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Abstract. This paper describes the design of a security kernel called
TTCB, which has innovative features. Firstly, it is a distributed sub-
system with its own secure network. Secondly, the TTCB is real-time,
that is, a synchronous subsystem capable of timely behavior. These two
characteristics together are uncommon in security kernels. Thirdly, the
TTCB can be implemented using only COTS components.

We discuss essentially three things in this paper: (1) The TTCB is a
simple component providing a small set of basic secure services. It aims
at building a new style of protocols to achieve intrusion tolerance, which
for the most part execute in insecure, arbitrary failure environments, and
resort to the TTCB only in crucial parts of their operation. (2) Besides,
the TTCB is a synchronous device supplying functions that may be an
enabler of a new generation of timed secure protocols, until now known to
be fragile due to attacks on timing assumptions. (3) Finally, we present
a design methodology that establishes our hybrid failure assumptions in
a well-founded manner. It helps us to achieve a robust design, despite
using exclusively COTS components, with the advantage of allowing the
security kernel to be easily deployed on widely used platforms.

1 Introduction

This paper describes the design of a security kernel called Trusted Timely Com-
puting Base (TTCB). A security kernel [2] is a fail-controlled subsystem trusted
to execute a few functions correctly, albeit immersed in an environment sub-
jected to malicious faults. In the past, security kernels have mainly been used as
intrusion prevention devices, by supporting the mediation/protection of all sys-
tem interactions, and/or all accesses to system resources. The reference monitor
paradigm is such an example [8]. Alternatively, we argue that a security kernel
can be used as an intrusion tolerance device. The idea is to consider that most
of the system runs in an environment prone to attacks, but there is a secure
subsystem, the security kernel, that is used to run crucial phases of execution
allowing a collection of entities to tolerate intrusions in some of them. Think for
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example in a web server with several replicas. A security kernel can run some
steps of an intrusion tolerant protocol that provides correct results, even if some
replicas are intruded and behave maliciously (i.e., try to break the protocol).
Intrusion tolerance is the approach taken in the MAFTIA project, under which
the TTCB is being developed [15] *. The TTCB assists the implementation of
some of the intrusion-tolerant middleware components, whose architecture and
general design principles have been described elsewhere [20]. The formal verifi-
cation of the TTCB is on-going work in the context of the MAFTIA project,
and will be the subject of future reports.

The TTCB has some innovative features. Firstly, it is a distributed subsys-
tem with its own secure channel/network — the control channel/network (see
Figure 1). A distributed security kernel represents a “hard-core” component, of-
fering trusted services to a collection of participants 2, despite the fact that the
latter reside in different nodes, and that their normal communication is through
an insecure network — the payload network (see figure). In consequence, the col-
lection of participants can achieve some degree of distributed trust, for low-level
facts reported to/by the TTCB for/to all (and thus agree on them), without
having to explicitly communicate. That is, protocol participants essentially ex-
change their messages in a world full of threats, some of them may even be
malicious and cheat, but there is an oracle that correct participants can trust,
and a channel that they can use to get in touch with each other, even if for rare
moments. Moreover, this oracle also acts as a checkpoint that malicious partic-
ipants have to synchronize with, and this limits their potential for Byzantine
actions (inconsistent value faults).

Secondly, the TTCB is synchronous (or real-time), in the sense of having
reliable clocks and being able to execute timely functions, and obviously do it
in a distributed way: the control channel provides timely (synchronous) inter-
module communication. As such, it is capable, for example, of telling the time,
measuring durations of distributed operations, and detecting timing failures.

Thirdly, the TTCB can be implemented using only COTS components, hard-
ware and operating system. In consequence, all the design guidelines and the
mechanisms we describe in the paper are reproducible and useable in open set-
tings. As a matter of fact, a prototype of the TTCB that runs in mainstream
PCs with RT-Linux, a real-time brand of Linux [3], is currently available for free
non-commercial use.

The paper discusses essentially three things about our distributed security
kernel. First, it presents the TTCB model (Section 3), describes the services
provided by the TTCB and their implementation, with special emphasis on the
security services (Section 4). Next it shows how resilience to intruders can be
enforced in the proposed COTS-based implementation. The TTCB follows a
design methodology based on a composite fault model, that clearly identifies the

! More information is available at the sites www.navigators.di.fc.ul.pt and
www.maftia.org

2 Throughout the paper we use interchangeably the words entity and participant to
denominate any software component that uses the TTCB services.
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Fig. 1. The architecture of a system with a TTCB

malicious faults that have to be processed in order to prevent intrusions in the
TTCB (Section 5). To conclude, the paper motivates the design of intrusion
tolerant systems using the TTCB (Section 6).

