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Abstract—In the last decade, Industrial Control Systems have
been a frequent target of cyber attacks. As the current de-
fenses sometimes fail to prevent more sophisticated threats, it is
necessary to add advanced protection mechanisms to guarantee
that correct operation is (always) maintained. In this work, we
describe a Supervisory Control and Data Acquisition (SCADA)
system enhanced with Byzantine fault-tolerant (BFT) techniques.
We document the challenges of building such system from a “tra-
ditional” non-BFT solution. This effort resulted in a prototype
that integrates the Eclipse NeoSCADA and the BFT-SMaRt open-
source projects. We also present an evaluation comparing Eclipse
NeoSCADA with our BFT solution. Although the results show a
decrease in performance, our solution is still more than enough
to accommodate realistic workloads.

Keywords—Byzantine fault tolerance, SCADA systems, State
Machine Replication, Eclipse NeoSCADA.

I. INTRODUCTION

Industrial Control Systems (ICS) security has relied on the
past years on firewalls, Intrusion Detection Systems (IDS), and
air-gapped architectures. Unfortunately, these mechanisms are
not enough: Firewalls are prone to attacks [1] and they are
typically a single-point-of-failure; IDS may fail to discover
unknown attacks as their detection is based on attack signa-
tures or anomaly detection [2]; In 2010, the Stuxnet attack [3]
was designed to overpass the air-gapped defenses using an
infected USB pen. In addition, the widespread integration
of field and corporate networks make Supervisory Control
and Data Acquisition (SCADA) systems more exposed to the
plethora of attacks plaguing internet-based systems [4], which
may lead to operational failures.

SCADA systems are the backbone of ICSs. For example,
they monitor and manage the power grid and water sup-
ply systems machinery. Figure 1 shows a generic SCADA
architecture with its main components: the Human-Machine
Interface (HMI) is a computer that allows an operator to view
the state of the infrastructure and react to events by issuing
commands; the SCADA Master is a server that monitors
and sends commands to Remote Terminal Units (RTU); the
Frontends work as protocol translators between the RTUs and
the SCADA Master; and the RTUs aggregate data from sensors
located in the field, and execute commands in the actuators
based on the SCADA Master instructions.

Modern SCADA systems normally employ fault tolerance
techniques in the SCADA Master to ensure reliability, as it
is the most critical component of the system. The SCADA
Master is often deployed in a hot-standby configuration, where
a primary server processes all collected data, mirroring its state
changes to the backup server. In this type of configuration (i.e.,
passive replication) recovering from failures can be delayed
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Fig. 1. SCADA generic architecture.

while the backup server takes place as the primary. Moreover,
this type of solution fails to protect the SCADA Master from
malicious faults.

State Machine Replication (SMR) is an active replication
approach that has been employed to ensure fault tolerance of
fundamental services in modern internet-scale infrastructures
(e.g., [5], [6], [7]). Given the critical role of the SCADA
Master in the system, its design must consider correctness and
availability. In particular, to build systems capable of operating
correctly even in the presence of intrusions [8], it is necessary
to employ Byzantine fault-tolerant (BFT) SMR, a particular
case of SMR.

In this work, we describe the endeavor of making an
intrusion-tolerant SCADA Master using BFT SMR. In this
process, we have found some generic challenges that are
relevant to other SCADA systems (e.g., [9], [10]). These
challenges result from the need to guarantee the SMR prop-
erties, i.e., determinism and coordination, in a system that
was built to be non-deterministic. One of the key decisions
of our solution was to make it as modular as possible to avoid
code modifications both on the SCADA and BFT library. In
particular, our solution results from the integration of Eclipse
NeoSCADA [11] with BFT-SMaRt [12], which are both stable
open-source projects with several years of development. Al-
though the idea of using BFT replication in a SCADA system
was initially proposed in [9], no description was made about
the challenges we are addressing in this work.

