
Towards PHP Vulnerability Detection at an
Intermediate Language Level

Paulo Antunes, Ibéria Medeiros, Nuno Neves
LASIGE, Faculdade de Ciências da Universidade de Lisboa, Portugal

pdantunes@fc.ul.pt, ivmedeiros@fc.ul.pt, nfneves@fc.ul.pt

Abstract—Web applications are a prime target for malicious
actors to obtain private user information, such as credit card
numbers and other sensitive details. Over the years, the number
of vulnerabilities and attacks has increased, demonstrating that
current solutions have shortcomings. For example, they can be
prone to error or require too much resources/time from develop-
ers (or security analysts) to deliver results. This paper presents a
new approach to detect vulnerabilities in web applications written
in PHP by analyzing their representation in an Intermediate
Language (IL) and simulating the execution through a new data
structure.

Index Terms—Vulnerability Discovery, Code Analysis, Web
Applications

I. INTRODUCTION

The rapid evolution of web technologies and ease of access
to computational power has led many services to have an
online component. Through these web services, it is possible
to acquire various products, contact friends and family, or
even access sensitive bank account information. All these
functionalities are typically provided through web applica-
tions, and although billions of users employ them daily, many
inadvertently incorporate latent vulnerabilities. If exploited,
these flaws can lead to severe consequences ranging from
private data theft and adulteration of information to complete
service shutdown. These vulnerabilities are often a result of
insecure programming practices allied with the utilization of
languages and Content Management Systems (CMS) that rely
on insufficient validation procedures [1]. A concrete example
would be PHP, which has limited data type validation. Even
so, PHP is still the most used language for web application
back-end development [2].

There are several approaches to find vulnerabilities, but
various of these possess drawbacks. Static analysis can be
utilized at any stage of the application’s life cycle, but it
depends on the vulnerability classes’ knowledge base and code
modeling technique. Any error or incompleteness in these
can result in false positives or false negatives [3]. Fuzzing
can create various inputs cyclically to test the application for
potential errors and vulnerabilities. However, finding an input
that can reliably trigger a vulnerability can take significant
time as there is an infinite set of possible input values [4].
Symbolic execution is an approach that associates variables
with a group of symbolic values to infer what set of values
can result in specific program behavior. While this approach
can provide a complete knowledge of program behavior,
sometimes there is a significant overhead to solve symbolic

Fig. 1. Example of PHP code (left-side) to IL conversion (right-side).

expressions, and the exploration of the code can result in the
problem of path explosion [5].

We aim to design and implement a tool to address some of
these issues by performing the analysis at an IL level, which
is produced while executing a PHP application.

II. CHALLENGES

A. Intermediate Language

During application execution, PHP translates high-level
language constructs to a set of IL instructions composed of
opcodes, which are then processed by a dedicated virtual
machine (VM). This VM interprets the opcodes and executes
the corresponding operations on the hardware. The IL has
a reduced semantic and syntactic complexity since IL in-
structions typically comprise an opcode, two operands, and a
return value. Therefore, although the IL program has many
more instructions than the PHP program, each instruction
has significantly less complexity. An example of a simple
excerpt of vulnerable PHP code can be found in Figure 1,
along with the generated IL code. The PHP code echo
"Welcome".user is converted into the operations opcodes
CONCAT and ECHO, where the former concatenates the
string Welcome with the variable user temporally stored at
!0, whereas the latter executes the expression returned from
the former represented as ∼1. Our objective is to have a tool
that accurately emulates the execution of these IL instructions
and the changes in the program state, enabling the detection
of vulnerabilities when activated.

B. Code Representation

Several structures exist to represent code and enable anal-
ysis, such as the Abstract Syntax Tree (AST), the Control
Flow Graph (CFG), the Program Dependence Graph (PDG),
and the Code Property Graph (CPG). However, they were not
tailored to deal with the PHP IL and support the discovery of
web vulnerabilities. In addition, they have a few shortcomings:
AST lacks a straightforward way to determine what causes



Fig. 2. Proposed vulnerability detection pipeline.

the execution of a given statement and which statements
influence the data of other statements; CFG represents the
relationship of control between statements but can make the
origin of data ambiguous (since it disregards data flow); PDG
represents the relation between program statements through
two different edges that correspond to data and control depen-
dencies; although this gives a notion of data dependency, we
lose the capability of discerning the order in which programs
statements are executed. CPG is, in essence, generated by
combining the AST, CFG, and PDG into a single structure;
it is not designed with IL in mind and does not accurately
represent the states of a program’s execution. Hence, we need
to develop a novel structure to support the analysis.

