
Fuzzing Wi-Fi Drivers to Locate Security Vulnerabilities
1

Manuel Mendonça

Nuno Neves

Faculdade de Ciências

Universidade de Lisboa, Bloco C6,

Campo Grande 1749-016 Lisboa - Portugal

manuelmendonca@msn.com

nuno@di.fc.ul.pt

1
 This work was partially supported by the EU through project IST-4-027513-STP (CRUTIAL) and NoE IST-4- 026764-NOE (RESIST), and by

the FCT through the Large-Scale Informatic Systems Laboratory (LASIGE), project POSC/EIA/61643/2004 (AJECT) and the FCT Multiannual

Funding Programme.

Abstract

Wireless LANs (WLAN) are becoming ubiquitous, as

more and more consumer electronic equipments start

to support them. This creates new security concerns,

since hackers no longer need physical connection to

the networks linking the devices, but only need to be in

their proximity, to send malicious data to exploit some

vulnerability. In this paper we present a fuzzer, called

Wdev-Fuzzer, which can be utilized to locate security

vulnerabilities in Wi-Fi device drivers. Our

experiments with a Windows Mobile 5 device indicate

that Wdev-Fuzzer can be quite effective in confirming
known issues and discovering previously unknown

problems.

1. Introduction

Wireless LANs give individuals the freedom to stay

connected, while moving from one coverage area to

another. They can be used to extend a wired

infrastructure or to replace existing ones, saving costs

not only due to the declining prices of the wireless

components, but also because they require no (or

simpler) data cable installations. Nowadays WLAN

technologies are becoming ubiquitous, and most

consumer electronic products (such as laptops, PADs,

cellular phones, video game consoles, digital cameras,

printers and video projectors) are equipped with them.

WLAN however introduce newer problems, since

they weaken the security perimeter. In many places,

like airports and shopping malls, there are dozens of

rogue networks just waiting to entrap unsuspecting

travelers to capture private information (e.g.,

usernames and passwords) [1]. Additionally, it is much

easier to compromise WLAN equipments because

hackers only need to be in proximity of the devices to

perform the attack (physical connection to the network

is no longer necessary).

Although some security failures are due to wrong

system configurations, many result from the

exploitation of implementation bugs in the software

components. In this paper, we are particularly

interested in locating this sort of bugs (or

vulnerabilities) in device drivers (DD) of WLAN, to

allow their removal. These DD are the entry point of

any device, and therefore they are the first software to

process the potentially malicious traffic coming from

an attacker. Moreover, almost any vulnerability in these

DD has a catastrophic impact since they run in the

operating system (OS) kernel.

In general, DD provide an abstraction layer between

the physical details of equipments and the kernel.

Currently, they are becoming the most dynamic and

largest part of an OS. Their design involves knowledge

from several disparate areas, like OS internals, chipset

details, and synchronization that are not simultaneously

mastered by programmers or designers. Therefore, they

are hard to implement and to maintain. Nowadays, even

tough several programs exist to assist developers in

increasing the quality and reliability of their driver

implementations [6][7][8][9][10], many DD still end

up being deployed with bugs.

Methods for discovering vulnerabilities in DD

depend on the availability of the driver code. If the

code is public, then source code auditing may lead to

good results, as one can read and check for

implementation flaws. However, in the majority of

situations, the code is closed. In this case, black box

testing may be performed, where the functional

behavior of the unit under test (UUT) is verified

(output results) against the input values that are

provided. Reverse engineering may also be employed

to discover vulnerabilities, but it is costly, time

consuming and demands profound knowledge on

system architecture and machine code.

Vulnerabilities can also be discovered by another

black box testing methodology, sometimes called

fuzzing [26][2][11]. Fuzzing consists on presenting

malformed data to the interface of the software

component and on observing the outcomes. This

technique may require further refinements to catch

more complex bugs, due to protocol specificities, but it

can be very effective in locating several kinds of

vulnerabilities (like TCP-IP stack problems and OS

hangs).

In our work, we have designed a new fuzzer

architecture that is able to build malformed packets and

perform attacks against a target system, independently

of its communication media. The current

implementation of the architecture, called Wdev-

Fuzzer, supports the Wi-Fi protocol. In the future we

intend to extend the tool to other communication

protocols, such as IrDA and Bluetooth.

The tool was utilized to study the behavior of a Wi-

Fi device driver, of a handheld device running

Windows Mobile 5. The tested scenarios simulate an

attack against the Wi-Fi device, either when it is just

looking for an Access Point (AP) to connect or is

already connected. Experimental results demonstrated

that in most cases Windows is capable of handling

correctly the malicious packets. However, in one

situation, a specific Beacon packet always caused a

system hang. This implies that the DD has a critical

vulnerability which was previously unknown. Wdev-

Fuzzer was also successfully applied to uncover other

potential problems. For example, it was used to

reproduce denial of service attacks with Disassociation

and Deauthentication frames. Additionally the tests

revealed that there might be a problem in the

implementation of the TCP-IP stack.

2. Wdev-Fuzzer

2.1 The Architecture of the Wdev-Fuzzer

The Wdev-Fuzzer is divided in 8 modules (see

Figure 1). Message Specification is a text file that

defines packets as a group of fields. Each packet field

Figure 1. Wdev-Fuzzer block diagram

is also specified in the same file using basic data types

that are intrinsic to the Packet Generator.