Our contributions can be summarized as follows:
• The identification of the main challenges to make intru-

sion tolerant a “traditional” SCADA Master;
• The design and implementation of a prototype, named

SMaRt-SCADA, addressing these challenges;
• A preliminary performance evaluation to assess the over-

head introduced by our solution.
The remainder of the paper is organized as follows: In §II,
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Fig. 2. Internal details of the main components of Eclipse NeoSCADA.

we introduce the non-replicated SCADA solution; In §III, we
identify the challenges of making a BFT SCADA Master; In
§IV, we present our prototype solution and how it addresses
the identified challenges; In §V, we present the evaluation of
the prototype; We present the related works in §VI; Finally,
in §VII we present the conclusion and the lessons learned.

II. ECLIPSE NEOSCADA

Most of the existing SCADA solutions are commercial,
and therefore, their code is not available for inspection and
modification. Among the few open-source SCADA available,
we decided to use the Eclipse NeoSCADA [11] in this work.
It is a multi-platform “construction kit” for SCADA systems
allowing system customizations. NeoSCADA is a project
created in 2013, and its current version supports natively the
following protocols (others can be added) Modbus TCP and
RTU, Simatic S7 PLC, and JDBC. This system has been used
in production to manage some industrial facilities [13].

A. Architecture

As can be observed in Figure 2, NeoSCADA has all
the components of a typical SCADA system. NeoSCADA
supports multiple Frontends, which are all connected to the
SCADA Master. Although RTU devices are not part of
NeoSCADA (and thus not shown in the figure), they are
connected to the Frontends.

NeoSCADA employs two communication interfaces that
specify the operations that can be performed. The Data Access
(DA) interface defines a set of operations that permit to read or
update values. The Alarms and Events (AE) interface allows
the subscription of events that are generated when a controlled
item’s value reaches a certain threshold.

These interfaces allow the communication of the SCADA
components: The Frontend contains items that represent the
devices (e.g., Item i in Figure 2), such as sensors and actuators
in the field, which are connected to the RTUs. Each item
is composed of a name and a value. The SCADA Master
also contains items, but these items are representations of the
items in the Frontends. To receive and send data from/to the
Frontends, the SCADA Master subscribes to the items in the
Frontends using the DA communication interface. The HMI
also contains items that are mapped inside the SCADA Master.

Similar to the SCADA Master, the HMI also uses the DA
communication interface to subscribe to the items.

In the SCADA Master, handlers can be added to the items to
obtain enhanced functionalities. Handlers are associated with
items to process their data values. NeoSCADA contains a
set of default handlers: Scale, scales the value of an item;
Override, overrides the current value of an item with a
predefined value; Monitor, checks whether a value passes a
certain threshold; and Block, blocks an operation while it
waits for some condition to be verified. Every time a handler
processes data, an event may be created and saved in the
storage component. An event is created when the value is
modified or when it reaches a predefined condition. To receive
events, the HMI must subscribe to the SCADA Master’s items
of interest using the AE communication interface.

B. Operational use cases

Two main use cases define how the DA and AE interfaces
are used, and the messages exchanged in the SCADA. Under-
standing these use cases is important as they will be modified
in the BFT version:

a) Item update: This case encompasses the scenario
where a Frontend is notified by a RTU about an item’s value
update, e.g., some RTU detected temperature changes. We
consider that all the items available in the Frontend were
previously subscribed by the HMI and SCADA Master. Upon
the item’s update, the Frontend informs the SCADA Master
of the update, which after processing the information tells the
HMI about the change. If the updated value raises an alarm
in the SCADA Master, the HMI is also notified of that alarm.