2 Related Work

The TTCB is a distributed security kernel which is radically different from the
classic Trusted Computing Base (TCB) [11] or the Network Trusted Computing
Base (NTCB), composed by a set of interconnected TCBs [12]. The objective of
both the TCB and the NTCB is to provide intrusion prevention for all critical
software in the host, i.e., to prevent that attacks against a host have success.
The TTCB, on the contrary, is supposed to be the only secure component of
a host, and to provide a set of simple services that assist processes (or other
software components) to tolerate attacks. Even if some processes are attacked
with success, the TTCB assists the collection of processes to go on delivering
their service correctly. In another paper we show how the TTCB can be used
to execute intrusion tolerant protocols [4]. We are not aware of any distributed
security kernel with the above mentioned characteristics of the TTCB. We are
also not aware of any real-time security kernel.

The TTCB builds on the Timely Computing Base work [19]. The objective of
this distributed component it to assist the implementation of timed operations
and to detect timing failures. It assumes a benign failure model, i.e., on the
contrary to the TTCB it is not resilient to malicious faults. The TTCB provides
not only all the functionality of the Timely Computing Base, but also additional
security-related services.

There is some other work on the design of secure devices to assist the execu-
tion of secure applications. The Trusted Computing Platform Alliance (TCPA)
is defining a secure subsystem that provides some local security services to appli-
cations, e.g., persistent storage and platform authentication [17]. Project Dyad
explored the use of the Citadel secure coprocessor to implement a number of
secure distributed applications, e.g., electronic payment [18]. Several papers de-
scribe the use of SmartCards with the same generic purpose [7,16]. Although



this paper describes the implementation of the TTCB in COTS PCs and OS,
it could also be implemented inside devices like secure coprocessors or Smart-
Cards. Moreover, the TTCB is a distributed component and therefore it can
support and assist distributed applications in a more effective way. In fact, the
protocols proposed in [4] can tolerate any number of faulty participants, which
is an exciting result. The TTCB is also real-time, so it can assist the execution
of applications with time requirements.

3 The TTCB

The TTCB is a secure real-time distributed component that aims to assist the
execution of applications. The architecture of a system with a TTCB is suggested
in Figure 1. An architecture with a TTCB has a local module in some hosts,
called the local TTCB. These modules are interconnected by a control channel or
control network, depending on the implementation. This set up of local TTCBs
interconnected by the control channel/network is collectively called the TTCB.
The TTCB is used to assist protocols/applications running between participants
in the hosts concerned, on any usual distributed system architecture, encompass-
ing a set of hosts interconnected by a network (e.g., the Internet). We call the
latter the payload system and network, to differentiate from the TTCB part.

Conceptually, a local TTCB should be considered to be a module inside a
host, with a well defined interface, and separated from the OS. In practice, this
conceptual separation between the local TTCB and the OS can be achieved in
several ways: (1) the local TTCB can be implemented in a separate, tamper-
proof hardware module —coprocessor, PC board, etc.— and so the separation
is physical; (2) the local TTCB can be implemented on the native hardware,
with a virtual separation and shielding implemented in software, between the
former and the OS processes. The direction followed was the second, the one
based on COTS components (hardware and software). This design of the TTCB
is discussed later in the paper.

The local TTCBs are assumed to be fail-silent (they fail by crashing). The
TTCB cannot produce erroneous interactions or results (even on account of
attacks). Every local TTCB has a clock and the clocks are synchronized.

The TTCB control channel has well-defined characteristics, specified in Ta-
ble 1 as a set of abstract network properties, on which the design of the internal
protocols relies. In this way the control channel does not have to rely on a spe-
cific network technology: the abstract network can be mapped onto different
networks with the assistance of simple adaptation mechanisms.

The TTCB offers two sets of services, listed in Table 2, which any component
(protocol, application) in the local host can use [13].

4 TTCB Services

This section presents the TTCB security-related services and their design. The
design is generic since it relies on an abstraction of the control network (Table 1).



AN1 Broadcast — The AN has an unreliable packet broadcast primitive

AN2 Integrity — Nodes can detect if packets were corrupted in the network. Cor-
ruptions are converted to omission failures

AN3 Omission degree — No more than Od omissions may occur in a given interval
of time

AN4 Bounded delay — Any correct packet is received within a maximum delay
Tseng from the send request

ANS5 Partition free — The network does not get partitioned

ANG6 Broadcast Degree — If a broadcast is received by any local TTCB other than
the sender, then it is received by at least Bd local TTCBs

ANY7 Confidentiality — The content of network traffic cannot be read by unautho-
rized users

ANS8 Authenticity — Nodes can detect if a packet was broadcast by a correct node

Table 1. Abstract Network (AN) properties.

Security services

Local authentication For an entity to authenticate the TTCB and establish
a secure channel with it.

Trusted block agreement Achieves agreement on a small, fixed size, data block.

Trusted random numbers Generates trustworthy random numbers.

Time services
Trusted timely execution Executes operations securely and within a certain in-
terval of time.

Trusted duration measurement |Measures the duration of an operation execution.
Trusted timing failure detection|Checks if an operation is executed in a time interval.
Trusted absolute timestamping |Provides globally meaningful timestamps.

