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previous round are distributed among the other flows. This 
algorithm has a worst case processing complexity of ! !!  
whenever a flow is updated. PACE uses a weighted max-min 
fairness algorithm based on a B-Tree that allows us to reduce 
the processing complexity to!! !"# ! , the Max-Min B-Tree. 
PACE has a storage complexity of ! ! . 

The rationale of the Max-Min B-Tree data structure is 
represented in Fig. 4. Given a set of flows !!! !!! ! ! !!  , each 
with demand and weight d!,w! , we maintain a list of flows 
sorted according to the demand normalized by the flow’s 
weight, d!,! = d! w!. We also maintain a cumulative sum of 
the demand and weight D!,W! . To reduce complexity of 
computing the allocation, we maintain a set of 𝐿  pointers 
k!, k!,… , k! , which we call allocation level pointers. Each 

allocation pointer k!, contains variables representing the total 
allocation for the level, C!, a fair allocation per weight, a!!! 
and the non-allocated credits or remainder, !!. Each allocation 
level pointers represents one round of allocation. For instance, 
the first pointer (!!) represents the initial allocation obtained 
by dividing the maximum allocation by all the flows. In the 
example of Fig. 4, the total allocation (!! ! !) is divided by 
the total weight, providing an allocation of !!! per weight unit. 
Thus !! points to !!, which is the last flow requiring less than 
its allocation (!!!!! ! !!!"! ! !!!). The second pointer (!!) 
distributes the remainder of the first level, !!, among the rest 
of the flows. As shown in Fig. 4, the flows to the left of an 
allocation level pointer are flows whose demand (!! ) is 
fulfilled by the allocation of the pointer. Consider !! to be the 
flow just before allocation level pointer !!. Then the values of  
!! are given by: 

 !! ! !! ! !!!!! (1)  

 !! ! !!!!! (2)  

 !!!! ! !! !! ! !!!!!!! (3)  

 !! ! !"# !! !!!! ! !! ! !!!! ! !! ! !!!! ! (4)  

The last pointer has either no credits left (!! ! !) or no more 
flows requiring allocations (!! ! !). The allocation values 
used in the online processing are !! ! !!!! and ! ! !!. 

The sorted list is represented as a B-Tree. B-Trees are 
hierarchical structures that allow any operation (insert, delete, 
search and/or update) in ! !"# !  time. Each node in the 
B-Tree keeps track of the total demand and weight of its sub-
tree. These variables are updated when inserting or deleting 
key without increasing processing complexity. The processing 
complexity of updating the levels is ! ! ! !"# ! , where ! is 
the number of levels and ! is the number of flows. Typically, 
three to four levels are enough to allocate all the credits.  

In our implementation, all demand and allocation values in the 
B-Tree are normalized. Each flow has a given demand for a 
specified period. The normalized value corresponds to the 
demand divided by the total credits that the interface can 
transmit within the period of the flow. This normalization 

allows a node to vary the period of allocation without 
changing the Max-Min B-Tree values (see Section III.E.3). 
When the period of the forwarder is larger than the period of 
the flow, the forwarder update the period of the flow (in the 
allocation message) to match the local period. 

 
Fig. 4. Rationale of the Max-Min B-Tree Data Structure. 

2) Constrain Allocations (online) 

In the online procedure, the following expressions are used to 
compute the output values: 

 !! ! !"# ! ! ! ! ! !!! !!!! ! (5)  

 !!!! ! !"# ! ! ! ! ! !! ! !! !!!!!! ! (6)  

where ! !  is the number of credits computed using the 
period in the allocation message (!!!! ! !).  

As shown in Eq. (5), the output demand only depends of the 
fair allocation algorithm. However, the actual allocation for 
the current period, !! depends on the forwarder having enough 
free credits to allocate when the allocation message arrives. 
The forwarder can allocate a total of credits equivalent to 
! ! !! ! ! ! ! ! !. The forwarder keeps a counter, !!!!, of the 
allocated credits. When the forwarder allocates new credits, it 
decreases the allocated credits from the counter. When a data 
message is received the counter is increased. 

The allocation !! is obtained using Eq. (7), where !! !  is the 
current usage of the output queue. 

 !! ! !!"# ! ! !! ! ! ! ! !! ! ! !!  (7)  

In typical rate-based protocols like RCP [6], whenever an 
allocation message arrives, the flow immediately receives its 
fair allocation. As fair allocation changes with the arrival of 
new flows, this may lead to periods of congestion. D3 [8] 
avoids this issue by pausing every non-deadline flow for one 
RTT. This solution leads to unnecessary latency and under-
allocation. PACE avoids this over-allocation by filtering the 
credits based on queue usage and allocation not yet used. 