Figure 3 shows the messages exchanged in the described
scenario. Upon the item’s update value, the Frontend creates
an ItemUpdate(ID,val) message and sends it to the
SCADA Master’s DA client (DAC) via DA server (DAS) (1).
In the SCADA Master, the update message goes through two
different subsystems (2). One is the DA server, where the
message is forwarded to all subscribers of that item. All DA
clients that subscribed that item will receive the update (3).
The other path is through the AE server (AES), where the
handlers will process the item update. Each handler associated
with that item will process the message and, if the values are
modified or reached some condition, an event is created and
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saved in the storage. All AE clients (AEC) that subscribed to
that item will receive event notifications (3a).

b) Write value: This use case describes a scenario in
which an operator, via HMI, requests a change for an item’s
value in a RTU. The request stays blocked in the SCADA
Master waiting for a confirmation stating that the item could
be modified. In the end, the HMI informs the operator if the
item’s value was successfully changed or not.

Figure 4 depicts the messages exchanged in this scenario.
When the operator performs a write, the HMI sends a
WriteValue(ID, val) from the DA client to the DA
server, which places the write message in the DA subsystem
(1) of the SCADA Master. The message is processed by
its handlers (2), and then the SCADA Master sends the
WriteValue message to the Frontend (3). After the corre-
sponding RTU replies with a message, the Frontend returns a
WriteResult message to the SCADA Master, indicating
if the operation was successfully completed or not (4). In
the SCADA Master, the message follows two different paths,
similarly to what happens in the previous use case (5). In the
DA subsystem, the WriteResult message is forwarded to
DA client that performed the write operation (in this case,
to the HMI) (6). In the AE subsystem, the handlers will
process that write result. If some condition is activated, an
event is created and saved in the internal storage and an
EventUpdate message is sent to the HMI (6a).

In the case where there is an issue with a handler (2),
a WriteValue message may not be sent to the Frontend
(3). One of the default handlers of the SCADA Master is
the Block handler. This handler blocks the message while it
checks whether the operator can perform the write operation. If
the operation is denied, the SCADA Master replies with two
messages to the operator: The DA sends a WriteResult
informing the operator that the requested operation was not
performed, and an EventUpdate message is sent via AE.
This message contains the reason why the SCADA Master
was not able to execute the operation. The latter message is
transmitted to the operator because the Block handler creates
an event which contains recorded logging information and
saves it in internal storage.
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Fig. 4. Messages exchange in the Write value use case.

III. BUILDING A BFT SCADA

In this section, we identify the main issues associated with
the integration of a BFT library with the SCADA Master.
Before we do that, we explain what is BFT replication in a
nutshell.

A. BFT replication

BFT SMR is a well-known approach to replicate a service
for Byzantine fault tolerance [14]. Typically, it is implemented
as a request-reply protocol between clients and replicated
servers. Each client issues requests to the servers, which
process the same requests in the same order. Then, the servers
reply to the client, which waits for a sufficient amount of
matching replies. The key idea is to make replicas determin-
istically execute the same sequence of requests in such a way
that, despite the failure of a fraction of the replicas, there is a
quorum of correct nodes that have the same state and ensure
the validity of the offered services.

B. Identified challenges

We have identified some generic challenges in building a
BFT SCADA. They refer to the process of making a non-
deterministic SCADA Master works as a state machine [15].
SMR requires that all replicas assure the following properties:
(1) All SCADA Masters start from the same state; (2) All
SCADA Masters execute the same sequence of messages; (3)
All SCADA Masters execute the same state transitions. The
following challenges identify the problems that we have found
that violate these properties.

a) Multiple entry points: The SCADA Master contains
multiple communication entry points. To communicate with
the Frontends, the SCADA Master uses DA clients, while
to communicate with the HMI, it uses a DA server and
an AE server. Therefore, the SCADA Master can receive
requests and replies from all these modules simultaneously.
For example, the SCADA Master can receive at the same
instant an ItemUpdate message from the Frontend and a
WriteValue message from the HMI. In a single SCADA
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Fig. 5. The main components of SMaRt-SCADA.