Table 2. TTCB Services

4.1 TTCB Local Security Services

This section describes the local (non-distributed) security-related services of the
TTCB, Local Authentication Service and Random Number Generation Service.

Local Authentication Service The purpose of this service is to allow the
entity to authenticate and establish a secure channel with a local TTCB. The
need for this service derives from the fact that, in general, the communication
path between the entity and the local TTCB is not trustworthy. For instance,
that communication is probably made through the operating system that may
be corrupted and behave maliciously. We assume that the entity—local TTCB
communication can be subject to passive and active attacks [9]. A call to the
TTCB is composed of two messages, a request and a reply, that can be read,
modified, reordered, deleted, and replayed.

Every local TTCB has an asymmetric key pair (K, K;) that is used to
authenticate it. The entity that calls the Local Authentication Service is assumed
to have a trusted copy of the local TTCB public key K. These public keys can be
distributed, for instance, manually or using a Public Key Infrastructure (PKI).
The private key K, is assumed to be known only by the local TTCB. A secure



channel is obtained establishing a shared symmetric key K.; between the entity
and the local TTCB, that is later used to secure their communication.

The protocol to establish the shared key has to be an authenticated key es-
tablishment protocol with local TTCB authentication. The protocol is presented
in Figure 2. The formal properties of the protocol and the proof that it verifies
those properties can be found in [5].

Action Description

1|P — T||(Ew(Ket, Xe))|The entity sends the TTCB the new key K. and a challenge
X, both encrypted with the local TTCB public key K,
2|T — P||(S,(Xe)) TTCB sends the entity the signature of the challenge ob-
tained with its private key K,

Fig. 2. Local Authentication Service protocol

The shared key K¢; has to be generated by the entity, not by the TTCB. We
would desire it to be the other way around, but the only key they share initially is
the local TTCB public key, that can be used by the entity to protect information
that can be read only by the local TTCB (that has the corresponding private
key) but not the contrary. K.; has to be generated by the entity in such a way
that a malicious OS cannot guess or disclose it. The generation of a random key
requires sources of randomness (timing between key hits and interrupts, mouse
position, etc.), sources that in mainstream computers are controlled by the OS.
This means that when an entity gets allegedly random data from those sources,
it may get either data given or known by a potentially malicious OS. Therefore,
there is the possibility of a malicious OS being able to guess the random data
that will be used by the entity to generate the key, and consequently, the key
itself. This problem is hard to solve, however, a set of practical criteria can help
to mitigate it: (1) the entity should use as much as possible sources of random
data not controlled by the OS. (2) The entity should use as many different
sources of random data as possible. Even if an intruder manages to corrupt the
0S8, it will probably not be able to corrupt its code in many different places
and in such a synchronized way, so that it may guess the random number. (3)
The entity must use a strong mizing function, i.e., a function that produces an
output whose bits are uncorrelated to the input bits [6]. An example is a hash
function such as MD4 or MD5. For similar reasons, the protocol challenge, X,
has to be generated by the entity using the same approach.

The Local Authentication Service protocol is implemented in the TTCB API
as a single call with the following syntax:

eid, chlg_sign <~ TTCB_localAuthentication(key, protection, challenge)

The input parameters are the key, the communication protection to be used,
and the challenge. The output parameters are the entity identification —eid— used
to identify the entity in the subsequent calls, and the signature of the challenge.

Random Number Generation Service This service supplies uniformly dis-
tributed random numbers, which can be used as nonces or keys for cryptographic



primitives such as distributed authentication protocols. The TTCB provides this
service for efficiency since the method described in the previous section can be
slow.

The interface of the service is a single function that returns a random number:

number < TTCB_getRandom ()

In a future version of the TTCB, based on an appliance board, we envis-
age the use of a hardware random number generator. In the current RT-Linux
TTCB, the random numbers are given by the Linux random number generator.
This generator works with an entropy pool that collects random data from sev-
eral inputs: device driver noise, timing between key hits, timing between some
interrupts, mouse position, timing between disk accesses, etc. When a random
number is requested, a hash of the entropy poll is calculated using MD5.

4.2 TTCB Distributed Security Service

Distributed services are services that require the cooperation of several local
TTCBs for their execution. This section describes the only TTCB distributed
security-related service— the Trusted Block Agreement Service— but a funda-
mental one. The remainder distributed services are time-related (see [13]).

The Trusted Block Agreement Service This service (Agreement Service for
short) performs agreement protocols between sets of entities. These protocols,
which for instance, multicast a number of bytes or reach to a consensus with a
majority decision, are executed in a secure and timely fashion since the service
runs inside the TTCB. The service is not intended to replace agreement protocols
in the payload system: it works with “small” blocks of data (currently 160 bits),
and the TTCB has limited resources to execute it.

The Agreement Service is formally defined in terms of the three functions
TTCB- propose, TTCB-_ decide and decision. An entity proposes a value when
it calls TTCB- propose. An entity decides a result when it calls TTCB- decide
and receives back a result. The function decision calculates the result in terms
of the inputs of the service. Formally, the Agreement Service is defined by the
following properties:

— AS1 Termination. Every correct entity eventually decides a result.