For each basic type there is a fuzz operator that

assigns specific values according to some given rules.

During the construction of the packets, the Packet

Generator takes the packet description as input, and

uses these operators to fill in the values of the fields.

The result is a ready-to-be-send potentially bogus

packet. By extending the basic types and the fuzz

operators, it is possible to build newer types and

values, in order to meet specific protocol requirements.

The Attack Controller controls the activity of the

Packet Injector. It decides which next packet (attack)

should be transmitted, based on the feedback given by

the Monitor Listener and Packet Listener, using a

predetermined criteria. The Packet Listener receives

and analyzes all responses that arrive from the UUT.

The Monitor Application and corresponding Listener

are optional components that exchange information

about the state of the UUT. They find out if an attack

was successful and contribute to the decision of which

attack should be performed next. The Packet Injector

sends the packets to the UUT.

The Traffic Generator is used to create and

exchange good packets between the AP and the UUT.

This way we can observe the system behavior when

subject to an attack while correct data is being

transmitted by a Real AP.

The basic architecture of Wdev-Fuzzer can be

tailored to several communication protocols, still some

changes will have to be performed. For example, a new

Message Specification has to be carried out and the

Packet Injector and Packet Listener implementations

Wdev-Fuzzer

Test Builder

Controller

Packet Generator

Packet

Injector

Attack Controller

UUT
Application

Monitor *

Message

Specification

Monitor

Listener *

Packet

Listener

Wi-Fi Traffic

Generator *

AP

Wi-Fi Traffic

Generator *

*Optional component

have to be updated to use the specific functions for

sending and receiving raw packets from the media.

2.2 Using Wdev-Fuzzer in 802.11

The IEEE 802.11 architecture consists of several

interacting components to provide a WLAN that

supports station mobility transparently to upper layers.

The basic service set (BSS) is the fundamental building

block of an IEEE 802.11 LAN. The BSS coverage area

is where the member stations (STA) of the BSS may

remain in communication. If a STA moves out of its

BSS, it can no longer directly communicate with the

other members.

The independent BSS (IBSS) is the most basic type

of a Wi-Fi LAN, and consists of only two STA that are

able to exchange data directly with each other. Since

this type of network is often formed without pre-

planning it is usually referred to as an ad-hoc network.

A BSS, instead of operating independently, may

also be part of an extended form of network that is built

with multiple BSSs and is interconnected by a

distribution system (DS). In this setting, an AP gives

access to the DS by providing DS services in addition

to act as a STA.

Figure 2 shows the Medium Access Control (MAC)

message frame format for the 802.11 protocol. These

frames may be composed by fixed length (FL) and Tag

Length Value (TLV) field types. To facilitate message

parsing, when FL and TLV fields appear in the same

message, FL fields always come first. A FL field

appears at a fixed location relative to the beginning of

the frame and it always has the same length. A TLV

field has three elements, a Tag which uniquely

identifies the field, a size element which determines the

length of the data and the data itself.

The MAC frame types that may be exchanged

between a pair of STAs depend on their state. The state

of the sending STA, given by Figure 3, is defined with

respect to the intended receiving STA. The allowed

frame types that can be transmitted in a given state are

grouped into classes. In State 1, only Class 1 frames are

allowed. In State 2, either Class 1 or Class 2 frames are

acceptable. In State 3, all frames are permitted (Classes

1, 2, and 3). The frame classes are shown in Table 1.

The 802.11 standard is very large and reviews made

by the ruling committee can take a while to be ready.

To speed up the decision process, as well as to ratify

important subsets of standards, nearly almost wireless

equipment manufacturer joined the Wi-Fi Alliance.

This group is dedicated to manage the Wi-Fi

specification, a subset of the 802.11 standard, and

defines the "right thing" to do if any ambiguity in the

Figure 2. Generic Wi-Fi MAC frame format

Figure 3. Relationship between messages and

services

Table 1. Tested Wi-Fi frames

Frame Type
Sub

Type

To

AP

From

 AP
Class

Association Request Mgt 0 X - 2

Association Response Mgt 1 - X 2

Reassociation Request Mgt 2 X - 2

Reassociation Response Mgt 3 - X 2

Probe Request Mgt 4 X - 1

Probe Response Mgt 5 - X 1

Beacon Mgt 8 - X 1

Disassociation Mgt 10 X X 2

Authentication Mgt 11 X X 1

Deauthentication Mgt 12 X X 1,3

Power Save Ctrl 10 X - 3

Request To Send Ctrl 11 X - 1

Clear to Send Ctrl 12 - X 1

Acknowledgment (Ack) Ctrl 13 X X 1

Contention Free (CF) End Ctrl 14 - X 1

CF-End + CF-Ack Ctrl 15 - X 1

Data Data 0 X X 1,3

(Mgt – Management, Ctrl – Control)

802.11 standard arises. It is committed to guarantee the

interoperability among vendors, assuring that all

products with the "Wi-Fi certified logo" work together.