Master deployment, these multiple entry points may enhance
the server’s performance, as there is no single bottleneck
component to process all requests. However, in a replicated
setting, the SCADA Master replicas need to process all these
messages in the same order.

b) Multi-threading: Internally, the SCADA Master’s DA
and AE subsystems have several modules that execute con-
currently. This enables the SCADA Master to receive and
process multiple requests in parallel. In a context of SMR,
multi-threading is a major difficulty because the execution of
the requests is not deterministic. Even if all SCADA Master
replicas receive the same requests, each replica could process
them differently due to distinct scheduling decisions. This
could cause the replicas to evolve to diverse internal states.

c) Non-deterministic timestamps: In the AE subsystem,
some modules retrieve information from the operating system
during their execution. For instance, when an event is created,
a timestamp is retrieved from the operating system and as-
signed to the event. In a replicated solution, it is necessary
to ensure that all replicas generate the same timestamp for
the same event. Otherwise, replicas produce distinct events,
compromising the required determinism.

d) Asynchronous messages: NeoSCADA was designed
following a publish/subscribe architecture. The HMI must
subscribe to an item in the SCADA Master to receive data
or events associated with it. After that, the HMI starts re-
ceiving messages asynchronously. The SCADA Master can
send multiple messages to the HMI in response to a processed
message. For instance, after receiving an ItemUpdate mes-
sage from the Frontend, the HMI can receive ItemUpdate
and EventUpdate messages from the SCADA Master.
In the replicated configuration, the HMI receives messages
asynchronously from a set of replicas. Without additional
information included in the messages, the HMI will not be
able to know in which context these messages were produced.

IV. SMART-SCADA

In this section, we present SMaRt-SCADA, a BFT SCADA
solution that addresses the identified challenges.

A. Architecture overview

Figure 5 depicts the SMaRt-SCADA architecture. The figure
shows the main modifications that we made in NeoSCADA.
The integration of NeoSCADA with BFT-SMaRt was sim-
plified by using proxies that allowed us to minimize code
modifications in the original system. Each original component
has its own proxy to accommodate the BFT-SMaRt code: 1)
The ProxyMaster is responsible for forwarding all NeoSCADA
messages that come from the Frontend and the HMI to the
SCADA Master. Each ProxyMaster contains a BFT server,
which is the server-side of the library where a BFT replication
protocol runs. The BFT server communicates with the Adapter
that is responsible for adding information to each incoming
message and to decide to which client the message should
be forwarded, DA or AE. 2) The ProxyHMI receives the
HMI messages and sends them via its BFT client, to the
ProxyMaster. The BFT client is the client-side of the BFT
library. In this proxy, we have a DA server and an AE server
which simulate the servers available in the SCADA Master.
3) The ProxyFrontend, which guarantees the communication
between the Frontend and the SCADA Master. This proxy
employs the BFT client of the library to transmit all messages
that come from the Frontend to the SCADA Master. When the
SCADA Master needs to communicate with the Frontend, the
ProxyFrontend receives messages from the client-side of the
library and forwards them using the DA client.

B. System model

SMaRt-SCADA assumes the system model used in [12],
i.e., n ≥ 3f +1, where n is the total number of replicas (each
one a SCADA Master with the associated proxy), and f is the
number of tolerated Byzantine replicas. As in other works, we
assume that replicas fail independently due to some diversity
mechanism [16]. We assume that both HMI and Frontends are
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correct as they need to cope with the protocol established to
issue requests to the replicas. Moreover, the communication
of HMI, SCADA Master, and Frontend with their proxies
is protected by separate secure connections (currently TLS
channels). Although this work is focused on the replication of
the SCADA Master, we consider that the traditional defense
mechanisms are present in the infrastructure, such as IDS
and firewalls. SMaRt-SCADA complements their protection
without interfering with them. Thus, it increases the effort that
an adversary needs to spend to break the overall system.