— AS2 Integrity. Every correct entity decides at most one result.

— AS3 Agreement. If a correct entity decides result, then all correct entities eventually
decide result.

— AS4 Validity. If a correct entity decides result then result is obtained applying the
function decision to the values proposed.

— AS5 Timeliness. Given an instant tstart and a known constant Tugreement, a pro-
cess can decide by tstart+T,greement-

The TTCB is a timely component in a payload system with uncertain time-
liness. Therefore, the Timeliness property is valid only at the TTCB interface.
An entity can only decide with the timeliness the payload system permits.



The interface of the Agreement Service has two functions: an entity calls
TTCB- propose to propose its value and TTCB- decide to try to decide a result
(TTCB- decide is non-blocking and returns an error if the agreement did not
terminate).

out + TTCB_propose(eid, elist, tstart, decision, value)
result < TTCB_decide(eid, tag)

An agreement is uniquely identified by three parameters: elist (the list of en-
tities involved in the agreement), tstart (a timestamp), and decision (a constant
identifying the decision function). The service terminates at most Tpgreement af-
ter it “starts”, i.e., after either: (1) the last entity in elist proposed or (2) after
tstart, which of the two happens first. That shows the meaning of tstart: it is
the instant at which an agreement “starts” despite the number of entities in elist
that proposed. If the TTCB receives a proposal after tstart it returns an error.

The other parameters of TTCB_ propose are: eid is the unique identification
of an entity before the TTCB, obtained using the Local Authentication Service;
value is the block the entity proposes; out is a structure with two fields, error, an
error code and tag, an unique identifier of the agreement before a local TTCB. An
entity calls TTCB- decide with the tag that identifies the agreement that it wants
to decide. result is a record with four fields: (1) error, an error code; (2) value, the
value decided; (3) proposed-ok, a mask with one bit per entity in elist, where each
bit indicates if the corresponding entity proposed the value that was decided; (4)
proposed-any, a similar mask that indicates which entities proposed any value.
Two decision functions currently available are: TTCB. TBA- RMULTICAST,
that returns the value proposed by the first entity in elist (therefore the service
works as a reliable multicast); TTCB- TBA- MAJORITY, that returns the most
proposed value. Both return the two masks.

Trusted Block Agreement Service Protocol The internal protocol that
implements the Agreement Service is time-triggered: TTCB- propose is called
asynchronously, and gives the TTCB data that is stored in tables; periodically
that data is broadcast to all local TTCBs, including the sender, and, also peri-
odically, data is read from the network and processed.

The protocol uses two tables (Figure 3). The dataTable stores all agreements
data. Each record has the state of one agreement with the format: (tag, elist,
tstart, decision, vtable). All fields have the usual meaning except vtable, which is
a table with the values proposed (one per entity in elist). sendTable stores data
to be broadcast to all local TTCBs. Every record is a proposal with the format:
(elist, tstart, decision, eid, value). The agreement is identified by (elist, tstart,
decision), eid identifies the entity that proposed and value is the value proposed.

The protocol has four routines. The propose routine is executed when an
entity calls the TTCB function TTCB- propose (Lines 1-6). The routine begins
by doing some tests: if the entity already proposed a value for this agreement;
if the entity that calls the service is in elist; if tstart already expired (Line 2).
Other tests, are also made but are not represented since they are not so related
to the algorithm functionality. If the propose is accepted, its data is inserted



. For each local TTCB
propose routine

1 when entity calls TTCB_propose(eid, elist, tstart, decision, value) do

2 if (entity already proposed) or (eid ¢ elist) or (clock() > tstart) return error;
3 insert (elist, tstart, decision, eid, value) in sendTable;

4 get R € dataTable : R.elist = elist A R.tstart = tstart A R.decision = decision;
5 if (R = L) R := (get_tag(), elist, tstart, decision, L); insert R in dataTable;
6 return R.tag;

broadcast routine

7 when clock() = round, x Ts do

8 repeat Od + 1 times do broadcast(sendTable);

9 sendTable := L; rounds := rounds + 1;

recetve routine

10 when clock() = round, x T, do

11 while (read(M) # error) do

12 foreach (elist, tstart, decision, eid, value) € M.sendTable do

13 get R€dataTable : R.elist = elist A R.tstart = tstart A R.decision = decision;
14 if (R = L) R := (get_tag(), elist, tstart, decision, L); insert R in dataTable;
15 insert value in R.vtable;

16 round, := round, + 1;

decide routine

17 when entity calls TTCB_decide(eid, tag) do

18 get R € dataTable : R.tag = tag;

19 if (R#L) and [(clock()>R.tstart+Tagreement) or (all entities proposed a value)]
20 return (calculate result using function R.decision and values in R.vtable);

21 else return error;

Fig. 3. Agreement Service internal protocol. Instance at a local TTCB.