Flows flow 1 flow 2 flow 3 flow 4 flow 5 flow 6

(d, w) (0.08, 1) (0.24, 3) (0.11, 1) (0.12, 2) (0.15, 2) (1.00, 1)

dw 0.08 0.08 0.11 0.06 0.15 1.00

Flows flow 4 flow 2 flow 1 flow 3 flow 5 flow 6

(d, w) (0.12, 2) (0.24, 3) (0.08, 1) (0.11, 1) (0.30, 2) (1.00, 1)

dw 0.06 0.08 0.08 0.11 0.15 1.00

Flows flow 4 flow 2 flow 1 flow 3 flow 5 flow 6

(D, W) (0.12, 2) (0.36, 5) (0.44, 6) (0.55, 7) (0.85, 9) (1.85, 10)

k0

C0 = 1.00
w0 = 10 

aw,0 = 0.1
r0 = 0.16

k1

C1 = 0.16
w1 = 4

aw,1 = 0.14
r1 = 0.02

step 1: compute normalized demand

step 2: sort by normalized demand

step 3: compute cumulative demand and weight

D =0.36, W = 7

D = 1.85, W = 10

(0.08, f1)
w=1, 

d=0.08

(0.06, f4)
w=2, 

d=0.12

(0.08, f2)
w=3, 

d=0.24

D = 1.41, W = 4

(0.11, f3)
w=1, 

d=0.11

(0.30, f5)
w=2, 

d=0.30

(1.00, f6)
w=1, 

d=1.00

Allocation Level Pointers

Max-Min B-Tree Nodes

step 4: represent 
as B-Tree

step 5: compute 
allocation level 
pointers 

Max-Min B-Tree
k2

C2 = 0.03
w2 = 3

aw,2 = 0.15
r2 = 0
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3) Dynamic Periods 

The period of allocation influences the performance of PACE. 
If we use small periods, the flows’ rates adapt quickly when a 
flow starts or ends. However, as the number of concurrent 
flows increases, the allocation per flow gets smaller. At some 
point, smaller allocations mean shorter packets increasing the 
overhead per packet. In order to allow PACE to scale to a 
large number of concurrent flows, we increase the period of 
allocation.  

PACE increases the period when the allocation for level 
pointer k!  is not enough to transmit two maximum sized 
packets. The keys in the B-Tree are normalized with respect to 
the total possible allocation. When the period is increased, the 
demand of each flow would increase proportionally. Thus, the 
only value that needs to be updated is the total allocation, C!. 
Also, flows in a forwarding node can have different allocation 
periods. For instance, a flow that is experiencing congestion in 
some other node will have a higher period. Thus, the 
allocation values in equations (5) and (6) are computed using 
the period values contained in the received allocation message. 

PACE maintains the allocation period as small as possible to 
maintain fast convergence. When the number of concurrent 
flows decreases and the base fair share increases, we decrease 
the period. When reducing the period we only need to 
decrease the total allocation, C!. Equation (6) guarantees that 
no credits are allocated until old credits are used or expire. If 
the first term is negative due to high queue usage or high 
number of allocated credits, the filtered allocation will be zero.  

IV. EXPERIMENTS 
We implemented PACE using NS-3 [12]. We also implement 
two recent proposals: DCTCP [5] and D3 [6]. D3 is designed 
having deadline-aware flows in mind. Here we evaluate it as a 
generic congestion control protocol without the deadline 
aware mode. In this case, D3 is similar to an optimized RCP 
[4]. We use the parking-lot topology to study how the 
protocols behave under two different traffic patterns. To 
emulate a DC deployment the simulation network has a very 
small RTT (~150µs) and links operate at 1Gbps. An initial 
period of 200µs was used in the PACE implementation. 

 
(a) 

 
(b) 

Fig. 5. Scenarios: (a) Sequential flows. (b) Composite traffic pattern. 

A. Scenario 1: Fairness and RTT  
Consider the scenario in Fig. 5(a). We start 10 flows 
sequentially, each one separated by an interval of 5ms. Flows 
start from different senders, picking a sender from each of the 
four groups in a round-robin fashion (i.e. a, b, c, d, a, b, ...). 
We then end the flows sequentially in the inverse order using 

the same 5ms interval between each termination. The 
experiment is run for PACE, D3, DCTCP and TCP. 

The rates for each flow are represented in Fig. 6(a-d). The 
dashed line represents the total rate at the bottleneck link (F4-
F5). PACE obtains a fair distribution of bandwidth and 
converges quickly to a steady state. D3 also distributes 
resources fairly but it does not use the channel efficiently. This 
is due to two reasons: the low granularity of resource 
allocation (units of 1bytes/µs); and convergence to full 
utilization is done by adjusting the total allocated capacity, 
which takes several RTTs to converge. DCTCP converges 
slowly to the fair state and, therefore, flows with lower RTT 
are unable to converge to the fair allocation. Finally, TCP does 
not converge to the fair state during the time frame of the 
experiment. TCP’s additive increase and multiplicative 
decrease lead to drastic variations in the bitrate. Also, TCP 
adjusts at the cost of packet loss, which does not happen with 
the remaining protocols. 

 
(a) PACE flows rate. 

 
(b) D3 flows rate. 

 
(c) DCTCP flows rate. 

 
(d) TCP flows rate. 

 
(e) Fairness (different RTT).    

 
(f) Fairness (equal RTT). 