C. Addressing the challenges

In the following, we show how SMaRt-SCADA addresses
the challenges identified in § III-B. SMaRt-SCADA was devel-
oped by integrating the BFT-SMaRt state machine replication
library with NeoSCADA. BFT-SMaRt guarantees that all
SCADA Master nodes execute the same sequence of opera-
tions. It implements an agreement protocol that runs among the
replicas. However, BFT-SMaRt assumes that all the replicas
start from the same state and apply deterministic operations on
the messages throughout the execution. Therefore, we needed
to modify the NeoSCADA to meet these assumptions.

a) Multiple entry points: We introduced the proxy com-
ponents and made a small number of internal modifications
in the SCADA Master to convert the multiple entry points
into a single one. This way, the SCADA Master does not
receive messages simultaneously, and all messages that arrive
are processed, one by one, following the order defined by
the BFT library. The HMI and Frontends use the DA and
AE channels as in the original version. Therefore they are
not aware of the replication library in between. The SCADA
Master is replicated in n instances and each one receives
the requests from a ServerProxy instead of the HMI and
Frontends. Additionally, we modified the SCADA Master DA
Server and DA Client to guarantee that the messages coming
from the Frontend DA server are placed correctly in the
SCADA Master DA client (see Figure 5).

b) Multi-threading: The original SCADA Master pro-
cesses messages in parallel. Without changes, it would com-
promise the determinism property as all SCADA Master
replicas must apply the same modifications to their state.
The best solution would be to use a replication library that
supports multi-threaded applications (e.g., [17], [18], [19]). By
resorting to these libraries, the necessary modifications in the
source code of NeoSCADA would be minimal. Unfortunately,
none of these implementations is available as open-source.
Therefore, we had to refactor the SCADA Master to remove
multi-threading to meet the BFT-SMaRt requirements. Then,
as the execution becomes predictable, we can guarantee that
all replicas execute deterministically.

c) Non-deterministic timestamps & Asynchronous mes-
sages: In the original version, the HMI and Frontend use the
DA and AE client channels to communicate with the AE and
DA servers in the SCADA Master. Since we have eliminated
the multiple entry points in SMaRt-SCADA, we need to take
the messages from the single entry point and deliver them
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Fig. 6. The messages flow when an item update occurs in SMaRt-SCADA.

to the correct channel server. We developed the Adapter to
add a timestamp and ordering information to each incoming
message, and then forward the messages to each SCADA
Master subsystem and vice-versa. After receiving a message,
the DA server in the SCADA Master passes the timestamp
and the ordering data to the ContextInfo module. Modifying
the DA and AE subsystems to retrieve this information from
ContextInfo guarantees that all generated messages and events
for a certain operation would have the same timestamp. In
addition, the HMI can identify asynchronous messages as they
contain information related to the ordering process.

D. Operational use cases

We revisit the previous use cases, i.e., Item update and Write
value, to show the communication changes in the replicated
version of the SCADA Master.

a) Item update: Similar to the non-replicated Item update
use case, we assume that all the items available in the Frontend
were previously subscribed by the HMI and SCADA Master.
In the following, we describe the scenario where a Frontend is
notified by a RTU about an item value update. The Frontend
uses its proxy to transmit the message to the ProxyMasters,
which run a Byzantine agreement before delivering the mes-
sage update to the SCADA Masters. Before the update reaches
the HMI, the ProxyHMI waits for f + 1 matching messages
from the replicas. As before, if the updated value raises an
alarm in the SCADA Masters, the HMI is also notified of that
alarm, in this case, it also waits for f +1 matching messages.

Figure 6 shows the messages flow when an item’s update
occurs in the SMaRt-SCADA. When there is an item’s update,
the Frontend sends an ItemUpdate message to the Prox-
yFrontend (1). The ProxyFrontend sends the message to the
ProxyMasters using the client-side of the BFT library (2). The
ProxyMaster replicas run a Byzantine agreement to decide the
message order (3) and deliver the message in the same order to
the Adapters. Then, each replica Adapter places the message
in the correct subsystem. In this case, such component is the
DA client, which then sends the message to the DA server (4).