in sendTable and dataTable, and the tag is returned (Lines 3-6). The broadcast
routine broadcasts data to all local TTCBs every T (the period) either if there is
data in sendTable or not (Lines 7-9). Every message is broadcasted Od+ 1 times
in order to tolerate omissions in the network (Od is the omission degree). After
the broadcast, sendTable is cleaned. The receive routine reads and processes
messages every T, (Lines 10-16). Since each message is broadcasted Od + 1
times, copies of the same message have to be discarded by the function read
(Line 11). For each message received, the data in each record of sendTable is
inserted in dataTable (Lines 12-15). The decide routine is executed when an
entity calls the function TTCB- decide. The routine searches dataTable for the
agreement identified by the tag and returns an error if it does not exists. If the
instant tstart + Tqgreement Passed or the local TTCB has the values proposed
by all entities in elist, the result is obtained and returned.

The above protocol can be proved correct if communication is done using a
reliable broadcast primitive. This primitive and the proof can be found in [5].

5 The TTCB Design: Enforcing Resilience to Intruders

A system design addresses both functional and non-functional aspects. The func-
tional aspects are concerned with the algorithms and protocols that make the
system perform its service, mostly presented in the previous section. This section
is concerned with the non-functional design of the COTS-based TTCB.

5.1 Design Methodology

Composite fault model with hybrid failure assumptions The organi-
zation of assumptions in terms of a composite fault model [20] underpins our



design philosophy. In MAFTTA, we say that the impairments that may occur to
a system, security-wise, have to do with a wealth of causes, which range from
internal faults (i.e., vulnerabilities), to external, interaction faults (i.e., attacks)
which activate those vulnerabilities, producing faults (i.e., intrusions) that can
directly lead to component failure.

The composite fault model is shown in Figure 4. The figure also shows where
to apply different techniques to prevent the system from failing. Because we
differentiated the several fault classes, we can apply these techniques selectively,
and in a structured way. Note for example, that an intrusion cannot occur unless
there is a vulnerability to be activated by a corresponding attack (it makes no
sense to prevent an attack for which there is no vulnerability, or vice-versa).

attack
prevention
attack 4
(fault) ® error failure
—>0>@ *
H 0 o
i vulnerability [ intrusion
ntruder/ i (fault intrusion  (fault) intrusion
Designer/p - - dm - mmmee e £ ‘ prevention tolerance
Operatoy
vulnerability vulnerability
prevention removal

Fig. 4. The Composite Fault Model of MAFTIA

A composite fault model with hybrid failure assumptions is one where the
presence and severity of vulnerabilities, attacks and intrusions varies from com-
ponent to component. Consider a component or sub-system like the TTCB,
for which a given controlled failure assumption was made. How can we achieve
coverage of such an assumption, given the unpredictability of attacks and the
elusiveness of vulnerabilities?

The first-line techniques are vulnerability prevention (e.g., using correct cod-
ing practices), and then attack prevention (e.g., physically isolating an access
point) and vulnerability removal (e.g., patching the OS and removing absolute
privileges from the root account).

All these techniques contribute to intrusion prevention. However, after this
step there may still be attack-vulnerability combinations to fear from (illustrated
in the figure, by the holes in the intrusion prevention barrier). The design must
then be complemented with the necessary intrusion tolerance measures, for ex-
ample, using intrusion detection and recovery or masking, until we justifiably
achieve confidence that the component behaves as assumed, failing in the as-
sumed controlled manner, i.e., the component is trustworthy. The measure of its
trustworthiness is the coverage of the controlled failure assumption.

Note that there is a body of research on hybrid failures for consensus and
diagnosis algorithms, assuming failure type distributions for different partici-
pants [10,22]. For instance, some participants are assumed to behave arbitrarily
while others are assumed to fail only by crashing. The present work might best



be described as architectural hybridization, in the lines of works such as [14, 21],
where failure assumptions are in fact enforced by the architecture and construc-
tion of the system components, and thus well-founded. Hybrid behavior occurs
component-wise: components in general are assumed to fail arbitrarily, but can
use the services of a fail-controlled component, the TTCB.

The Methodology The design of the TTCB with regard to the non-functional
properties follows the principles underlined above. The design methodology has
four steps. It makes sense to perform several iterations until the final result.

1. Define the desired system (TTCB) architecture and failure modes

2. Define the environment assumptions and the adaptation mechanisms that enforce
these assumptions

3. Design the mechanisms and protocols that enforce the system failure modes

4. Assess the system design

Step one is the definition of the TTCB architecture and failure modes. The
TTCB architecture was presented in Section 3 but is more detailed below in
Section 5.2. The architecture itself can prevent some attacks against specific
components. For example, the control network being physically inaccessible to
hackers. About the failure modes, recall that we consider the local TTCBs to be
fail-silent, and consider the inter-TTCB communication also to be fail-silent.