C. Vulnerability Detection

The tool must output relatively accurate results to be usable
in real-life scenarios. False negatives during the analysis will
create a false sense of security over the quality of the code.
In contrast, false positives can needlessly take developers’
time by forcing them to analyze several lines of code for an
issue that does not exist, thus eroding trust in the tool and
making them skeptical towards future vulnerability reports.
It is also necessary to have results in a reasonable time
frame, as organizations typically allocate a limited period
and/or monetary budget for application testing. Vulnerability
detection in IL can benefit from the finer-grain nature of the
operations that are being analyzed, which makes operations
less ambiguous and require fewer approximations (the usual
cause of false positives and false negatives). However, as
mentioned in Section II.A, having a larger set of operations
to analyze is an added challenge.

III. CURRENT DESIGN AND IMPLEMENTATION

The tool implementation, see Figure 2, is being developed
in Python and works in tandem with a modified version of
VLD [6]. VLD is a plugin that can show low-level PHP
structures, namely the IL instructions. We changed VLD
slightly to facilitate opcode extraction and obtain additional
information regarding certain variable types.

• IL Extractor: Intercepts the PHP execution and extracts
the IL of the entire application (i.e., the IL of all files
and functions). This information is stored by our tool for
subsequent use;

• Guided Static Analyzer: utilizes the obtained IL jointly
with a set of inputs to the application. It simulates
the execution of the IL instructions while processing a
concrete input, starting from the application’s entry point.
As the simulation progresses, it saves the changes to the
program’s state and the relationship between operations
in a Program State Graph (PSG) (a structure designed
by us). This structure is generated by interpreting the
produced IL and simulating their execution with a given
input, which can be provided manually or by a fuzzer.
The state at each instance of the application is represented
through nodes, and the connecting edges are state-altering
operations that produce new states;

• Vulnerability Identifier: performs a taint analysis over
the produced PSG by replacing the concrete values of
the simulation with tainted values and propagating them
throughout the graph. Whenever a tainted value reaches
a critical instruction, this most probably indicates that
a vulnerability exists. In this case, a report presenting
the affected line of code, the function, and the tainted
variable is generated. This report aims to aid developers
and security analysts in addressing the issue swiftly.

The tool is partly implemented and already supports over
100 IL opcodes. It can also produce an IL trace (based on
the PSG) as intended. Regarding error detection, we have
performed initial testing of PHP applications and produced
reports that successfully detected a few vulnerabilities.

IV. CONCLUSIONS AND FUTURE WORK

Previous approaches to finding web vulnerabilities include
static analysis, fuzzing, and symbolic execution. However,
each has drawbacks, and vulnerabilities are still high in web
applications. Some research has also focused on bytecode
analysis [7], but the proposed methodology differs extensively
from the one presented in this paper as it targets a different
language (Java) and utilizes a CPG to represent code and
conduct an analysis.

About future work to be done, we would like to refine
our vulnerability detection further and extend the number
of supported opcodes. Additionally, to make the tool more
efficient at exploring paths, we are currently developing a
methodology that creates new IL traces without full execution.
This will be done by forcing state changes at key inflexion
points of the code (i.e., conditional jumps), enabling the
simulation of only the remaining portion of the code. The
benefits are saving resources and exploring new code paths
that can be analyzed for vulnerabilities.

Acknowledgments: This work was supported by
FCT through a PhD. Scholarship (2020.04482.BD),
and the LASIGE research unit (UIDB/00408/2020 &
UIDP/00408/2020), and by P2020 through the XIVT project
(LISBOA-01-0247,FEDER-039238, an ITEA3 European
project (I3C4-17039)).



REFERENCES

[1] The State of Web Application Vulnerabilities in 2019. Imperva, 2020.
https://www.imperva.com/blog/the-state-of-vulnerabilities-in-2019/

[2] Usage Statistics for PHP Websites, W3Tech, 2023,
https://w3techs.com/technologies/details/pl-php

[3] P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, M. Vieira.
Benchmarking Static Analysis Tools for Web Security. IEEE Transac-
tions on Reliability, 2018, Vol 67, pp. 1159-1175

[4] G. Klees, A. Ruef, B. Cooper, S. Wei, M. Hicks. Evaluating Fuzz
Testing, ACM Conference on Computer and Communications Security,
2018, pp. 2123-2138

[5] C. Cadar and P. Godefroid and S. Khurshid and C.S. Păsăreanu and K.
Sen and N. Tillmann and W. Visser. Symbolic Execution for Software
Testing in Practice: Preliminary Assessment. Proc. of the International
Conference on Software Engineering, 2011, pp. 1066-1071

[6] D. Rethans, Vulcan Logic Dumper, 2023,
https://derickrethans.nl/projects.html

[7] W. Keirsgieter, W. Visser. Graft: A Static Analysis Tools for Java
Bytecode. Conference of the South African Institute of Computer
Scientists and Information Technologists, 2020, pp. 217-226