In this work, we utilize the Wdev-Fuzzer to evaluate

the Wi-Fi implementation of a Windows Mobile 5

handheld device. Since these equipments are mostly

used as a STA rather than as an AP, the device will be

configured as an STA. The evaluation of an AP is left

Class 1&2 frames

State 1

Unautenthicated

Unassociated

State 2

Autenthicated

Unassociated

State 3

Autenthicated

Associated

Class 1 frames

Class 1,2 & 3

frames

Deassociation

notification

Successful

authentication

Successful

association

Deassociation

notification

Deauthentication

notification

Frame

Control

Duration

/Id
Addr1 Addr2 Addr3 Seq Addr4 Body FCS

Type
To

DS

From

DS

More

Flags
More Data Retry Power Order WEP

MAC header

SubType Version

Frame Control contents

out for future work. Additionally, we will not use the

IBSS configuration because handheld devices are many

times operated in a connected BSS. In the tested

scenarios, the Wdev-Fuzzer is going to simulate a

malicious AP that sends potentially erroneous frames to

a UUT.

2.3 Tested Faulty Values

Table 2 displays the fuzz operators that are applied

to each field type, to build Wi-Fi frames in the

experiments. The ‘X’ character indicates that the

operator was applied to the field and the ‘-‘ the

opposite.

The operator “Not present” omits an element from

the frame. The “Repeated” operator produces multiple

occurrences of the same field in the frame. The

operators “All bits Zero” and “All bits One” are self

explanatory. The “MIN” and “MAX” operators

produce the minimum and maximum values that a field

might contain, as stated in the 802.11 specification.

Often, the “All bits Zero” and “MIN” operators

produce equal values, whenever the minimum value is

zero. The same applies for operators “MAX” and “All

bits One”. In these cases, the “MIN” or “MAX”

operators are not utilized, since they create test results

equivalent to the “All bits Zero” and “All bits One”

(respectively).

The “Random” operator generates random values

that are between the values produced by the “MIN” and

“MAX” operators. At last, the “Specific Value”

operator places a pre-defined value in a field. This

operator is used for example to force certain frames to

have UUT’s MAC address.

2.4 Tested Scenarios

At first we considered testing the UUT in all 3 states

represented in Figure 3. However, since in real

situations State 2 is only available for shorts periods of

time, only States 1 and 3 were considered.

Tests were carried out in 3 different scenarios (A, B

and C). In scenario A, the UUT was in State 1,

meaning that it was not associated or authenticated with

any AP. In scenario B, the UUT was in State 3, linked

to a Real AP using no authentication. At last, in

scenario C, the UUT was also at State 3 but using

authentication. In scenarios B and C, the Traffic

Generator forced the exchange of data packets between

the UUT and the Real AP to stress the communication

stack by opening a TCP-IP socket and exchange

packets between the UUT and the Real AP.

Table 2. Tested Faulty Values

Fuzz Operator

Fixed

Length

Field

Tag Length

Value Field

Not Present - X

Repeated - X

All bits Zero X X

MIN-1 X X

MIN X X

MIN+1 X X

Random X X

Specific Value X X

MAX-1 X X

MAX X X

MAX+1 X X

All bits One X X

Table 3. Expected failure modes

ID Description

F1
No problems were detected in the system

execution.

F2 Packet Listener detects invalid frame.

F3 UUT was disassociated.

F4 UUT was de-authenticated.

F5 Monitor hangs.

F6 OS hangs.

F7 The system crashes and then reboots.

Table 4. Detailed F1 failure mode

ID Description

F1A
Device provides correct information about

AP (either detecting it or not)

F1B Device does not detect the AP but it should.

F1C Device detects the AP but it should not.

2.5 Expected Failure Modes

The Packet Generator uses the Message

Specification and the fuzz operators to build Wi-Fi

frames. Depending on the values produced, the UUT is

going to receive good and bad Wi-Fi frames, which

may be handled correctly or may lead to some failure.

Table 3 summarizes the expected failure modes of the

UUT when it receives Wi-Fi frames. It was elaborated

after some preliminary experiments and also based on

information provided in the literature [15][16].

F1 represents the case where the system appears to

continue to work without any problems. However, in

general, it does not mean that the injected fault was

handled correctly. Whenever a test uses Beacon or

Probe frames, the UUT Monitor returns some feedback

to the Controller, saying which AP have been detected.

In these cases, we are able to further extend F1 in three

other categories, as represented in Table 4.

F1A represents the scenario when the Monitor

correctly reports the information about the AP, either

because it was detected (the packet was well-formed)

or because it was not detected (the packet was

incorrectly formed, and therefore, the UUT discarded it

and the report indicates no AP). The F1B value applies

to the cases where the Monitor does not detect the AP

but it should, and F1C corresponds to the cases where

the AP is detected but it should not.

When the UUT is at State 3, the F3 failure mode

means that the device became disassociated from the

AP, as a result of some attack. Likewise, the F4 mode

indicates that the attack successfully deauthenticated

the UUT from the AP.

F5 failure mode signals that the Monitor

Application hangs as a consequence of an attack,

denoting that some problem with the DD has

propagated to the application. Whenever the OS hangs,

the F6 mode is used. The F7 failure mode happens if

the system crashes and then reboots.

3. The Testing Infrastructure

In the Windows OS family, the Network Driver

Interface Specification (NDIS) defines a standard

Application Program Interface (API) for Network

Interface Cards (NIC's). The details of a NIC hardware

implementation can be wrapped by a Media Access

Controller (MAC) device driver, in such a way that all

NIC's for the same media (e.g., Ethernet) are accessed

using a common API. Applications interact with NIC's

through a stack of device drivers, where each driver

adds functionality to the entire communication

infrastructure.

