale to a
large number of concurrent flows, we increase the period of
allocation.

PACE increases the period when the allocation for level
pointer k! is not enough to transmit two maximum sized
packets. The keys in the B-Tree are normalized with respect to
the total possible allocation. When the period is increased, the
demand of each flow would increase proportionally. Thus, the
only value that needs to be updated is the total allocation, C!.
Also, flows in a forwarding node can have different allocation
periods. For instance, a flow that is experiencing congestion in
some other node will have a higher period. Thus, the
allocation values in equations (5) and (6) are computed using
the period values contained in the received allocation message.

PACE maintains the allocation period as small as possible to
maintain fast convergence. When the number of concurrent
flows decreases and the base fair share increases, we decrease
the period. When reducing the period we only need to
decrease the total allocation, C!. Equation (6) guarantees that
no credits are allocated until old credits are used or expire. If
the first term is negative due to high queue usage or high
number of allocated credits, the filtered allocation will be zero.

IV. EXPERIMENTS
We implemented PACE using NS-3 [12]. We also implement
two recent proposals: DCTCP [5] and D3 [6]. D3 is designed
having deadline-aware flows in mind. Here we evaluate it as a
generic congestion control protocol without the deadline
aware mode. In this case, D3 is similar to an optimized RCP
[4]. We use the parking-lot topology to study how the
protocols behave under two different traffic patterns. To
emulate a DC deployment the simulation network has a very
small RTT (~150µs) and links operate at 1Gbps. An initial
period of 200µs was used in the PACE implementation.

(a)

(b)

Fig. 5. Scenarios: (a) Sequential flows. (b) Composite traffic pattern.

A. Scenario 1: Fairness and RTT
Consider the scenario in Fig. 5(a). We start 10 flows
sequentially, each one separated by an interval of 5ms. Flows
start from different senders, picking a sender from each of the
four groups in a round-robin fashion (i.e. a, b, c, d, a, b, ...).
We then end the flows sequentially in the inverse order using

the same 5ms interval between each termination. The
experiment is run for PACE, D3, DCTCP and TCP.

The rates for each flow are represented in Fig. 6(a-d). The
dashed line represents the total rate at the bottleneck link (F4-
F5). PACE obtains a fair distribution of bandwidth and
converges quickly to a steady state. D3 also distributes
resources fairly but it does not use the channel efficiently. This
is due to two reasons: the low granularity of resource
allocation (units of 1bytes/µs); and convergence to full
utilization is done by adjusting the total allocated capacity,
which takes several RTTs to converge. DCTCP converges
slowly to the fair state and, therefore, flows with lower RTT
are unable to converge to the fair allocation. Finally, TCP does
not converge to the fair state during the time frame of the
experiment. TCP’s additive increase and multiplicative
decrease lead to drastic variations in the bitrate. Also, TCP
adjusts at the cost of packet loss, which does not happen with
the remaining protocols.

(a) PACE flows rate.

(b) D3 flows rate.

(c) DCTCP flows rate.

(d) TCP flows rate.

(e) Fairness (different RTT).

(f) Fairness (equal RTT).

Fig. 6. Results for a sequence of flows sharing a common bottleneck. (a-d)
Throughput of each flow for different protocols. (e) Average fairness with

flows with the different RTT. (f) Average fairness for flows with same RTT.

We repeat the experiment but now all flows start from sender
of group a, i.e. all flows have the same RTT. We also repeat
the two experiments for longer periods between the start and
end of the flow (20ms and 50ms). We then compute the
average Jain’s Fairness Index [13] throughout the experiment.
Fig. 6 (e) and (f) show the average fairness index, for the
scenarios with different RTT and equal RTTs, respectively.
PACE maintains fairness for short flows and different RTTs.
D3 also distributes resources fairly independently of RTT, but
does not achieve the fair state as quickly (~5% drop in fairness
for shorter flows). The results obtained for DCTCP and TCP
demonstrate the sensitiveness of these protocols to the
differences in RTTs.

a
senders

d
senders

F1 F2 F3 F4 F5

r
receivers

b
senders

c
senders

F1 F2 F3 F4 F5

S1 S3 S2

R3 R2 R1

4 flows at t0

1 flow at t1

+ 6 flows at t3

6 flows at t2

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.10

Ra
te

 (G
bp

s)

Simulation Time (sec)

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.10

Ra
te

 (G
bp

s)

Simulation Time (sec)

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.10

Ra
te

 (G
bp

s)

Simulation Time (sec)

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.10

Ra
te

 (G
bp

s)

Simulation Time (sec)

 6

TABLE 1. FAIRNESS AND EFFICIENCY WITH A HIGH NUMBER OF CONCURRENT
FLOWS

Properties
64 Flows 250 Flows

PACE D3 DCTCP PACE DCTCP

Fairness (Jain) 99.2% 98.2% 98.9% 96.3% 39.9%
Efficiency 98.9% 93.1% 99% 98.9% 99.2%

Scalability: We run one more experiment using the same
scenario (Fig. 5(a)). We increase the number of concurrent
flows (all starting from one of the a senders, i.e. same RTT) to
64 and 250 flows. The fairness results are presented in Table
1. D3 has a theoretical limit of 125 flows for 1Gbps link due to
the granularity of allocation. Thus, it is not possible to run the
experiment for 250 flows using D3. All protocols deal
reasonably well with 64 simultaneous flows. D3, however, has
a 7% penalty in utilization. PACE maintains the fairness
guarantees even when we increase the number of flows to 250.
As a reactive protocol DCTCP uses timeouts once the delay
increases. This leads to packet retransmissions, drastic
window adjustments and consequent fairness degradation.

(a) PACE flows rate.

(b) DCTCP flows rate.

(c) D3 flows rate.