5



There, the DA server puts the message in the channel mapped
to that item (5). The DA client connected to that channel
receives the ItemUpdate and passes it to the DA and AE
subsystems. Then, an ItemUpdate and an EventUpdate
message are sent from the DA Client and AE Server, respec-
tively, to the ProxyMaster (6 and 6a). The ItemUpdate and
EventUpdate messages are transmitted to the ProxyHMI
(7 and 7a), which also demultiplexes the messages and places
them in the right communications interfaces. Then, the Prox-
yHMI waits for f + 1 equal messages from the ProxyMaster
for both ItemUpdate and EventUpdate messages (8 and
8a). Next, the ItemUpdate and EventUpdate go to the
DA server and to AE Server (9 and 9a), respectively. Finally,
the HMI receives these messages.

b) Write value: Similar to the non-replicated write value
use case, we describe the scenario where an operator, via HMI,
requests a change to an item value in a RTU. In this scenario,
the ProxyHMI and ProxyFrontend mediate the protocol by
invoking the Byzantine agreement in the ProxyMasters. Then,
they wait for f+1 matching messages from the ProxyMasters.
After that, they can deliver the messages to both HMI and
Frontend, respectively.

Figure 7 presents the message flow of sending a
WriteValue from the HMI to the Frontend. The HMI uses
the DA client to forward the WriteValue message to the DA
server in the ProxyHMI (1). Then, it uses the client-side of the
BFT library to replicate the message to every ProxyMaster (2).
The ProxyMasters run a Byzantine agreement to decide the
message order and deliver the message to each own Adapter
(3). The Adapter uses the DA client to send the WriteValue
message to the SCADA Master (4).

The DA server receives the message and places it into the
DA subsystem. Before arriving at the DA client, the message
passes through the handlers in the AE subsystem. Then, the
DA client redirects the message to the ProxyMaster via the
SCADA Master DA server and stays blocked (5). The Adapter
receives the WriteValue message and forwards it to the
Frontend via its ProxyFrontend (6), which waits for f + 1
matching messages (7). Finally, the WriteValue message
is transmitted to the Frontend using the DA client (8).

In the other way around, the RTU replies to the Frontend,
which sends a WriteResult message to the ProxyFrontend
DA client (9). Then, it uses the replication library client-
side to inform the ProxyMaster replicas (10). These replicas,
after running a Byzantine agreement to decide the order
of such messages (11), deliver the WriteResult to the
Adapter that sends it to the DA client. The message is then
given to the DA server that places it in the mapped channel
to the item with that WriteResult. The DA client of
that item receives the result and passes it to the DA and
AE subsystems (12). A WriteResult and EventUpdate
messages are forwarded to the DA and AE client in the
ProxyMaster (13 and 13a). Recall that the latter is sent only if
an alarm event is created. The Adapter waits until it receives
the result message related to the WriteResult message.
WriteResult and EventUpdate messages are sent to the
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Fig. 7. The messages flow when a write value is executed in SMaRt-SCADA.

ProxyHMI (14 and 14a), the ProxyHMI waits for f +1 equal
messages for WriteResult and EventUpdate (15 and
15a), respectively. There the WriteResult message goes to
the DA server (16) and the EventUpdate goes to the AE
Server (16a). Finally, the HMI receives these messages.

During the write operation, the SCADA Master liveness can
be compromised. More precisely, when the SCADA Master
sends a WriteValue message to the Frontend via the Prox-
yFrontend. The ProxyMaster’s DA client stays blocked until
it receives a WriteResult message. If such message never
arrives, the SCADA Master will be blocked forever. To prevent
this, we used an approach similar to the one that was prepared
in [9]. The Adapter contains a timeout mechanism that is
triggered when the WriteValue message is forwarded to the
Frontend. Each Adapter sends to the other Adapters a timeout
message informing that a timeout was exceeded due to a
missing WriteResult message. When a majority of timeout
messages arrive at each Adapter, an empty WriteResult
message is sent to the SCADA Master informing that a timeout
has occurred. This way, we can ensure the liveness of the
SCADA Master even if an attacker drops WriteValue or
WriteResult messages.