Probably, the main difficulty in building a Wi-Fi test

infrastructure is the implementation of the operations

for injecting and capturing the Wi-Fi raw frames. Our

first attempt to address the problem utilized a filter DD

that was placed in the lower parts of the driver stack,

hoping to intercept packets sent and received by each

NIC (as well as control instructions given by the OS to

the DD). Windows, however, implements the Wi-Fi

protocol in the MAC DD, which emulates the Ethernet

protocol to the drivers above it. Therefore, our DD was

only able to capture Ethernet frames and not Wi-Fi raw

frames.

Still there are other possible ways for capturing Wi-

Fi frames in Windows, neither of them very easy to

achieve. One approach is using an internal interface to

the MAC DD, but to the best of our knowledge

no vendor provides it. Another consists in developing

Figure 4. The process of fuzzing Wi-Fi frames

our own MAC DD, but this would require a direct

interaction with the NIC and complete knowledge of its

specification (something that usually is not available).

A commercial solution based on this idea is Airpcap

[5], which uses a proprietary MAC DD and their own

capture hardware.

In the end, we decided to build a heterogeneous

testing infrastructure, since in Linux there are several

cards and open drivers that support Wi-Fi frame

injection and capture (although not every NIC can be

used due to hardware limitations). One simple way to

find them is to search in the Internet for Wi-Fi sniffers

and look for compatible NICs. Figure 4 displays the

current testing infrastructure that is composed by 4

components: the Controller Machine, the Mobile

Device (UUT), the Host PC and the Real Access Point.

3.1 Controller Machine and UUT

The Controller Machine generates the Wi-Fi packets

containing malicious data (e.g., out-of-bound values,

repeated tags) and sends them through the Wi-Fi

Cradle

Host PC

OS

Mobile Device

(UUT)

OS

Controller Machine

Attack Controller

Log

OS

Lorcon

MadWi-Fi

Driver

Wi-Fi NIC

Wi-Fi NIC

Ethernet

NIC

Monitor Application

Ethernet Driver

USB

Attack

Ethernet

NIC
USB

ActiveSync

Wi-Fi

Driver

USB

Driver

Wi-Fi

Driver

USB

Driver

Log

Real Access Point

Wi-Fi NIC

Wi-Fi
Ethernet

Mobile Device connect to

Controller Machine via TCP

TCP
Over
USB

Fault

s

Monitor

Listener

Injector Listener

Wi-Fi

Traffic Generator

Traffic Generator

interface to the UUT. Each packet is sent several times

to assure that the UUT is able to receive it.

This element also monitors the outcomes of the

tests, and saves the collected data in the disk for future

analysis. Currently, the Controller is installed in a

Linux OS machine, with the MadWi-Fi driver [3] for

wireless LAN chipsets from Atheros. The Packet

Injector uses a modified version of Lorcon [4] as a

generic library for injecting Wi-Fi frames. The Monitor

Listener receives any incoming frames from the

Monitor installed in the UUT and forwards this

information to the Attack Controller to synchronize the

next attack. The Packet Listener informs the Attack

Controller of each incoming packet sent by the UUT.

These packets have to be carefully examined to detect

any unexpected behavior.

The UUT is the target Wi-Fi device of the

experiments. It runs a Monitor Application that

regularly connects to the Monitor Listener of the

Controller, informing the current list of detected AP

and the status of any existing connection. This data is

especially useful when testing Beacon and Probe

frames, as the detection of the AP is crucial to

determine the correction of the error handling

mechanisms.

3.2 Host PC and Real AP

The UUT is physically attached to the Host PC

through an USB port. This way, the Monitor

Application can reach the Attack Controller through an

out of band link, leaving the Wi-Fi medium free for the

experiments. The Host PC runs Windows XP and

Microsoft’s ActiveSync, allowing the communication

between the UUT and the Host PC with TCP over

USB, which is then followed by TCP over Ethernet in

the connection between the Host PC and the Controller

Machine.

To keep the complexity of the code of the Controller

manageable, a Real AP is utilized to take the UUT

through the various states of the Wi-Fi protocol. This

way, specific frames can be injected in every state. The

Real AP was implemented in Windows XP using an

off-the-shelf AP application.

4. Experimental Results

This section presents the results of the various

experiments carried out with the Wdev-Fuzzer in an

802.11b network. The test bed was composed by a

Controller Machine implemented in a Dell Optiplex

170L Pentium IV computer, installed with Fedora Core

6. It used a NetGear WPN311 wireless PCI card and

the built-in Ethernet card as communication means.

The UUT was an HP iPAQ hw6915 PDA running

Windows Mobile 5 and equipped with a built-in Texas

Instruments Wi-Fi chip. The Host PC machine was a

HighScreen Pentium IV computer with Windows XP

Professional Edition. The UUT was attached to an

USB port on the Host and uses ActiveSync 4.1 build

4841 to establish the connection. This machine was

also equipped with an Ethernet card, which was

connected to the Controller Machine with a 100Mbits

link. It also hosts the Real AP using a GigaByte

AirCruiser GN-WP01GS wireless PCI card and the

companion AP application. The UUT was attached to

an USB port on the Host PC and placed at about 2m

distance from the Controller Machine and the Real AP.