Step two is about the system’s environment, i.e., about whatever is external
to the system but that interacts with it: host hardware and OS, networks, intrud-
ers, etc. The environment is characterized in terms of a set of assumptions that,
in practice, have to be enforced using adaptation mechanisms. The environment
assumptions and the adaptation mechanisms are presented in the section 5.3.

Step three deals with constructing the mechanisms and protocols which en-
force the fail-silent behavior of the TTCB, on the assumed environment and ar-
chitecture. This resumes to make the TTCB resilient to attacks and intrusions.
The design methodology may recursively be applied to the internal components
of the TTCB as part of this step. This is discussed in Section 5.4.

Step four consists in assessing the system design, or in this case, the TTCB
subsystem. On the one hand, determining whether the coverage of the design
assumptions is acceptably high. On the other hand, determining whether given
the assumptions, the algorithmics and their implementation provide the specified
services. The verification and assessment of the TTCB design is on-going work
on the context of project MAFTIA.

5.2 System Architecture

The general architecture of the TTCB was presented in Sections 1 and 3. It was
also mentioned that our current implementation is based on common PCs with
RT-Linux. To pursue the COTS strategy, our implementation is based on Fast-
Ethernet, for campus-wide systems: we provide each host having a TTCB with an
extra LAN adapter. We envisage future designs based on tamperproof hardware



and wide-area networks such as an ISDN Virtual Private Network (VPN) 2. A
VPN provides a private channel, if we assume that the public telecommunications
network is not eavesdropped. Additional security can be obtained using secure
channels, e.g., encrypting the TTCB communication.

RT-Linux is an engineering of Linux, which was modified in order that a
real-time executive takes control of the hardware, to enforce real-time behavior
of some real-time (RT) tasks. RT tasks were defined as special Linux loadable
kernel modules (LKMSs), so they run inside the kernel. The scheduler was changed
to handle these tasks in a preemptive way and to be configurable to different
scheduling disciplines. Linux runs as the lowest priority task and its interruption
scheme was changed to be intercepted by RT-Linux.

Real-time FIFOs are the basic mechanism for communication between and

with RT tasks.
Linux Linux
Application icati
TTCB API PP Application
Library < D
v

Interface  Local )
Modue _TICB L
2== 1
3 v
TTCB RT-Linux
RT tasks

I I Hardware

Fig. 5. The architecture of a host for the COTS-based TTCB

The COTS-based local TTCB architecture is detailed in Figure 5. The API
functions are defined in libraries and communicate with the local TTCB using
RT-Linux FIFOs. Currently there is one library for applications in C and another
for Java (TTCB API Library in the figure). The local TTCB is implemented by
an LKM (Interface Module) and by a number of RT tasks (TTCB RT Tasks).
The TTCB Interface Module handles calls from the entities. It is not real-time
since it is part of the interface of the TTCB. All operations with timeliness
constrains are executed by RT tasks. A local TTCB has always at least two
RT tasks that handle communication: one to send messages to the other local
TTCBs and another to receive and process incoming messages.

5.3 Environment Assumptions and Adaptation Mechanisms

The environment assumptions are shown in Table 3. The environment includes
the PCs with RT-Linux (the host), the payload network and the control network.

RT-Linux and protection From the point of view of security, RT-Linux is
very similar to Linux. Its main vulnerability is the ability a superuser has to
control any resource in the system. This vulnerability is usually reasonably easy

3 ISDN is a public digital network technology for data and telephony that provides con-
nections with guaranteed bandwidth in multiples of 64 Kbps (128 Kbps, 1 Mbps...).



A1 The host protection mechanisms are not reconfigured by any intruder.

A2 The host kernel memory is not read or written by any intruder.

A3 The control channel access point is not read or written by any intruder.

A4 The data on the control channel is not read or written by any intruder.

A5 Given a known interval of time, the control channel does not corrupt more than
k packets.

A6 There are no partitions in the control channel.

Table 3. Environment assumptions.

to exploit, e.g., using race conditions. Recently, several Linux extensions try
to compartmentalize the power of the superuser. Linux capabilities [1], already
part of the kernel, are privileges or access control lists associated with processes,
allowing a fine grain control on how they use certain objects. Currently, though,
the practical way of using this mechanism is quite basic. There is a system wide
capability bounding set that bounds the capabilities that can be held by any
system process. Removing a capability from that set disables the ability to use
an object. Although basic, this mechanism fits our needs.

Enforcing environment assumptions Assumptions A1 and A2 impose the
only limits on what the intruder can do inside a host. Otherwise, we assume that
it can access the host, run software there, and become root or run processes with
superuser privileges.

The protection mechanisms mentioned in A1l are basically a set of commands
in a script that remove a set of Linux capabilities from the capability bounding
set. This script is executed when the host is rebooted. Therefore, assumption
A1 is secured preventing hackers from rebooting the system. This can be done
either protecting the access to the host or using a reboot password *.