V. EXPERIMENTAL EVALUATION

This section presents a preliminary experimental evaluation
comparing the performance of SMaRt-SCADA with the orig-
inal NeoSCADA.

The machines used in the experiments have two quad-core
2.27 GHz Intel Xeon E5520 with 32 GB of RAM memory and
are interconnected by a Gigabit Ethernet switch. The machines
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Fig. 8. Performance evaluation between NeoSCADA and SMaRt-SCADA.

run Linux Ubuntu 14.04 (64-bit) with kernel version 3.13.0-
32-generic and Oracle Java 1.7.0 80-b15.

We deployed the NeoSCADA in three machines, each one
containing its component: Frontend, SCADA Master, and
HMI. In contrast, we deployed the SMaRt-SCADA in six
machines: one Frontend, four SCADA Masters, and one HMI,
each one also containing its corresponding proxy.

A. Update Item workload

We started our evaluation by deploying a scenario where the
Frontend contains a set of items that are being updated, and
then the Frontend sends the updates to the SCADA Master
which then forwards them to the HMI. In this experiment,
we considered 1000 ItemUpdate messages per second to
simulate the same workload used to evaluate the intrusion-
tolerant logical timeout protocol of Kirsch et al. [9]. This
workload emulates a scenario wherein every second 1000
RTUs are updated and then propagate their information to the
Frontend. We have simplified this experiment by removing the
RTUs, as the Frontend generate the messages. We validated
this workload with the staff of an electrical company that runs
a country-scale SCADA, and they said that it is significantly
above to what they typically observe, even in a crisis.

Figure 8(a) illustrates the number of messages processed
by NeoSCADA and SMaRt-SCADA. There is a performance
drop of 6% in the SMaRt-SCADA due to the additional
steps needed to perform the updates (see Figures 3 and
6): In NeoSCADA, each ItemUpdate message takes 3
communication steps to go from the Frontend to the HMI,
but in the SMaRt-SCADA the same operation takes 9 steps.
In SMaRt-SCADA, each ItemUpdate message is executed
in each SCADA Master after the ProxyMasters execute a
Byzantine agreement and later is voted in the ProxyHMI.

We repeated this experiment to understand the overhead
associated with the setup of alarms. More precisely, we added
the Monitor handler in the SCADA Master to verify whether
the items value passes a certain threshold. When that occurs,
an EventUpdate message is produced, saved the internal
storage, and finally sent to the HMI. In this experiment, we
exercise both the DA and AE subsystems.

Figure 8(b) shows the number of messages processed. We
ran both solutions in two different alarm scenarios. In one
scenario, we considered that every ItemUpdate message
triggers an alarm (100%-alarms), while in the other, half of
them do it (50%-alarms). While NeoSCADA was able to
process all messages for both percentages of alarms, SMaRt-

SCADA presents an overhead of 10% and 25% for the 50%-
and 100%-alarms scenarios, respectively. The throughput de-
crease reflects the additional communication steps introduced
by our solution. In particular, in the 100%-alarms scenario the
number of events that go to storage is twice what was observed
in the 50%-alarms scenario.

B. Write Value workload

In this last experiment, we evaluated the performance of
both solutions for the Write value use case. We considered that
the HMI performs synchronous writes in a Frontend’s item.
This means that, for each write operation, the HMI waits until
the operation is completed.

Figure 8(c) illustrates the number of writes that can be
performed in both solutions. We can observe that the SMaRt-
SCADA introduces an overhead of 78%. This significant
throughput decrease results from the additional 10 commu-
nications steps that our solution needs to perform the write
operation (see Figures 4 and 7). Additionally, since in our
solution the SCADA Master is single threaded, it does not take
full advantage of multi-core CPUs. Moreover, we observed
that the BFT-SMaRt is not the bottleneck of our system, as it
reaches a throughput of 16k requests/sec for a similar message
size (1024k bytes) [12]. However, the throughput achieved
by SMaRt-SCADA is sufficient to accommodate a real-world
workload, as it is virtually impossible for a group of human
operators to perform almost 100 commands/second.