4.1 Observed Failure Modes

The results of the test campaigns are displayed in Table

5 and Table 6. A total of 89489 attacks were carried

out for each of the three scenarios. The tables only

show the outcomes for frames that flow from the AP to

the UUT (see Table 1), since frames on the other

direction never caused any problems (i.e., the failure

mode was always of type F1). The first column of the

tables shows the field type being tested, and the second

column displays how many different values were tried.

The following columns display the results obtained for

the various different frames. The ‘-‘ character is used to

indicate that the corresponding field does not belong to

the frame being tested, otherwise it is filled with the

code of the observed failure mode (see Table 3).

Since in most cases the result was F1, to make the

table reading simpler, the number of times that it

occurs is omitted (it is equal to number of tried values

displayed in the second column). For failure modes

different than F1, the table presents in the cell the

number of tests that caused a problem.

4.1.1 Failure Modes in Scenario A

The UUT is in State 1 in the test campaign of

scenario A. The UUT is placed in this state by

powering on the Wi-Fi component of the device and by

making sure that no association exists with any STA or

AP. The test results for this scenario are displayed in

Table 5. It shows that in general the UUT was able to

handle correctly the malicious frames. Nevertheless,

some interesting outcomes were observed for certain

specific scenarios, which are summarized in the

following points.

Table 5. Observed failure modes in scenario A

Field

#
T
e
st

s
&

R
e
su

lt
s

C
T
S

A
c
k

C
F
-E

n
d

C
F
-E

n
d

C
F
-A

c
k

D
at

a

A
ss

o
c
.

R
es

p

R
ea

ss
.

R
es

p

P
ro

b
.
R
es

p

B
e
ac

o
n

D
is

a
ss

.

A
u
th

.

D
e
au

th
.

Protocol*

Version
4 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

To/From*

DS
4 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

More Flags* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

Retry* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

Power*

Management
2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

More*

Data
2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

WEP* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

Order* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

Duration 3500 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1

RA/Addr1 8 F1 F1 F1 F1 F1 - - - - - - -

TA/Addr2 8 - - - - F1 - - - - - - -

DA 8 - - - - - F1 F1
7x

F1C

7x

F1C F1 F1 F1

SA 8 - - - - - F1 F1 F1A F1A F1 F1 F1

AID 15 - - - - - F1 F1 - - - - -

BSS ID 8 - - F1 F1 - F1 F1 F1 F1 F1 F1 F1

Addr3 8 - - - - F1 - - - - - - -

Sequence

Control
10 - - - - F1 F1 F1 F1 F1 F1 F1 F1

Addr4 7 - - - - F1 - - - - - - -

Frame Body 7 - - - - F1 - - - - - - -

TimeStamp 6 - - - - - - - F1A F1A - F1 -

Beacon**

Interval
2700 - - - - - - - F1A F1A - F1 -

Capabilities** 2050 - - - - - F1 F1 F1A F1A - F1 -

SSID** 1275 - - - - - F1 F1
32x

F1B

32x

F1B
F1 F1 F1

Supported**

Rates
256 - - - - - F1 F1 F1A F1A F1 F1 F1

FH**

Parameter
256 - - - - - F1 F1 F1A F1A F1 F1 F1

DS**

Parameter
256 - - - - - F1 F1 F1A F1A F1 F1 F1

CF**

Parameter
256 - - - - - F1 F1 F1A F1A F1 F1 F1

IBSS**

Parameter
256 - - - - - F1 F1 F1A F1A F1 F1 F1

TIM** 256 - - - - - F1 F1 F1
1x

F6
F1 F1 F1

Reason Code 15 - - - - - - - - - F1 - F1

Status Code 5 - - - - - F1 F1 - - - F1 -

Auth.

Algorithm Nbr
5 - - - - - - - - - - F1 -

Auth.

Transaction

Nbr

5 - - - - - - - - - - F1 -

Other TLV** 1255 - - - - - F1 F1 F1 F1 F1 F1 F1

* Frame Control, **Tag Length Value

Table 6. Observed failure modes, scenario B and C

Field

#
T
e
st

s
&

R
e
su

lt
s

C
T
S

A
c
k

C
F
-E

n
d

C
F
-E

n
d

C
F
-A

c
k

D
at

a

A
ss

o
c
.

R
es

p

R
ea

ss
.

R
es

p

P
ro

b
.
R
e
sp

B
e
ac

o
n

D
is

a
ss

.

A
u
th

.

D
e
au

th
.