(d) Queue usage at F4 (interface to F5).

Fig. 7. Throughput and Queue usage for scenario 2.

B. Scenario 2: Composite Traffic Pattern
The second scenario is depicted in Fig. 5(b). There are 4
phases: at 𝑡! = 0, we start four flows from S1 to R1. At
𝑡! = 2𝑚𝑠, we start one flow from S2 to R2. At 𝑡! = 4𝑚𝑠, we
start 6 more flows from S3 to R3. Finally, at 𝑡! = 20𝑚𝑠, we
start 6 more flows from S2 to R2. In Fig. 7(a-c), we represent
one flow from each group: one flow S1-R1, the first flow S2-
R2, one flow from S3-R3 and one flow from the last group S2-
R2. Once the flows S3-R3 start, S1-R1 throughput is reduced
due to F3. The first flow S2-R2 takes advantage of the extra
free bandwidth. DCTCP reacts quickly to traffic changes.
However, throughput converges to an unfair distribution of
resources. The represented flow from S1-R1 is using more
than its fair share and, starting from t2, the flow S2-R2 starts
using almost 20% more than its fair share. D3, however,
presents more problematic results. In order for the first flow
S2-R2 to use the available capacity, D3 increases the allocation
above the physical link capacity. When the new S2-R2 flows
start, the total allocation largely surpasses the link capacity
leading to queue build up. In Fig. 7(d), we can see the effect
that D3 has on the queue of forwarder F4.

Controllability: To illustrate PACE’s controllability we run
scenario 2 with the following flows: one flow from S1-R1
with weight 2 at 𝑡! = 0; one flow from S2-R2 with weight 1 at
𝑡! = 1.5𝑚𝑠 ; and one flow from S3-R3 with weight 4 at
𝑡! = 3𝑚𝑠. All flows transmit 500KB. The results are shown in
Fig. 8. When flow S2-R2 starts at t1, it is competing with a
flow that has twice its weight. Thus, it gets half of S1-R1
bandwidth. When the flow S3-R3 starts at t2 it uses twice the
bandwith of S1-R1. This in turn frees space for the flow S2-
R2, which increases its throughput. As soon as flow S1-R1
finishes, both flows have the path freed and increase their
throughtput to 100%.

Fig. 8. Example of PACE’s Controllability

V. CONCLUSION
In this paper we present PACE, a preventive explicit allocation
congestion control protocol for Data Center networks. In
multi-tenant Data Centers, as the number of applications rises,
fast convergence to a fair distribution of resources becomes
increasingly important. PACE allows nodes in the network to
determine credit allocation and the period of allocation. These
two variables allow PACE to adapt quickly to transient traffic
patterns. The experiments demonstrate that PACE converges
quickly to nearly perfect fairness with short flows, large
number of concurrent flows, sudden traffic changes and flows
with different weights.

REFERENCES.
[1] “Windows Azure”, http://www.windowsazure.com/en-us/.
[2] “Amazon EC2”, http://aws.amazon.com/ec2/.
[3] “Google Cloud Platform”, http://cloud.google.com/.
[4] N. Dukkipati, “Rate Control Protocol (RCP): Congestion Control to

Make Flows Complete Quickly,”, PhD Thesis, 2007.
[5] M. Alizadeh, A. Greenberg, D. A. Maltz, and J. Padhye, “Data Center

TCP (DCTCP),” in SIGCOMM ’10, 2010.
[6] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better Never

than Late: Meeting Deadlines in Datacenter Networks,” in SIGCOMM
’11, 2011.

[7] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing Flows Quickly
with Preemptive Scheduling,” in SIGCOMM ’12, 2012.

[8] K. Ramakrishnan, S. Floyd, and D. Black, “RFC3168: The Addition of
Explicit Congestion Notification (ECN) to IP,” 2001.

[9] H. T. Kung and K. Chang, “Receiver-Oriented Adaptive Buffer
Allocation in Credit-Based Flow Control for ATM Networks,” in IEEE
INFOCOM 1995.

[10] S. Keshav, An Engineering Approach to Computer Networking.
Addison-Wesley, 1997.

[11] D. Betsekas and R. Gallager, Data Networks. Prentice-Hall, 1992.
[12] Network Simulator 3: http://www.nsam.org.
[13] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of

fairness and discrimination for resource allocation and shared computer
system,” Technical Report DEC-TR-301, Digital Equipment
Corporation, 1984.

0

0.2

0.4

0.6

0.8

1

0 0.005 0.010 0.015 0.020 0.025 0.030

Ra
te

 (G
bp

s)

Simulation Time (sec)

S1-R1 S2-R2 (1st)
S3-R3 S2-R2 (last)

0

0.2

0.4

0.6

0.8

1

0 0.005 0.010 0.015 0.020 0.025 0.030

Ra
te

 (G
bp

s)

Simulation Time (sec)

S1-R1 S2-R2 (1st)
S3-R3 S2-R2 (last)

0

0.2

0.4

0.6

0.8

1

0 0.005 0.010 0.015 0.020 0.025 0.030

Ra
te

 (G
bp

s)

Simulation Time (sec)

S1-R1 S2-R2 (1st)
S3-R3 S2-R2 (last)

0
10,000
20,000
30,000
40,000
50,000
60,000

0 0.005 0.010 0.015 0.020 0.025 0.030

Av
g.

 Q
ue

ue
 S

ize
 (B

yt
es

)

Simulation Time (sec)

PACE
DCTCP
D3

0
0.2
0.4
0.6
0.8

1

0 0.002 0.004 0.006 0.008 0.010 0.012

Ra
te

 (G
bp

s)

Simulation Time (sec)

S1-R1, w=2 S2-R2, w=1 S3-R3, w=4