Fig. 6. Results for a sequence of flows sharing a common bottleneck. (a-d) 
Throughput of each flow for different protocols. (e) Average fairness with 

flows with the different RTT. (f) Average fairness for flows with same RTT. 

We repeat the experiment but now all flows start from sender 
of group a, i.e. all flows have the same RTT. We also repeat 
the two experiments for longer periods between the start and 
end of the flow (20ms and 50ms). We then compute the 
average Jain’s Fairness Index [13] throughout the experiment. 
Fig. 6 (e) and (f) show the average fairness index, for the 
scenarios with different RTT and equal RTTs, respectively. 
PACE maintains fairness for short flows and different RTTs. 
D3 also distributes resources fairly independently of RTT, but 
does not achieve the fair state as quickly (~5% drop in fairness 
for shorter flows). The results obtained for DCTCP and TCP 
demonstrate the sensitiveness of these protocols to the 
differences in RTTs. 
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TABLE 1. FAIRNESS AND EFFICIENCY WITH A HIGH NUMBER OF CONCURRENT 
FLOWS 

Properties 
64 Flows 250 Flows 

PACE D3 DCTCP PACE DCTCP 

Fairness (Jain) 99.2% 98.2% 98.9% 96.3% 39.9% 
Efficiency 98.9% 93.1% 99% 98.9% 99.2% 

Scalability: We run one more experiment using the same 
scenario (Fig. 5(a)). We increase the number of concurrent 
flows (all starting from one of the a senders, i.e. same RTT) to 
64 and 250 flows. The fairness results are presented in Table 
1. D3 has a theoretical limit of 125 flows for 1Gbps link due to 
the granularity of allocation. Thus, it is not possible to run the 
experiment for 250 flows using D3. All protocols deal 
reasonably well with 64 simultaneous flows. D3, however, has 
a 7% penalty in utilization. PACE maintains the fairness 
guarantees even when we increase the number of flows to 250. 
As a reactive protocol DCTCP uses timeouts once the delay 
increases. This leads to packet retransmissions, drastic 
window adjustments and consequent fairness degradation. 

 
(a) PACE flows rate. 

 
(b) DCTCP flows rate. 

 
(c) D3 flows rate. 

 
(d) Queue usage at F4 (interface to F5). 

Fig. 7.  Throughput and Queue usage for scenario 2. 

B. Scenario 2: Composite Traffic Pattern 
The second scenario is depicted in Fig. 5(b). There are 4 
phases: at 𝑡! = 0, we start four flows from S1 to R1. At 
𝑡! = 2𝑚𝑠, we start one flow from S2 to R2. At 𝑡! = 4𝑚𝑠, we 
start 6 more flows from S3 to R3. Finally, at  𝑡! = 20𝑚𝑠, we 
start 6 more flows from S2 to R2. In Fig. 7(a-c), we represent 
one flow from each group: one flow S1-R1, the first flow S2-
R2, one flow from S3-R3 and one flow from the last group S2-
R2. Once the flows S3-R3 start, S1-R1 throughput is reduced 
due to F3. The first flow S2-R2 takes advantage of the extra 
free bandwidth. DCTCP reacts quickly to traffic changes. 
However, throughput converges to an unfair distribution of 
resources. The represented flow from S1-R1 is using more 
than its fair share and, starting from t2, the flow S2-R2 starts 
using almost 20% more than its fair share. D3, however, 
presents more problematic results. In order for the first flow 
S2-R2 to use the available capacity, D3 increases the allocation 
above the physical link capacity. When the new S2-R2 flows 
start, the total allocation largely surpasses the link capacity 
leading to queue build up. In Fig. 7(d), we can see the effect 
that D3 has on the queue of forwarder F4. 

Controllability: To illustrate PACE’s controllability we run 
scenario 2 with the following flows: one flow from S1-R1 
with weight 2 at 𝑡! = 0; one flow from S2-R2 with weight 1 at 
𝑡! = 1.5𝑚𝑠 ; and one flow from S3-R3 with weight 4 at 
𝑡! = 3𝑚𝑠. All flows transmit 500KB. The results are shown in 
Fig. 8. When flow S2-R2 starts at t1, it is competing with a 
flow that has twice its weight. Thus, it gets half of S1-R1 
bandwidth. When the flow S3-R3 starts at t2 it uses twice the 
bandwith of S1-R1. This in turn frees space for the flow S2-
R2, which increases its throughput. As soon as flow S1-R1 
finishes, both flows have the path freed and increase their 
throughtput to 100%. 

 
Fig. 8. Example of PACE’s Controllability 

V. CONCLUSION 
In this paper we present PACE, a preventive explicit allocation 
congestion control protocol for Data Center networks. In 
multi-tenant Data Centers, as the number of applications rises, 
fast convergence to a fair distribution of resources becomes 
increasingly important. PACE allows nodes in the network to 
determine credit allocation and the period of allocation. These 
two variables allow PACE to adapt quickly to transient traffic 
patterns. The experiments demonstrate that PACE converges 
quickly to nearly perfect fairness with short flows, large 
number of concurrent flows, sudden traffic changes and flows 
with different weights.  
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