Protocol*

Version
4 F1 F1 F1 F1 F1 F1 F1 F1A F1A

1x

F3
F1

1x

F4

To/From*

DS
4 F1 F1 F1 F1 F1 F1 F1 F1A F1A

3x

F3
F1

3x

F4

More Flags* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A
1x

F3
F1

1x

F4

Retry* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A
1x

F3
F1

1x

F4

Power*

Management
2 F1 F1 F1 F1 F1 F1 F1 F1A F1A

1x

F3
F1

1x

F4

More*

Data
2 F1 F1 F1 F1 F1 F1 F1 F1A F1A

1x

F3
F1

1x

F4

WEP* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A
1x

F3
F1

1x

F4

Order* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A
1x

F3
F1

1x

F4

Duration 3500 F1 F1 F1 F1 F1 F1 F1 F1A F1A
3500x

F3
F1

3500x

F4

RA/Addr1 8 F1 F1 F1 F1 F1 - - - - - - -

TA/Addr2 8 - - - - F1 - - - - - - -

DA 8 - - - - - F1 F1
7x

F1C

7x

F1C

2x

F3
F1

2x

F4

SA 8 - - - - - F1 F1 F1A F1A
1x

F3
F1

1x

F4

AID 15 - - - - - F1 F1 - - - - -

BSS ID 8 - - F1 F1 - F1 F1 F1 F1
1x

F3
F1

1x

F4

Addr3 8 - - - - F1 - - - - - - -

Sequence

Control
10 - - - - F1 F1 F1 F1 F1

10x

F3
F1

10x

F4

Addr4 7 - - - - F1 - - - - - - -

Frame Body 7 - - - - F1 - - - - - - -

TimeStamp 6 - - - - - - - F1A F1A - F1 -

Beacon Interval 2700 - - - - - - - F1A F1A - F1 -

Capabilities** 2050 - - - - - F1 F1 F1A F1A - F1 -

SSID** 1275 - - - - - F1 F1
32x

F1B

32x

F1B

1275x

F3
F1

1275x

F4

Supported**

Rates
256 - - - - - F1 F1 F1A F1A

256x

F3
F1

256x

F4

FH**

Parameter
256 - - - - - F1 F1 F1A F1A

256x

F3
F1

256x

F4

DS**

Parameter
256 - - - - - F1 F1 F1A F1A

256x

F3
F1

256x

F4

CF**

Parameter
256 - - - - - F1 F1 F1A F1A

256x

F3
F1

256x

F4

IBSS**

Parameter
256 - - - - - F1 F1 F1A F1A

256x

F3
F1

256x

F4

TIM** 256 - - - - - F1 F1 F1A
1x

F6

256x

F3
F1

256x

F4

Reason Code 15 - - - - - - - - -
15x

F3
-

15x

F4

Status Code 5 - - - - - F1 F1 - - - F1 -

Auth.

Algorithm Nbr
5 - - - - - - - - - - F1 -

Auth.

Transaction

Nbr

5 - - - - - - - - - - F1 -

Other TLV** 1255 - - - - - F1 F1 F1 F1
1255x

F3
F1

1255x

F4

* Frame Control, **Tag Length Value

Since Beacon frames are directed to everybody in

the coverage area, APs should announce themselves

using the broadcast MAC address

(FF:FF:FF:FF:FF:FF) as the Destination Address.

Windows Mobile, however, reports a new AP when the

Destination Address uses a distinct MAC address (see

row DA). This occurs even when the Destination

Address is different from the MAC address of the

UUT. This behavior is an implementation issue and

doesn’t seam to be a problem.

SSID is the identifier of the AP, and it has a

maximum size of 32 characters. The experiments show

that the UUT does not report an existing AP if the

SSID field has ‘0x00’ as one of the ASCII characters of

the identifier (see row SSID). The same behavior was

also seen when we run an equivalent test with another

Windows Mobile equipment, which gives evidence that

this problem may extend to several other

implementations. From a security perspective, this

behavior is undesirable since it allows the creation of

networks which are hidden from certain devices (e.g., a

group of hackers could keep a network secret if they

found out that the security officers use a Windows

Mobile-based solution for diagnosing Wi-Fi networks).

When multiple SSID fields are sent in a given

frame, the UUT assumes the last value as the correct

one. If other vendors take a different view, and choose

for instance the first SSID, then this could lead to

incompatibility problems. The 802.11 specification

does not address this particular issue.

Whenever the UUT receives a Beacon frame with a

TLV field with TAG = 5 (Traffic Information Map –

TIM), Length = 255 and Value = 0xFF, the OS hangs

at the first user interaction with the device (see F6

value in row TIM). The same kind of failure also

occurred when the UUT was in States 2 and 3, as

shown in Table 6. When a similar test was made with

another Windows Mobile equipment, everything went

fine and no hangs were felt. This probably means that

the flaw is in HP iPAQ device driver. Even so, the

vulnerability is critical from an availability standpoint

because exploitation is simple (e.g., since Beacon

frames are processed in all states, a hacker would only

need to walk around with a malicious AP to hang all

vulnerable devices in a surrounding area).

The Probe Response failure modes were identical to

the Beacon frame, with the exception of the TIM field

where no OS hangs were seen.

4.1.2 Failure Modes in Scenario B

To perform the experiments corresponding to the

scenario B, the UUT was associated and authenticated

to the Real AP using no encryption protocol. The

results for the Beacon and Probe Response frames are

equivalent to those obtained in scenario A, which is not

surprising, as the process of detecting APs while

connected to another AP remains the same.

Fuzzing Disassociation and Deauthentication frames

confirmed a known problem with the Wi-Fi protocol.

Since the various fields of the frame are not

cryptographically protected with some authentication

data (e.g., a message authentication code), a rogue AP

can transmit Disassociation and Deauthentication

frames and cause the Wi-Fi communication to be

disrupted (i.e., the Wi-Fi protocol is vulnerable to a

Denial of Service (DoS) attack). This can happen if the

Destination Address (DA) is equal to the address of the

associated STA or the broadcast address. Nevertheless,

we found out that several checks are made before

accepting the frames, making the attack harder to

execute. Several flags of the frame control part of the

packet are verified (To/From DS, More Flags, Retry,

Power Management, More Data, WEP and Order),

reducing significantly the combinations that break the

communication.