VI. RELATED WORK

There are only a few works dedicated to the effort of
building dependable SCADA systems. Kirsch et al. made
the first attempt to build BFT SCADA Master using state
machine replication [9]. Although there was an integration of
their BFT library with a real SCADA Master product, the
authors provided few details about the issues raised during
the integration of the system with a BFT library. However,
they presented two detailed challenges and solutions. The first
challenge concerns the type of communication of a traditional
SCADA system, within a replicated environment. The authors
proposed a logical timeout to synchronize the replicas polling
the RTUs. The second challenge is related to the typical
communication pattern of state machine replication, i.e., a
client makes a request and waits for the response of the
servers. In a SCADA scenario, the communications can be
bi-directional and asynchronous, since it is event-driven. The
authors developed a communication abstraction between the
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clients (e.g., HMI and Frontends) and the SCADA Masters.
In our work, we used a similar logical timeout and the second
challenge is solved by BFT-SMaRt that allows clients to send
and receive asynchronous messages.

Spire [10] is the first intrusion-tolerant SCADA system
designed to tolerate faults both in the system and the network.
Moreover, Spire main goal was to tackle the worst case
scenario, whereas highly determined attackers can overpass the
existent intrusion-tolerant techniques. Their solution requires
a significant extra number of nodes to support availability in
the presence of simultaneous intrusions. The system was tested
in a wide-area deployment with two control centers (i.e., in
site) connected to and two data centers (i.e., external to the
SCADA infrastructure facilities). Our work is complementary
to Spire as it provides no discussion about the challenges of
replicating a SCADA service.

VII. LESSONS LEARNED & CONCLUSION

In this paper, we presented the challenges in building a BFT
SCADA system by integrating two open-source projects. We
designed a solution to address these challenges, implementing
the SMaRt-SCADA prototype as a result. In this process, we
had to make a few design and implementation decisions. We
think that some of the learned lessons can be useful for works
that need to build a BFT SCADA Master from a single server:

a) SMR determinism: The availability of SCADA systems
is a major concern for utility companies. Although primary-
backup configurations are more attractive as they use fewer
resources, the response-time to failures could compromise
the correct functioning of critical infrastructures. Using active
replication (e.g., SMR) solves part of this problem, as there
is no need to change the replicas’ roles upon failures. In this
work, we dedicated a significant amount of effort to guarantee
SMR properties. In the integration process, we had to make
the SCADA Master execute sequentially, i.e., eliminating
asynchronous messages and multi-threading execution.

b) Is BFT replication suitable for SCADA systems? BFT
replication is a step further from traditional SMR, with ad-
ditional costs due to the tolerance of arbitrary faults. Our
evaluation indicates a performance loss when compared to the
original NeoSCADA. However, the overhead was not intro-
duced by the BFT library itself, as its maximum throughput
was reported to be several times greater than ours. The main
cause for this performance loss was the message serialization
bottleneck introduced to guarantee determinism. Nevertheless,
we do not dispute alternatives to our implementation in a
way to accommodate BFT into a SCADA with a minor
performance impact. For example, by using a BFT library
that supports multi-threading (e.g., [17], [18]) or by adding
parallel execution support to BFT-SMaRt (as recently done by
Alchieri et al. [19]).

c) The cost of transparent solutions: We decided to mini-
mize the modifications in both SCADA and BFT library code.
As they already have a significant amount of code, i.e., BFT-
SMaRt has ≈ 15k lines of code, and Eclipse NeoSCADA has
≈ 875k lines of code. Then, we decided to keep the original

SCADA and BFT library design, to simplify the software
integration. However, it had an impact on the SCADA Master
performance, as placing proxies between the SCADA and BFT
library introduced additional processing steps. The alternative
would be to integrate both projects more deeply. However, this
integration would be far more complex and would limit future
changes in both projects.
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