Assumption A2 protects the working space of both the RT-Linux kernel and
the modules that support the TTCB. If the intruder manages to modify the
kernel memory, he has a dramatic potential for damage, which ranges from
modifying kernel or TTCB code or state, to arbitrarily controlling any of the
system components, since code in the kernel memory can execute privileged CPU
instructions. Assumption A2 is enforced by removing two vulnerabilities:

— Loadable kernel modules insertion: LKMs allow a hacker that gained superuser
privileges to insert code in the kernel. The vulnerability is disabled removing the
capability CAP_SYS_MODULE off the capability bounding set.

— /dev/mem and /dev/kmem devices: these devices can be used to read and modify
the system memory, including the kernel. This vulnerability is removed taking
CAP_SYS_RAWIO off the capability bounding set.

Assumptions A3 through A6 refer to the control channel. Assumption A3
stipulates that an intruder cannot access the control network adapter from in-
side the host, and in consequence, he/she can neither send to, nor read and/or

* This discussion concerns the environment during runtime. We also assume that the
kernel and the local TTCB binaries are not corrupted by an intruder or, at least,
corruption is detected during reboot.



intercept packets from, the control network. This can be enforced modifying the
relevant LAN controller.

Assumption A4, on the other hand, is secured by ensuring that an intruder
does not have physical access to the control network medium devices (cables,
switches, etc.). The assumption makes sense if we consider that it is a short-
range, inside-premises closed network, connecting a set of servers inside a single
institution, with no other connection. We are assuming that the intruder comes
from the Internet, through the payload network, without physical access to the
servers or control network hardware. Long-range solutions also use technologies
such as ISDN VPN, that are hard for the common Internet intruder to tamper
with in conjunction with an attack through the payload network. Note however
that assumption A4 can still be enforced for a more powerful hacker who can
eavesdrop on the control channel, by using cryptographic schemes in the inter-
TTCB communication.

In the just assumed absence of active attacks on the control channel, assump-
tions A5 and A6 establish limits to the events that may affect the timeliness of
communication on the former, so that known bounds can be derived on message
delivery delays, and failure detection can be accurately performed. Networks
can be tested in order to find out the maximum number of packets they may
corrupt in an interval of time, the omission degree. Likewise, short-range LANs
have negligible partitioning, which can be further improved by using redundant
channels, a must to enforce A6 in wider-area networks.

5.4 Enforcing System Failure Modes

The composite fault model in Figure 4 shows that different techniques can be
used to make a system resilient to intrusions. The intruder in the figure is part
of the environment, so its behavior is modelled by the environment assump-
tions in Table 3. Now, look at assumptions Al through A4 in the table: they
impose restrictions to the behavior of the intruder. Hypothesizing about limits
to the behavior of malicious entities, such as hackers or viruses is, of course,
not acceptable. Therefore, in the previous section we devised mechanisms that
impose these restrictions in practice, i.e., that enforce the assumptions despite
the potential arbitrary behavior of the intruder.

Assumptions Al through A4 effectively do attack prevention (see Figure 4):
it is an assumption that the intruder is not able to attack either the TTCB
software modules or the control channel. Therefore, at this stage there is no need
to enforce the system resilience to intruders. Handling the attacks/intrusions at
step two (environment assumptions) is the same as doing it at step three. If we
made RT-Linux part of the system then it would be the system that would be
preventing or tolerating the faults, instead of the environment, i.e., protection
would be made in step three instead of two. However, in this particular case, the
way it is done seems more intuitive.

What remains to be defined at this stage is how the abstract network prop-
erties (Table 1) are obtained on top of the real network, taking in account the
environment, assumptions.



Property AN1 is available in the Ethernet and can be simulated with IP mul-
ticast or with several message sends in other networks. Property AN2 is imposed
by most networks, through the cyclic redundancy check (CRC), if no attacks on
the network are considered (assumptions A3/A4). If there are attacks, message
integrity checks (MICs) can be used instead. Property AN3 is guaranteed by
the environment assumption A5. For property AN4 to be guaranteed in a ded-
icated switched Fast-Ethernet, packet collisions have to be avoided, since they
would cause unpredictable delays. This requires that: (1) only one host can be
connected to each switch port (hubs cannot be used); and (2) the traffic load
has to be controlled. The first requirement is obvious. The second is solved by
an access control mechanism, that accepts or rejects the execution of a service
taking in account the availability of resources (buffers and bandwidth). Prop-
erty AN5 is guaranteed by the assumption A6. For property ANG, in a switched
Fast-Ethernet Bd can easily exceed half of the nodes. Properties AN7 and AN8
are guaranteed by the assumptions A3 and A4 and could be enhanced using
common cryptographic schemes.

6 Intrusion Tolerance with the TTCB

After delving into the discussion of the TTCB services and design, a pertinent
question at this stage is: What is the TTCB good for? This question is best
answered after explaining the failure assumptions followed in the MAFTIA ar-
chitecture.