We also discovered that, whenever the UUT became

disassociated and got associated after terminating the

attack, the Traffic Generator could not recover the

TCP-IP communication. This aspect reveals that some

implementation problems may exist in the TCP-IP

stack. Contrarily, whenever the UUT become

deauthenticate and got authenticated at the end of the

attack, the Traffic Generator always recovered the

TCP-IP communication. This shows that the DoS

attacks performed with Dissassociation frames can be

more harmful than the ones made with

Deauthentication frames.

4.1.3 Failure Modes in Scenario C

In scenario C, the test campaign was performed with

the UUT associated and authenticated to the Real AP

using shared key mode encryption protocol. The results

observed in scenario C were equal to the ones obtained

in the scenario B.

5. Related Work

Fault injection methods and tools can inject

hardware or software faults in a target system under

test (see for example, [12][13][19][25][27][30]). By

forcing and reproducing the occurrence of irregular and

unusual events, they can for instance evaluate the target

system’s ability to cope with them. The mimicked

faults were in most cases relatively simple, such as pin-

level faults or single bit-flips in memory, registers, or

instructions. Consequently, these techniques were

mostly used for activities such as hardware validation

or for the verification of fault handling mechanisms,

and not for the discovery of security vulnerabilities.

Robustness testing can be applied to characterize the

behavior of software components when they face

exceptional inputs or stressful environmental

conditions. Most of the robustness tools have targeted

general propose OS, by supplying erroneous inputs to

the functions that constitute the various application

interfaces. For instance, the Ballista tool has assessed

several OS that implement the POSIX standard [20].

Similarly, Shelton et al. have made a comparative study

of six variants of Windows [28]. Other example studies

with these tools include real time microkernels [14] and

middleware support systems like CORBA [22][24].

More recently, this technique has been applied at the

OS device driver interface [15][16][17][23].

Robustness testing has however been mainly applied to

the internal interfaces of systems, which can not be

directly exploited by an external adversary. Therefore,

the discovered problems in most cases do not

correspond to security vulnerabilities.

Fuzzing is a testing technique that generates invalid

data and passes it to a target application for processing,

and then observes the application to see if it fails while

consuming the data [11]. A failure indicates the

presence of some vulnerability, which can potentially

be exploited by some adversary. Fuzz was one of the

first projects to explore these ideas, and it was designed

to test UNIX commands (and was later applied to other

OS) [26]. It generates large sequences of random

characters which were used as command-line

arguments of programs. Many programs failed to

process the illegal arguments and crashed. In the recent

years, fuzzers have evolved into more intelligent and

less random tools, capable of testing different kinds of

software components (see for example,

[18][21][29][31]). Fuzzing Wi-Fi is not new and

reports of hacking and security problems were

previously reported (see [32][33][34]).

In this paper, we present the design of a tool that

aims at finding vulnerabilities in Wi-Fi driver

implementations. The tool works in a completely

automatic way, and is able to test several IEEE 802.11

commands in the various stages of the protocol

execution. An experimental evaluation of the tool was

performed with Windows Mobile, which has been

extensively tested through the years. Nevertheless, as

an interesting output of our investigation, we were able

to uncover some previously unknown problems.

6. Conclusions

This paper presents the Wdev-Fuzzer tool, a fuzzer

that targets device drivers of communication protocols.

The proposed architecture is quite generic, allowing a

detailed description of the protocol’s messages.

Therefore, the generated attacks are very effective at

discovering new vulnerabilities and at verifying known

issues. Additionally, the tool can also help to perform

some of the tasks of conformance testing, by detecting

misbehaviors of the device driver’s implementation

with respect to the specification of the protocols.

The current version of the tool was utilized to

evaluate a Wi-Fi device driver of a handheld device

running Windows Mobile 5. The results demonstrated

that in most cases, Windows was able to handle

correctly the malicious frames. They also showed that

Wdev-Fuzzer can be successfully applied to reproduce

denial of service attacks using Disassociation and

Deauthentication frames. The tool revealed that there

might be a problem in the implementation of the TCP-

IP stack, uncovered by the use of disassociation frames

when the UUT was associated and authenticated with

an AP. Finally, it discovered a previously unknown

vulnerability that causes OS hangs, using the TIM

element in the Beacon frame.

7. References

[1] Sniffing tools, June 2007, http://insecure.org/

[2] Fuzzers, June 2007 http://www.infosecinstitute.com

/blog/2005/12/fuzzers-ultimate-list.html

[3] Madwifi driver, June 2007, www.madwifi.org

[4] Lorcon project, June 2007 http://802.11ninja.net/lorcon

[5] Airpcap, June 2007, http://www.cacetech.com/products/

airpcap.htm

[6] Microsoft Corporation, “Introducing Static Driver

Verifier”, May 2006.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler,

On u-kernel construction, Proceedings of the Symposium

on Operating Systems Principles, December 1995, pp.

237–250.

[8] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O.

Shivers, The Flux OSKit: a substrate for OS language

and resource management, Proceedings of the

Symposium on Operating Systems Principles, October

1997, pp. 38–51.

[9] M. Swift, B. Bershad, and H. Levy, Improving the

reliability of commodity operating systems, Proceedings

of the Symposium on Operating Systems Principles,

October 2003, pp. 207–222.