6.1 Fault Model

A crucial aspect of any fault-tolerant architecture is the fault model upon which
the system architecture is conceived, and component interactions are defined.
Hybrid assumptions, combining different kinds of failure assumptions, are fol-
lowed in our work. This is because controlled failure assumptions have the prob-
lem of coverage in case of malicious faults, and arbitrary failure assumptions, on
the other hand, are costly in terms of timeliness and complexity. With hybrid
assumptions some parts of the system would be justifiably assumed to exhibit
fail-controlled behavior, whilst the remainder of the system would still be allowed
an arbitrary behavior. However, such an approach is only feasible when the fault
model is well-founded, otherwise the system becomes easy prey to hackers. In
consequence, the implementation of the TTCB discussed in Section 5 combines
different techniques and methods tackling different classes of faults, in order to
achieve the postulated behavior (fail-silent) with high coverage.

6.2 Strategy for Intrusion Tolerance

With the TTCB, we can implement intrusion-tolerance mechanisms, on a hybrid
of arbitrary-failure (the payload system) and fail-silent (the TTCB) components.
The TTCB is designed to assist crucial steps of the operation of middleware pro-
tocols. We use the word “crucial” to stress the tolerance aspect: unlike classical,
prevention-based approaches (e.g., Reference Monitor), the component does not



stand in the way of all resources and operations. As a matter of fact, protocols
run in an untrusted environment, local participants only trust interactions with
the security kernel, single components can be intruded, and correct service pro-
vision is built on distributed fault tolerance mechanisms, for example through
agreement and replication amongst collections of participants in several hosts.

Hybrid Failure Timed Protocols

Fig. 6. Intrusion Tolerance with a TTCB

Observe Figure 6: software components C; interact through protocols which
run on the payload system (the top arrows). However, they can locally access
the TTCB in some steps of their execution (for example, to be informed whether
a message just received was or not corrupted). The white color is used to mean
a trusted environment (the TTCB). The key means the environment is crypto-
graphically secure. The grey colors for the payload system mean untrusted.

Trusting the TTCB security kernel means that it is not feasible to subvert
the TTCB, but it may be possible to interfere in its interaction with entities.
In similar terms, whilst we let a local host be compromised, we must make sure
that it does not undermine fault-tolerant operation of the protocols amongst
distributed components. The above implies two things: the operation of protocols
can be intruded upon and individual components can be corrupted (e.g., Ck);
and special care must be taken in order to preserve the validity of the interactions
of a correct entity with its local TTCB. The reader is referred to [4], where we
give a practical example of the use of the TTCB to implement intrusion-tolerant
protocols.

In order to understand the assumptions on timeliness of our system, let us
analyze Figure 6 again: the clock inside the TTCB area is meant to suggest it
is a fully synchronous (or hard real-time) component. On the other hand, the
warped clock in the payload area suggests that it has uncertain timeliness, or
partial synchronism. It can even be asynchronous.

Constructing secure timed protocols in these environments is a hard task, due
to the risk of attacks on the timing assumptions. For that reason, most known
secure broadcast or byzantine agreement protocols are of the asynchronous class.
However, certain services, if provided in a trusted way (by the TTCB, which has
thus to be a synchronous— real-time— component) can provide invaluable help.

6.3 Example Applications with a TTCB

This section exemplifies the use of the TTCB in two different settings. Figure 7(a)
shows a web server replicated inside a facility, a company or another institution.
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Fig. 7. Examples of intrusion tolerant systems with a TTCB: (a) replicated web server;
(b) distributed security server

Clients call the server using an intrusion tolerant protocol. This protocol uses the
TTCB to perform some crucial steps, but otherwise runs in the payload system.
If a subset of replicas is corrupted and behave maliciously, the server will still
provide correct results, tolerating these malicious faults. An inside-facility TTCB
can be the version described in the paper. This solution requires an extra Fast-
Ethernet adapter per host and an extra network switch, an affordable price.
Several Internet authentication schemes rely on highly secure and distributed
servers. For instance, Public Key Infrastructures have Certification Authorities
(CAs) with these characteristics. Figure 7(b) shows a TTCB distributed over
a wide area, that allows the execution of intrusion tolerant protocols over such
an extension. The TTCB control channel has to be a highly secure and wide
channel, with guaranteed bandwidth (e.g., the above mentioned ISDN VPN).

7 Conclusions and Future Work

The paper describes the design of a security kernel — the TTCB — with inno-
vative features: first, it is distributed, with local parts in hosts connected by a
control channel; second, it is real-time, capable of timely behavior; and third, it
can be constructed using only COTS components. The paper also presents the
services of the TTCB and gives an intuition on how these services can be used to
support the construction of a new generation of intrusion tolerant protocols [4].
The currently available implementation of the TTCB is based on common hard-
ware running a real-time operating system, RT-Linux, and on a Fast-Ethernet
network. By applying our design methodology, we expect that the existing im-
plementation exhibits a good coverage of the assumptions, acceptable to most
applications. This solution has one extra added advantage — the TTCB can be
tested and used in open settings.
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