[10] M. Young, M. Accetta, R. Baron, W. Bolosky, D.

Golub, R. Rashid, and A. Tevanian, Mach: A new kernel

foundation for UNIX development, Proceedings of the

Summer USENIX Conference, June 1986, pp. 93–113.

[11] P. Oehlert, Violating Assumptions with Fuzzing,

IEEE Security & Privacy, pp. 58-62, March/April 2005.

[12] J. Aidemark, J. Vinter, P. Folkesson, and J.

Karlsson, GOOFI: Generic Object-oriented Fault

Injection Tool, Proceedings of the International

Conference on Dependable Systems and Networks, pp.

83–88, July 2001.

[13] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D.

Powell, Fault Injection and Dependability Evaluation of

Fault-tolerant Systems. IEEE Transactions on

Computers, 42(8):913.923, August 1993.

[14] J. Arlat, J.-C. Fabre, M. Rodríguez and F. Salles,

Dependability of COTS Microkernel-Based Systems,

IEEE Transactions on Computers, vol. 51, no. 2, pp.

138-163, 2002.

[15] A. Albinet, J. Arlat, and J.-C. Fabre,

Characterization of the Impact of Faulty Drivers on the

Robustness of the Linux Kernel, Proceedings of the

International Conference on Dependable Systems and

Networks, June 2004

[16] J. Durães and H. Madeira, Characterization of

Operating Systems Behavior in the Presence of Faulty

Drivers through Software Fault Emulation, Proceedings

of the Pacific Rim International Symposium on

Dependable Computing, pp. 201-209, December 2002.

[17] A. Johansson, and N. Suri, Error Propagation

Profiling of Operating Systems, Proceedings of the

International Conference on Dependable Systems and

Networks, June 2005.

[18] T. Biege, Radius Fuzzer, September 2005.

http://www.suse.de/ thomas/index.html.

[19] J. Carreira, H. Madeira, and J. G. Silva, Xception:

Software Fault Injection and Monitoring in Processor

Functional Units, Proceedings of the International

Working Conference on Dependable Computing for

Critical Applications, pp. 135–149, January 1995.

[20] P. Koopman, J. DeVale, The Exception Handling

Effectiveness of POSIX Operating Systems, IEEE

Transactions on Software Engineering, vol. 26, no. 9, pp.

837-848, September 2000.

[21] A. Greene, SPIKEfile, September 2005.

http://labs.idefense.com/labs-software.php?show=14.

[22] E. Marsden, J.-C. Fabre and J. Arlat, Dependability

of CORBA Systems: Service Characterization by Fault

Injection, Proceedings of the 21st International

Symposium on Reliable Distributed Systems, pp. 276-

285, June 2002.

[23] M. Mendonça, N. Neves, Robustness Testing of

the Windows DDK, Proceedings of the International

Conference on Dependable Systems and Networks, June

2007

[24] J. Pan, P. J. Koopman, D. P. Siewiorek, Y. Huang,

R. Gruber and M. L. Jiang, Robustness Testing and

Hardening of CORBA ORB Implementations,

Proceedings of the International Conference on

Dependable Systems and Networks, pp. 141-150, June

2001.

[25] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, Fault

Injection Techniques and Tools, IEEE Computer,

30(4):75.82, April 1997.

[26] B. P. Miller, L. Fredriksen, and B. So, An

empirical study of the reliability of UNIX utilities,

Communications of the ACM, 33(12):32–44, 1990.

[27] G. A. Kanawati, N. A. Kanawati, and J. A.

Abraham. Ferrari: A tool for the Validation of System

Dependability Properties, Proceedings of the

International Symposium on Fault-Tolerant Computing,

pp. 336-344, June 1992.

[28] C. Shelton, P. Koopman and K. DeVale,

Robustness Testing of the Microsoft Win32 API,

Proceedings of the International Conference on

Dependable Systems and Networks, pp. 261-270, June

2000.

[29] M. Sutton, FileFuzz, September 2005.

http://labs.idefense.com/labs-software.php?show=3.

[30] T. Tsai and R. Iyer, Measuring Fault Tolerance

with the FTAPE Fault Injection Tool, International

Conference on Modeling Techniques and Tools for

Computer Performance Evaluation, volume 977 of

Lecture Notes in Computer Science, pp. 26–40.

September 1995.

[31] J. Röning, et al., PROTOS – Security Testing of

Protocol Implementations, Computer Engineering

Laboratory, University of Oulu, 1999–2003.

http://www.ee.oulu.fi/research/ouspg/protos/.

[32] D. Maynor, J. Ellch, Researchers hack Wi-Fi driver

to breach laptop http://www.infoworld.com/article

/06/06/21/ 79536_HNwifibreach_1.html, June, 2006.

[33] D. Maynor, Beginner’s Guide to Wireless

Auditing, http://www.securityfocus.com/infocus/1877,

September 2006

[34] R. Naraine, Wi-Fi Exploits Coming to Metasploit,

http://www.eweek.com/c/a/Security/WiFi-Exploits-

Coming-to-Metasploit/, October 2006.

[35] W. Gu, Z. Kalbarczyk, R. Iyer, Z. Yang,

Characterization of Linux Kernel Behavior under Errors,

Proceedings of the International Conference on

Dependable Systems and Networks, June 2003

